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Introduction

We use the discriminant of a polynomial in one variable to verify if a plane
complex analytic curve f(x, y) = 0 is analytically irreducible at the origin.
Throughout the poster we assume that
f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x) is a distinguished polynomial of
degree larger than 1.

I Let D(u, v) = Discriminanty(f(u, y)− v).
. The discriminant curve D(u, v) = 0 is geometrically the set of critical

values of the mapping (x, f) : (C2, 0)→ (C2, 0).
. The Newton diagram of D(u, v) is called the jacobian Newton diagram of a

pair (x, f) and denoted NJ(x, f).

Example

Let f(x, y) = (y2 − x3)2 − x5y. Then

D(u, v) = −256v3 + 256u6v2 + 288u13v − 256u19 − 27u20.

NJ(x, f)

Red dots are the points of the support of D(u, v).

Merle type diagrams

By definition ∆ is the Merle type diagram if there exists an irreducible
curve f = 0 such that ∆ = NJ(x, f).

I Properties of Merle type diagrams
. NJ(x, f) is a convenient Newton diagram which is determined by the

intersection multiplicity (f, x)0 and the embedded topological type of the
curve f = 0. The interested reader can see Appendix B.

. The jacobian Newton diagram NJ(x, f) is a complete topological invariant
of the singularity of the curve xf(x, y) = 0; in particular NJ(x, f)
determines the embedded topological type of the curve f = 0.

. We show an easy way of checking if the given Newton diagram ∆ is a
Merle type diagram (see Appendix C).

Irreducibility criterion

Theorem. The curve f(x, y) = 0 is analytically irreducible at the origin if
and only if NJ(x, f) is a Merle type diagram.
The implication⇒ is obvious. The opposite implication follows from
Theorem. Let f = 0 and g = 0 be two curves such that
NJ(x, f) = NJ(x, g). Suppose that f = 0 is an irreducible curve. Then
g = 0 is also irreducible.

Kuo’s examples

I Take f(x, y) from the previous example. Using notations of Appendix A for
convenient Newton diagrams we have NJ(x, f) = { 6

1 }+ {13
2 } which is a

Merle type diagram. Hence the curve f(x, y) = 0 is irreducible.
I Let g(x, y) = (y2 − x3)2 − x7. Then

D(u, v) = −256(v− u6 + u7)(v + u7)2. By drawing the Newton diagram
of D(u, v), one can check that NJ(x, g) = { 6

1 }+ {14
2 }. Since NJ(x, g) is

not a Merle type diagram, g(x, y) = 0 is a reducible curve.

Local irreducibility criterion for algebraic curves

Let F(x, y) be a square free complex polynomial such that the origin is a
singular point of the curve F(x, y) = 0. Let c be a variable and let
H(u, v) ∈ C[c][u, v] be the polynomial given by
H(u, v) = Discriminanty(F(u + cy, y)− v). Then the curve
F(x, y) = 0 is analytically irreducible at the origin if and only if the
Newton diagram of H(u, v) is a Merle type diagram.

Irreducibility criterion at infinity

Let F(x, y) = yn + terms of lower degrees be a complex polynomial. Let
H(x, t) = Discriminanty(F(x, y)− t) and let L : R2 → R2 be an
affine transformation given by L(i, k) = (n(n− 1)− i− nk, k). We
construct the Newton diagram ∆ using L(∆H) where ∆H is the Newton
polygon of H(x, t) as shown in the figure below. Then the projective
closure of the curve F(x, y) = 0 is irreducible at infinity if and only ∆ is a
Merle type diagram.

∆H
L(∆H)

∆

∆ is the region above the red polygon

Conclusions

I Our irreducibility criterion is a two-step procedure: first compute the equation
of the discriminant curve, then check if the Newton diagram of the
discriminant curve passes the arithmetical test for Merle type diagrams.

I All other known methods are multi-step procedures, for example using
Abhyankar’s irreducibility criterion (see [1]) we are forced to compute
approximate roots and use G-adic expansions with respect to these roots.

I Our method gives an effective criterion of local irreducibility of plane
algebraic curves.

I For an affine plane curve with one point at infinity, we obtain a criterion for
analytical irreducibility in terms of the Newton diagram of a discriminant.

Appendix A: Teissier’s fractions

I The Newton diagram is called convenient if
it intersects both coordinate axes.

I Every convenient Newton diagram is a sum
of Teissier’s fractions.

I Compact edges of ∆ are in one-to-one
correspondence with Teissier’s fractions.
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+
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Appendix B: Smith-Merle-Ephraim formula

I Let f = 0 be an irreducible singular curve and l = 0 be a smooth curve.
I The semigroup S(f) is the set of intersection multiplicities

S(f) = {(f, g)0 : f is not a factor of g}.

I The (f, l)0-minimal system of generators of S(f) is the sequence b̄0, b̄1, . . . , b̄h determined

by conditions:

. b̄0 = (f, l)0,

. b̄k = min(S(f) \ (N b̄0 + · · ·+ N b̄k−1)),

. S(f) = N b̄0 + · · ·+ N b̄h.

I Let n1, . . . , nh be the integers defined as nk = gcd(b̄0,...,b̄k−1)

gcd(b̄0,...,b̄k)
for k = 1, . . . , h. Then

NJ(l, f) =
h∑

k=1

{
(nk − 1)b̄k

(nk − 1)n1 . . . nk−1

}
.

Appendix C: Arithmetical test for Merle type diagrams

Let ∆ =
∑h

i=1 {
Li

Mi
} where L1

M1
< · · · < Lh

Mh
. Let H0 = 1, Hi = 1 + M1 + · · ·+ Mi

for i ∈ {1, . . . , h} and C0 = Hh, Ci = Hi−1Li/Mi for i ∈ {1, . . . , h}. Then ∆ is a

Merle type diagram if and only if the following conditions are satisfied:

I Hi/Hi−1 are integers for i ∈ {2, . . . , h},

I Ci are integers for i ∈ {1, . . . , h},

I gcd(C0, . . . , Ci) = C0/Hi for i ∈ {1, . . . , h}.

Assume that ∆ = NJ(l, f). Then C0,. . . ,Ch is the (f, l)0-minimal system of generators

of the semigroup S(f).
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E. Garćıa Barroso and J. Gwoździewicz, Characterization of jacobian Newton polygons of plane branches and new criteria of irreducibility, Annales de l’Institut Fourier 60 (2), 683–709, 2010.
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