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Motivation

Definition

A finite set Z ⊂ P3 of points whose projection to P2 from a general point
is a complete intersection of a curve of degree a with a curve of degree
b ⩾ a is called (a, b)-geproci.

Remark

For such Z there are cones (with vertex in a general point) of degree a
and b containing Z .

Problem

Study locus of points occuring as a vertex of degree d cone containing Z.
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Classical example

[W] T. Weddle, On the theorems in space analogous to those of Pascal
and Brianchon in a plane. Part II, Cambridge and Dublin Mathematical
Journal, 5 (1850), pp. 58 - 69.

Example

Let Z be a set of 6 points in P3 in Linear General Position and let d = 2.
Then the vertex locus is a surface, now known as classical Weddle
surface.

[E] A. Emch,On the Weddle surface and analogous loci, Transactions of
the American Mathematical Society, 27 (1925), pp. 270 - 278.

For larger d and Z ⊂ P3 of other cardinality.
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The d-Weddle locus

Let Z = {P1, . . . ,Pr} ⊂ Pn let P /∈ Z be a point and let d be a positive
number. Let

I = I (Z ) ∩ I (P)d ⊂ R = C[Pn] = C[x0, . . . , xn],

δ(Z ,P, d , t) = dimC[I ]t .

For Z , t and d we define

δ(Z , d , t) = min
P

δ(Z ,P, d , t).

Definition

The d-Weddle locus of Z is the closure of the set of points P ∈ Pn \ Z (if
any) for which δ(Z ,P, d , d) > δ(Z , d , d).
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The classical Weddle surface

Example

Let Z ⊂ P3 be a set of 6 points in LGP. Then the 2-Weddle locus is the
classical Weddle surface, i.e., the closure of the locus of points P ̸∈ Z in
P3 that are the vertices of quadric cones in P3 containing Z .

Equivalently,
the classical Weddle surface is the closure of the locus of points P ̸∈ Z
from which Z projects to a set ZP ⊂ P2 contained in a conic.

The general projection does not have this property and indeed for a point
P of the classical Weddle surface we have

dim[I (ZP)]2 = 1 > 0 = δ(Z ,Q, 2, 2),

where Q is general.
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Two approaches to finding the
d -Weddle scheme



Interpolation matrix

Z = {P1, . . . ,Pr} ⊂ Pn – finite set of distinct points,
s1, . . . , sr – positive integers,

I = I (P1)
s1 ∩ · · · ∩ I (Pr )

sr – the graded ideal generated by all forms that
vanish to order at least si at each point Pi ,
The ideal I is saturated and defines a subscheme X = s1P1 + · · ·+ srPr .
[I ]t is given for each degree t by the kernel of a matrix

Λ(X , t)

with entries in C, known as the interpolation matrix for X in degree t.
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Interpolation matrix

X = P1

M1, . . . ,MN - monomials of degree t (N =
(
n+t
n

)
)

Λ(P1, t) = (M1(P1), . . . ,MN(P1))

X = 2P1

Λ(2P1, t) is the (n + 1)×
(
n+t
n

)
-matrix whose entries are

Λ(2P1, t)ij =
∂Mj

∂xi
(P1)

X = (k + 1)P1

Λ((k + 1)P1, t) is the
(
n+k
n

)
×
(
n+t
n

)
-matrix whose entries are

Λ((k + 1)P1, t)ij =
∂Mj

∂mi
(P1) = ∂miMj(P1),

where mi ’s are monomials of degree k and

for m = x i00 · · · x inn denote ∂m =
∂ i0

∂x i00
· · · ∂ in

∂x inn
.



Interpolation matrix

X = P1

M1, . . . ,MN - monomials of degree t (N =
(
n+t
n

)
)

Λ(P1, t) = (M1(P1), . . . ,MN(P1))

X = 2P1

Λ(2P1, t) is the (n + 1)×
(
n+t
n

)
-matrix whose entries are

Λ(2P1, t)ij =
∂Mj

∂xi
(P1)

X = (k + 1)P1

Λ((k + 1)P1, t) is the
(
n+k
n

)
×
(
n+t
n

)
-matrix whose entries are

Λ((k + 1)P1, t)ij =
∂Mj

∂mi
(P1) = ∂miMj(P1),

where mi ’s are monomials of degree k and

for m = x i00 · · · x inn denote ∂m =
∂ i0

∂x i00
· · · ∂ in

∂x inn
.



Interpolation matrix

X = P1

M1, . . . ,MN - monomials of degree t (N =
(
n+t
n

)
)

Λ(P1, t) = (M1(P1), . . . ,MN(P1))

X = 2P1

Λ(2P1, t) is the (n + 1)×
(
n+t
n

)
-matrix whose entries are

Λ(2P1, t)ij =
∂Mj

∂xi
(P1)

X = (k + 1)P1

Λ((k + 1)P1, t) is the
(
n+k
n

)
×
(
n+t
n

)
-matrix whose entries are

Λ((k + 1)P1, t)ij =
∂Mj

∂mi
(P1) = ∂miMj(P1),

where mi ’s are monomials of degree k and

for m = x i00 · · · x inn denote ∂m =
∂ i0

∂x i00
· · · ∂ in

∂x inn
.



Interpolation matrix

X = P1

M1, . . . ,MN - monomials of degree t (N =
(
n+t
n

)
)

Λ(P1, t) = (M1(P1), . . . ,MN(P1))

X = 2P1

Λ(2P1, t) is the (n + 1)×
(
n+t
n

)
-matrix whose entries are

Λ(2P1, t)ij =
∂Mj

∂xi
(P1)

X = (k + 1)P1

Λ((k + 1)P1, t) is the
(
n+k
n

)
×
(
n+t
n

)
-matrix whose entries are

Λ((k + 1)P1, t)ij =
∂Mj

∂mi
(P1) = ∂miMj(P1),

where mi ’s are monomials of degree k and

for m = x i00 · · · x inn denote ∂m =
∂ i0

∂x i00
· · · ∂ in

∂x inn
.



Interpolation matrix

Z = P1 + · · ·+ Pr and we have an additional fat point dP
The (r +

(
n+d−1

n

)
)×

(
n+d
n

)
-matrix relevant to the d-Weddle locus is

Λ(Z + dP, d) =


Λ(P1, d)

...
Λ(Pr , d)
Λ(dP, d)

 =

(
Λ(Z , d)
Λ(dP, d)

)
.

Remark

The d-Weddle locus is the closure of the locus of points P /∈ Z such that
rank(Λ(Z + dP, d)) < ρ(Z , d , d), where ρ(Z , d , d) is the maximal rank
of Λ(Z + dP, d) and it is achieved when P is general.

Definition

This locus is defined by the ideal Iρ(Z ,d,d)(Λ(Z + dP, d)) of
ρ(Z , d , d)× ρ(Z , d , d) minors of Λ(Z + dP, d). We call this ideal the
d-Weddle ideal for Z .
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Interpolation matrix

Definition

Let Z ⊂ Pn be a finite set of points. The d-Weddle scheme for Z is the
scheme defined by the saturation of the d-Weddle ideal.

Reduction

Λ(Z , d) −→ Λ′
Z ,d =

(
idα ∗
0 0

)
(

Λ′
Z ,d

Λ(dP, d)

)
−→

 idα ∗
0 0
0 Λ′

Z+dP,d

 −→

 idα 0
0 0
0 Λ′

Z+dQ,d

 ,

where Λ′
Z+dP,d is a

(
n+d−1

n

)
× (

(
n+d
n

)
− α) matrix of linear forms

Since
Iρ(Z ,d,d)(Λ(Z + dQ, d)) = Iρ(Z ,d,d)−α(Λ

′
Z+dP,d),

both define the d-Weddle scheme.



Interpolation matrix

Definition

Let Z ⊂ Pn be a finite set of points. The d-Weddle scheme for Z is the
scheme defined by the saturation of the d-Weddle ideal.

Reduction

Λ(Z , d) −→ Λ′
Z ,d =

(
idα ∗
0 0

)

(
Λ′
Z ,d

Λ(dP, d)

)
−→

 idα ∗
0 0
0 Λ′

Z+dP,d

 −→

 idα 0
0 0
0 Λ′

Z+dQ,d

 ,

where Λ′
Z+dP,d is a

(
n+d−1

n

)
× (

(
n+d
n

)
− α) matrix of linear forms

Since
Iρ(Z ,d,d)(Λ(Z + dQ, d)) = Iρ(Z ,d,d)−α(Λ

′
Z+dP,d),

both define the d-Weddle scheme.



Interpolation matrix

Definition

Let Z ⊂ Pn be a finite set of points. The d-Weddle scheme for Z is the
scheme defined by the saturation of the d-Weddle ideal.

Reduction

Λ(Z , d) −→ Λ′
Z ,d =

(
idα ∗
0 0

)
(

Λ′
Z ,d

Λ(dP, d)

)
−→

 idα ∗
0 0
0 Λ′

Z+dP,d

 −→

 idα 0
0 0
0 Λ′

Z+dQ,d

 ,

where Λ′
Z+dP,d is a

(
n+d−1

n

)
× (

(
n+d
n

)
− α) matrix of linear forms

Since
Iρ(Z ,d,d)(Λ(Z + dQ, d)) = Iρ(Z ,d,d)−α(Λ

′
Z+dP,d),

both define the d-Weddle scheme.



Interpolation matrix

Definition

Let Z ⊂ Pn be a finite set of points. The d-Weddle scheme for Z is the
scheme defined by the saturation of the d-Weddle ideal.

Reduction

Λ(Z , d) −→ Λ′
Z ,d =

(
idα ∗
0 0

)
(

Λ′
Z ,d

Λ(dP, d)

)
−→

 idα ∗
0 0
0 Λ′

Z+dP,d

 −→

 idα 0
0 0
0 Λ′

Z+dQ,d

 ,

where Λ′
Z+dP,d is a

(
n+d−1

n

)
× (

(
n+d
n

)
− α) matrix of linear forms

Since
Iρ(Z ,d,d)(Λ(Z + dQ, d)) = Iρ(Z ,d,d)−α(Λ

′
Z+dP,d),

both define the d-Weddle scheme.



Macaulay duality

R = C[x0, . . . , xn]
R∗ = C[∂x0 , . . . , ∂xn ]

P = [p0 : . . . : pn] ∈ Pn −→
LP = p0x0+· · ·+pnxn ∈ [R]1

∂LP
=

∑
pi∂xi ∈ [R∗]1

R∗ acts on R, hence we have

[I (P)k ]t ∼= [R∗/(∂t−k+1
LP

)]t , 0 ⩽ k ⩽ t.

More generally, for 0 ⩽ ki ⩽ t and 0 ⩽ d ⩽ t, we have

[I (P1)
k1 ∩ · · · ∩ I (Pr )

kr ]t ∼= [R∗/(∂t−k1+1
LP1

, . . . , ∂t−kr+1
LPr

)]t

and

[I (P1)
k1 ∩ · · · ∩ I (Pr )

kr ∩ I (P)d ]t ∼= [R∗/(∂t−k1+1
LP1

, . . . , ∂t−kr+1
LPr

, ∂t−d+1
LP

)]t .
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Macaulay duality

Now have the exact sequence R∗

(∂t
LP1

, . . . , ∂t
LPr

)


d−1

×∂t−d+1
LP−−−−−−→

 R∗

(∂t
LP1

, . . . , ∂t
LPr

)


t

→

 R∗

(∂t
LP1

, . . . , ∂t
LPr

, ∂t−d+1
LP

)


t

→ 0

where we have

[R]d−1
∼= [R∗]d−1 = [R∗/(∂t

LP1
, . . . , ∂t

LPr
)]d−1,

[R∗/(∂t
LP1

, . . . , ∂t
LPr

)]t ∼= [I (P1) ∩ · · · ∩ I (Pr )]t

and

[R∗/(∂t
LP1

, . . . , ∂t
LPr

, ∂t−d+1
LP

)]t ∼= [I (P1) ∩ · · · ∩ I (Pr ) ∩ I (P)d ]t .

In particular, as a vector space, [I (P1) ∩ · · · ∩ I (Pr ) ∩ I (P)d ]t is
isomorphic to the cokernel of the map ×∂t−d+1

LP
.



Macaulay duality

For the d-Weddle locus we want t = d R∗

(∂d
LP1

, . . . , ∂d
LPr

)


d−1

×∂LP−−−−→

 R∗

(∂d
LP1

, . . . , ∂d
LPr

)


d

→

 R∗

(∂d
LP1

, . . . , ∂d
LPr

, ∂LP )


d

→ 0.

It can be rewritten as

([R∗]0)
r ⊕ [R∗]d−1

D⊕(×∂LP
)

−−−−−−→ [R∗]d → [R∗/(∂d
LP1

, . . . , ∂d
LPr

, ∂LP
)]d → 0

where

([R∗]0)
r D−→ [R∗]d and [R∗]d−1

×∂LP−−−→ [R∗]d

v = (a1, . . . , ar ) ∈ ([R∗]0)
r 7→ D(v) = a1∂

d
LP1

+ · · ·+ ar∂
d
LPr

,

w ∈ [R∗]d−1 7→ (×∂LP
)(w) = w∂LP

,
hence

(D ⊕ (×∂LP
))(v ⊕ w) = D(v) + (×∂LP

)(w).

So now [I (P1) ∩ · · · ∩ I (Pr ) ∩ I (P)d ]d is isomorphic to the vector space
cokernel of the map D ⊕ (×∂LP

).
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Macaulay duality

If we regard [R∗]d−1 as being the sum ⊕m[R
∗]0 over all monomials m of

degree d − 1 and [R∗]d as being the sum ⊕M [R∗]0 over all monomials M
of degree d , then

([R∗]0)
r ⊕ [R∗]d−1

D⊕(×∂LP
)

−−−−−−→ [R∗]d

can (in terms of the bases of monomials m and M) be written as a
matrix map T = T (Z , dP)

([R∗]0)
r
⊕

⊕m[R
∗]0

T=[T1|T2]−−−−−−→ ⊕M [R∗]0,

(T1)M,i = cMM(Pi ),

where cM comes from ∂d
LPi

= (p0i∂x0 + · · ·+ pni∂xn)
d =

∑
M cMM(Pi )∂M .

(T2)M,m = 0 unless mxi = M, and then (T2)M,m = pi .



Macaulay duality

If we regard [R∗]d−1 as being the sum ⊕m[R
∗]0 over all monomials m of

degree d − 1 and [R∗]d as being the sum ⊕M [R∗]0 over all monomials M
of degree d , then

([R∗]0)
r ⊕ [R∗]d−1

D⊕(×∂LP
)

−−−−−−→ [R∗]d

can (in terms of the bases of monomials m and M) be written as a
matrix map T = T (Z , dP)

([R∗]0)
r
⊕

⊕m[R
∗]0

T=[T1|T2]−−−−−−→ ⊕M [R∗]0,

(T1)M,i = cMM(Pi ),

where cM comes from ∂d
LPi

= (p0i∂x0 + · · ·+ pni∂xn)
d =

∑
M cMM(Pi )∂M .

(T2)M,m = 0 unless mxi = M, and then (T2)M,m = pi .



Macaulay duality

If we regard [R∗]d−1 as being the sum ⊕m[R
∗]0 over all monomials m of

degree d − 1 and [R∗]d as being the sum ⊕M [R∗]0 over all monomials M
of degree d , then

([R∗]0)
r ⊕ [R∗]d−1

D⊕(×∂LP
)

−−−−−−→ [R∗]d

can (in terms of the bases of monomials m and M) be written as a
matrix map T = T (Z , dP)

([R∗]0)
r
⊕

⊕m[R
∗]0

T=[T1|T2]−−−−−−→ ⊕M [R∗]0,

(T1)M,i = cMM(Pi ),

where cM comes from ∂d
LPi

= (p0i∂x0 + · · ·+ pni∂xn)
d =

∑
M cMM(Pi )∂M .

(T2)M,m = 0 unless mxi = M, and then (T2)M,m = pi .



Interpolation matrix and Macaulay duality

Note that we have(
d + n

n

)
− rankΛ(Z + dP, d) = dim ker Λ(Z + dP, d)

= dim cokerT (Z + dP) =

(
d + n

n

)
− rankT (Z + dP)

since both the kernel and cokernel are isomorphic to
[I (P1) ∩ · · · ∩ I (Pr ) ∩ I (P)d ]d , and hence Λ(Z + dP, d) has the same
rank as T (Z + dP).

Remark

The d-Weddle locus is the closure of the locus of points P /∈ Z such that
rankT (Z + dP) < ρ(Z , d , d), where ρ(Z , d , d) is the maximal rank of
T (Z + dP) and it is achieved when P is general. This locus is defined by
the ideal Iρ(Z ,d,d)(T (Z + dP)) of ρ(Z , d , d)× ρ(Z , d , d) minors of
T (Z + dP).
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Interpolation matrix and Macaulay duality

Iq(T (Z , dQ)) = Iq(Λ(Z + dQ, d)), for all q

T (Z , dQ) and N = Λ(Z + dQ, d)t have the same size; both are(
n+d
n

)
× (r +

(
n+d−1

n

)
),

the entries of the first r columns (called T1 and N1) are scalars and
the entries of the remaining

(
n+d−1

n

)
columns (called T2 and N2) are

scalar multiples of the variables xi ,

(N1)ij = Mi (Pj) and (T1)ij = cMiMi (Pj) = d!Mi (Pj)/eMi , so

(T1)ij = cMi (N1)ij = d!(N1)ij/eMi

[for M = x i0
0 · · · x in

n : eM = i0! · · · in! and cM =
(i0 + · · ·+ in)!

i0! · · · in!
=

d!

eM
.]

(N2)ij = ∂mjMi (Q) and this is 0 if mj ̸ |Mi and it is eMi xkij if mj |Mi

where xkij = Mi/mj and (T2)ij is 0 if mj ̸ |Mi and it is xkij if mj |Mi

where xkij = Mi/mj , so

(N2)ij = eMi (T2)ij .
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Interpolation matrix and Macaulay duality

Theorem

Given a finite set of points Z ⊂ Pn and a degree d, let A be a minor of
T = T (Z + dP), coming from a given choice of s rows and s columns of
T . Assume that the rows correspond to ∂Mij

for monomials Mi1 , . . . ,Mis ,

and that j of the chosen columns come from T1. Let B be the
corresponding minor of N = (Λ(Z + dP, d))t . Then

B =
eMi1

· · · eMis

(d!)j
A

and thus Is(T (Z + dP)) = Is(Λ(Z + dP, d)).



Example

n = 3, d = 3

Z consists of the points:
P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0],
P4 = [0 : 0 : 0 : 1], P5 = [1 : 1 : 1 : 1], P6 = [2 : 3 : 5 : 7],

basis for [R]3:
M1 = x30 , M2 = x20 x1, M3 = x20 x2, M4 = x20 x3, M5 = x0x

2
1 ,

M6 = x0x1x2, M7 = x0x1x3, M8 = x0x
2
2 , M9 = x0x2x3, M10 = x0x

2
3 ,

M11 = x31 , M12 = x21 x2, M13 = x21 x3, M14 = x1x
2
2 , M15 = x1x2x3,

M16 = x1x
2
3 , M17 = x32 , M18 = x22 x3, M19 = x2x

2
3 , M20 = x33 ,

basis for [R]2:
m1 = x20 , m2 = x0x1, m3 = x0x2, m4 = x0x3, m5 = x21 , m6 = x1x2,
m7 = x1x3, m8 = x22 , m9 = x2x3, m10 = x23 .
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Example - transpose of interpolation matrix

N =



1 0 0 0 1 8 6x0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 12 2x1 2x0 0 0 0 0 0 0 0 0

0 0 0 0 1 20 2x2 0 2x0 0 0 0 0 0 0 0
0 0 0 0 1 28 2x3 0 0 2x0 0 0 0 0 0 0
0 0 0 0 1 18 0 2x1 0 0 2x0 0 0 0 0 0
0 0 0 0 1 30 0 x2 x1 0 0 x0 0 0 0 0
0 0 0 0 1 42 0 x3 0 x1 0 0 x0 0 0 0
0 0 0 0 1 50 0 0 2x2 0 0 0 0 2x0 0 0
0 0 0 0 1 70 0 0 x3 x2 0 0 0 0 x0 0
0 0 0 0 1 98 0 0 0 2x3 0 0 0 0 0 2x0

0 1 0 0 1 27 0 0 0 0 6x1 0 0 0 0 0

0 0 0 0 1 45 0 0 0 0 2x2 2x1 0 0 0 0
0 0 0 0 1 63 0 0 0 0 2x3 0 2x1 0 0 0
0 0 0 0 1 75 0 0 0 0 0 2x2 0 2x1 0 0
0 0 0 0 1 105 0 0 0 0 0 x3 x2 0 x1 0
0 0 0 0 1 147 0 0 0 0 0 0 2x3 0 0 2x1
0 0 1 0 1 125 0 0 0 0 0 0 0 6x2 0 0
0 0 0 0 1 175 0 0 0 0 0 0 0 2x3 2x2 0
0 0 0 0 1 245 0 0 0 0 0 0 0 0 2x3 2x2
0 0 0 1 1 343 0 0 0 0 0 0 0 0 0 6x3


N2,6 = M2(P6) = x20 x1([2 : 3 : 5 : 7]) = 223 = 12

N11,11 = ∂m5M11 = ∂x2
1
(x31 ) = 6x1



Example - Macaulay duality matrix

T =



1 0 0 0 1 8 x0 0 0 0 0 0 0 0 0 0

0 0 0 0 3 36 x1 x0 0 0 0 0 0 0 0 0

0 0 0 0 3 60 x2 0 x0 0 0 0 0 0 0 0
0 0 0 0 3 84 x3 0 0 x0 0 0 0 0 0 0
0 0 0 0 3 54 0 x1 0 0 x0 0 0 0 0 0
0 0 0 0 6 180 0 x2 x1 0 0 x0 0 0 0 0
0 0 0 0 6 252 0 x3 0 x1 0 0 x0 0 0 0
0 0 0 0 3 150 0 0 x2 0 0 0 0 x0 0 0
0 0 0 0 6 420 0 0 x3 x2 0 0 0 0 x0 0
0 0 0 0 3 294 0 0 0 x3 0 0 0 0 0 x0
0 1 0 0 1 27 0 0 0 0 x1 0 0 0 0 0

0 0 0 0 3 135 0 0 0 0 x2 x1 0 0 0 0
0 0 0 0 3 189 0 0 0 0 x3 0 x1 0 0 0
0 0 0 0 3 225 0 0 0 0 0 x2 0 x1 0 0
0 0 0 0 6 630 0 0 0 0 0 x3 x2 0 x1 0
0 0 0 0 3 441 0 0 0 0 0 0 x3 0 0 x1
0 0 1 0 1 125 0 0 0 0 0 0 0 x2 0 0
0 0 0 0 3 525 0 0 0 0 0 0 0 x3 x2 0
0 0 0 0 3 735 0 0 0 0 0 0 0 0 x3 x2
0 0 0 1 1 343 0 0 0 0 0 0 0 0 0 x3


T2,6 = cM2M2(P6) =

3!

2!1!
(x20 x1)([2 : 3 : 5 : 7]) = 36,

T11,11 = M11/m5 = x31/(x
2
1 ) = x1



Example

3-Weddle ideal is not saturated, and its saturation is not radical.

So the 3-Weddle scheme is not reduced and thus is not equal to the
3-Weddle locus.
In fact, the scheme defined by the 3-Weddle ideal consists of the union of
the 15 lines together with embedded components at each of the six
points of Z .
More precisely, a primary decomposition for the ideal of the 3-Weddle
scheme is given by the intersection of the ideals of the 15 lines with the
cubes of the ideals of the six points.
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Reduced Weddle surface

Theorem

Let Li be three noncoplanar lines concurrent at a point O. Let
Z = {P1,P2,P3,Q1,Q2,Q3} be a set of six points in P3 away from O,
distributed in pairs Pi ,Qi on the lines Li . Then the Weddle surface
W(Z ) consists of four planes: the three planes generated by pairs of the
lines Li and the plane spanned by H1,H2,H3, where Hi is the point on Li
such that (Pi ,Qi ,O,Hi ) are harmonic, for i = 1, 2, 3.



Reduced Weddle surface
We may assume that

O = [0 : 0 : 0 : 1], P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0], P3 = [0 : 0 : 1 : 0]

Q1 = [a : 0 : 0 : 1], Q2 = [0 : b : 0 : 1], Q3 = [0 : 0 : c : 1]

for some nonzero a, b, c . Then the interpolation matrix defining the
Weddle surface has the form

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
a2 0 0 1 0 0 a 0 0 0
0 b2 0 1 0 0 0 0 b 0
0 0 c2 1 0 0 0 0 0 c
2x 0 0 0 y z w 0 0 0
0 2y 0 0 x 0 0 z w 0
0 0 2z 0 0 x 0 y 0 w
0 0 0 2w 0 0 x 0 y z


.

Its determinant is 2xyz(bcx + acy + abz − 2abcw),

H1 = [2a : 0 : 0 : 1], H2 = [0 : 2b : 0 : 1], H3 = [0 : 0 : 2c : 1]

such that (Pi ,Qi ,O,Hi ) are harmonic.



(2, 3)-grid

Z = {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [1 : 1 : 0 : 0],

[0 : 0 : 1 : 0], [0 : 0 : 0 : 1], [0 : 0 : 1 : 1]}.

The Macaulay duality matrix T ′(Z , 2P) is
z 0 x 0
w 0 0 x
0 z y 0
0 w 0 y

 ,
det(T ′(Z , 2P) = 0.

The ideal of 3× 3 minors of T ′(Z , 2P) is:

(xzw , xw2,−yzw ,−yw2,−xz2,−xzw , yz2, yzw ,−xyz ,−xyw ,

y2z , y2w , x2z , x2w ,−xyz ,−xyw),

sat(I ) = (yw , xw , yz , xz) = (x , y) ∩ (z ,w),

so the 2-Weddle scheme consists of the two lines, x = y = 0 and
w = z = 0, which are grid lines for the (2,3)-grid Z . Hence the 2-Weddle
scheme is the same as the 2-Weddle locus.


