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CHAPTER 1

Introduction

These notes were made for the Preparatory School on Lefschetz Properties, to
be held from 6th to 10th May 2024, in Kraków, ahead of the conference “Lefschetz
properties in algebra, geometry, topology, and combinatorics”. They are an intro-
duction to Jordan type of an Artinian algebra, and collect basic results known so
far, with examples to illustrate them along the way.

The study of Jordan types as invariants has a long history, but their relations
with the weak and the strong Lefschetz properties form a new subject of study that
is drawing attention in the commutative algebra community. The Jordan type of
an Artinan algebra tells us whether the algebra has the weak or strong Lefschetz
properties, so it is a finer invariant.

The two main sources used to write theses notes were the introductory paper
“Artinian algebras and Jordan type”written by the author, with Anthony Iarrobino
and Chris McDaniel [IMMM22], and “Jordan type of an Artinian algebra, a sur-
vey” written with Nasrin Altafi and Anthony Iarrobino [AIMM24]. Both papers
are attached at the end.

Acknowledgements. The authorwishes to thankNancyAbdallah for her com-
ments and proofreading of this text, and Tony Iarrobino for very useful discussions
on how to approach the subject.
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CHAPTER 2

Preliminaries

Let us start by defining Jodan type. The definition below is the onewe are going
to adopt in these notes, but clearly it could be extended to any nilpotent endomor-
phism of a finite-dimensional vector space (see Definition 1.1 in [AIMM24]). Let
us fix notation and conventions.

Setting 2.1. We consider a field k, of any characteristic, and either the local
regular ring R = k{x1, . . . , xr} or the polynomial ring R = k[x1, . . . , xr]. Let A be
an Artinian algebra, either quotient ofR by an Artinian ideal I , or quotient ofR by
a homogeneousArtinian ideal I . In caseA is local,A = R/I , we denote itsmaximal
ideal by m; if A is graded, A = R/I , we take m =

⊕
i≥1 Ai. If A is graded, but we

consider a non-standard grading, we assume A0 = k.

The socle of A is the ideal (0 : m). The socle degree of A is the unique integer j
such that mj ̸= 0 = mj+1. If A is graded, the socle degree is the highest degree of
a non-zero element in the socle.

Definition 2.2 (Jordan type). Let M be a finitely generated module over an
Artinian algebraA as above, and let ℓ ∈ m. The Jordan type of ℓ inM is the partition
of dimk M , denoted

Pℓ = Pℓ,M = (p1, . . . , ps),

where p1 ≥ · · · ≥ ps, whose parts pi are the block sizes in the Jordan canonical form
matrix of the multiplication map

mℓ : M → M, x 7→ ℓx.

Example 2.3. LetA = k[x, y]/(x2, xy2, y5). ThenA is a graded Artinian algebra
admitting a monomial basis

1 x xy y3 y4

y y2

as a vector space over k. Being monomial, this is in particular a homogeneous
basis, in the sense that all its elements are homogeneous, and therefore it can be
partitioned into bases for each homogeneous summand of A:

A0 = ⟨1⟩; A1 = ⟨x, y⟩; A2 = ⟨xy, y2⟩; A3 = ⟨y3⟩; A4 = ⟨y5⟩.

When we consider ℓ1 = x+ y, the multiplication map mℓ1 sends 1 to x+ y,
then it sends x+ y to

(x+ y)2 = x2 + 2xy + y2 = 2xy + y2.

and so on, giving the following string:
1 7→ x+ y 7→ 2xy + y2 7→ y3 7→ y4 7→ 0.
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8 2. PRELIMINARIES

This string has five elements composing a linearly independent subset ofA. SinceA
has dimension 7 as a vector space over k, we may still consider x ∈ A1, for instance.
We see that the multiplication mapmℓ1 sends x to xy, and sends xy to 0. So we get
two strings:

(1) 1 � // x+ y � // 2xy + y2 � // y3 � // y4 � // 0

x � // xy � // 0

Using these strings, we may consider the basis
B = {1, x+ y, 2xy + y2, y3, y4, x, xy},

and reorder its elements in the sequence
(y4, y3, 2xy + y2, x+ y, 1, xy, x),

to obtain the following matrix representing mℓ1 with respect to B:

y4 y3 2xy + y2 x+ y 1 xy x

y4 0 1 0 0 0 0 0

y3 0 0 1 0 0 0 0

2xy + y2 0 0 0 1 0 0 0

x+ y 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

xy 0 0 0 0 0 0 1

x 0 0 0 0 0 0 0

This matrix is in the Jordan canonical form, having two Jordan blocks, one of size 5,
the other of size 2, so we get that the Jordan type of x+ y is Px+y,A = (5, 2). We call
the basis B a Jordan basis formℓ1 . Note that even in the case char k = 2, B remains a
basis ofA. Thewaywe got this basis is not the standardway of computing a Jordan
basis, but in the case of Artinian algebras this approachworks. For a good explana-
tion of how to find a Jordan basis of a vector space endomorphism (not necessarily
nilpotent), see sections 7.7 and 7.8 in [Mey23], or the proof of Proposition 4.7.1 in
[Art93, Section 4.7], where the convention for the Jordan canonical form is lower
triangular.
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Now ifwe look back at the strings (1), we see that the first string has 5 non-zero
elements, and the second has 2, so we can conclude directly from the strings that
the Jordan type is (5, 2).

We can now consider ℓ2 = x, and we get the strings

(2)

1 � // x � // 0

y
� // xy � // 0

y2
� // 0

y3 � // 0

y4
� // 0

Therefore the Jordan type of x is Px,A = (2, 2, 1, 1, 1).
If we consider ℓ3 = x+ y2, a non-homogeneous element, still using this naïve

approach to find the Jordan type, we get the strings

(3)

1
� // x+ y2

� // y4 � // 0

y � // xy + y3 � // 0

y2
� // y4

y3 � // 0

Note that this time we did not obtain a Jordan basis, because y2 is not sent to zero,
it is sent to an element in a previous string. But we can modify that string, if we
observe that ℓ3(x+ y2) = ℓ3y

2, and therefore
ℓ3(x) = ℓ3(x+ y2)− ℓ3y

2 = 0

So we may replace the third string and obtain

(4)

1 � // x+ y2 � // y4 � // 0

y
� // xy + y3

� // 0

x � // 0

y3 � // 0

Therefore the Jordan type of x+ y2 is Px+y2,A = (3, 2, 1, 1).
In this example, both Jordan bases coming from strings in (1) and (2) are ho-

mogeneous (and the strings are presented with each column corresponding to a
degree). In a graded module M over a graded algebra A, if ℓ ∈ m is a homoge-
nous element, it is always possible to find a homogeneous Jordan basis formℓ, see
[IMMM22, Lemma 2.2], for the case of a linear element. However, if ℓ is not ho-
mogeneous, or M is not graded, any Jordan basis will be also non-homogeneous,
but we have arranged the strings by order. Here is a definition:

Definition 2.4. The order of a non-zero element a in an Artinian algebra A is
the unique integer i such that a ∈ mi \mi+1.

The basis {1, x+ y2, y4, y, xy+ y3, y2, y3} coming from strings in (3) is what
we will call a pre-Jordan basis. Here is Definition 1.2 in [AIMM24]:

Definition 2.5 (Jordan basis, pre-Jordan basis). With the notation of Definition
2.2, a pre-Jordan basis for ℓ is a basis of M as a vector space over k of the form
(5) B = {ℓizk : 1 ≤ k ≤ s, 0 ≤ i ≤ pk − 1},
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where Pℓ,M = (p1, . . . , ps) is the Jordan type of ℓ. We call the subsets
Sk = {zk, ℓzk, . . . , ℓpk−1zk}

strings, or ℓ-strings, of the basis B, and each element ℓizk a bead of the string. The
Jordan blocks of the multiplication mℓ are determined by the strings Sk, and M is
the direct sum
(6) M = ⟨S1⟩ ⊕ · · · ⊕ ⟨Ss⟩.
If the elements z1, . . . , zs ∈ M satisfy ℓpkzk = 0 for each k, we call B a Jordan basis
for ℓ, recovering the usual definition in linear algebra, since a matrix representing
the multiplication by ℓwith respect to B, ordering elements as

(ℓp1−1z1, . . . , z1, ℓ
p2−1z2, . . . , z2, . . . , ℓ

ps−1zs, . . . , zs),

is a canonical Jordan form. In that case the ⟨Sk⟩ are cyclic k[ℓ]-submodules of M .
The maximal ideal m is a vector subspace of A, so if we look at A as an affine

algebraic set, m is an irreducible algebraic subset. If A is graded, the same holds
for A1. Therefore, it makes sense to consider a generic element in m or in A1. This
motivates the following definition (see Definition 1.2 in [AIMM24]).

Definition 2.6 (Generic Jordan type of an Artinian algebra). Suppose k is infi-
nite. The generic Jordan type of A, denoted PA, is the Jordan type Pℓ,A for a generic
element ℓ of A1 (when A is graded), or of m (when A is local).

In the next example, we will see that the Jordan type may depend on the char-
acteristic of the field k.

Example 2.7. Let A = k[x, y]/(x2, y2). Then an element ℓ in its maximal ideal
can be written as ℓ = ax+ by + cxy.

Suppose char k ̸= 2. It is easy to check that if ab ̸= 0, Pℓ,A = (3, 1). In fact, if the
pair (a′, b′) satisfies ab′ − a′b ̸= 0, we see that the strings

(7)
1
� // ℓ � // 2abxy � // 0

a′x+ b′y � // (ab′ + a′b)xy

give the pre-Jordan basis {1, ℓ, 2abxy, a′x+ b′y}. We may omit the zeros and the
elements that are in the span of previous strings and get the simpler diagram

(8) 1
� // ℓ � // 2abxy

a′x+ b′y

If k is an infinite field, since the set
{ax+ by + cxy ∈ m : ab ̸= 0}

is open and dense in m, we get that the generic Jordan type of A is PA = (3, 1).
Outside this set, we can consider b = 0, and assume a = 1, making ℓ = x+ cxy, so
we get the strings

(9) 1
� // x+ cxy

y � // xy

so Px+cxy,A = (2, 2). By symmetry on the variables, also Py+cxy,A = (2, 2). Finally,
we can easily check thatA admits two further Jordan types, namelyPxy,A = (2, 1, 1)

and the Jordan type of the zero map P0,A = (1, 1, 1, 1).
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Now suppose char k = 2. Then ℓ2 = 0, so if (a, b) ̸= (0, 0), we can check that
Pℓ,A = (2, 2). Taking a pair (a′, b′) satisfying ab′ − a′b ̸= 0 ̸= ab′ + a′b, we get the
strings

(10) 1 � // ℓ

a′x+ b′y � // (ab′ + a′b)xy

Again, if the field k is infinite, this is the generic Jordan type, as the set
{ax+ by + cxy ∈ m : (a, b) ̸= (0, 0)}

is open and dense in m. The two other possible Jordan types for A are again
Pxy,A = (2, 1, 1) and P0,A = (1, 1, 1, 1).

Example 2.8. Let A = k[x, y, z]/(yz − x3, y3, z2), a non-graded complete inter-
section. A monomial basis for A is

1 x x2 x3 x4 x5 x5y

y xy x2y x3y x4y

z xz x2z x2y2

y2 xy2

Note that yz has order 3, because in A, yz = x3 ∈ m3. The basis above is organised
by order, andwe have chosen representatives of each element thatmake their order
apparent (that is why, instead of having yz in the second column, we have x3 in
the third).

Consider ℓ1 = x+ y + z. Staring with 1 and then taking lower-order elements
for the next strings, as in the previous examples, we get:

(11)

1
� // ℓ1

� // ℓ 21
� // ℓ 31

� // ℓ 41
� // ℓ 51

� // ℓ 61

y
� // ℓ1y

� // ℓ 21 y
� // ℓ 31 y

� // ℓ 41 y

z � // ℓ1z
� // ℓ 21 z

y2 � // ℓ1y2
� // ℓ 21 y

2

where
ℓ 21 = x2 + 2xy + 2xz + y2 + 2x3

ℓ 31 = x3 + 3x2y + 3x2z + 3xy2 + 6x4 + 3x3y

ℓ 41 = x4 + 4x3y + 6x2y2 + 12x5 + 12x4y

ℓ 41 = x4 + 4x3y + 6x2y2 + 12x5 + 12x4y

ℓ 51 = x5 + 5x4y + 30x5y

ℓ 61 = 6x5y

ℓ1y = xy + y2 + x3 ℓ1z = xz + x3

ℓ 21 y = x2y + 2xy2 + 2x4 + 2x3y ℓ 21 z = x2z + 2x4 + x3y

ℓ 31 y = x3y + 3x2y2 + 3x5 + 6x4y ℓ1y
2 = xy2 + x3y

ℓ 41 y = x4y + 12x5y ℓ 21 z = x2y2 + 2x4y

Let us assume that char k /∈ {2, 3, 5}, so that all coefficients of these elements are
non-zero. In particular ℓ 61 ̸= 0. Do the strings in (11) give us a pre-Jordan basis?
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Can we conclude from here that the Jordan type of ℓ1 is (7, 5, 3, 3)? Let us look
closer at how we built the strings.

After getting the first string, which we know cannot be longer, since ℓ 71 = 0, we
chose two elements y, z ∈ m \m2. These elements were chosen because the classes
of ℓ1, y, z in m/m2 form a linear independent set. Let us look at the next string,
whose first bead is y. Could we have chosen another starting bead and get a longer
string? If we can, this will be true for a general element in A. Let us suppose we
choose a bead b outside the maximal ideal. We can assume b = 1 + c, with c ∈ m.
Then the first two strings would be

1
� // ℓ1

� // ℓ 21
� // ℓ 31

� // ℓ 41
� // ℓ 51

� // ℓ 61

1 + c
� // ℓ1 + ℓ1c

� // ℓ 21 + ℓ 21 c
� // ℓ 31 + ℓ 31 c

� // ℓ 41 + ℓ 41 c

Note that ℓ1(ℓ 41 + ℓ 41 c) = ℓ 51 + ℓ 51 c, and since ℓ 51 c ∈ m6 = ⟨x5y⟩ = ⟨ℓ 61 ⟩, we get that
ℓ1(ℓ

4
1 + ℓ 41 c) is a linear combination of elements in the first string. So the second

string cannot have length greater than 5. with some patience and looking carefully
at the details, we can show that the third string cannot have a larger length that 3,
and conclude that Pℓ1,A = (7, 5, 3, 3). However, we will see in Lemma 2.11 below
that there is a simpler way of computing the Jordan type of an element.

The following result is well known and is an easy consequence of the existence
and construction of the Jordan canonical form of a nilpotent endomorphism (see
[Art93, Section 4.7], or [Wei22]).

Lemma 2.9. If M has a pre-Jordan basis B as in (5), then for each k, we have

ℓpkzk ∈ ⟨ℓazi : a ≥ pk, i < k⟩.
There is a Jordan basis ofM derived from the pre-Jordan basis, and having the same partition
invariant Pℓ,M giving the lengths of strings.

Proof. See Remark A.3. □

Definition 2.10 (Conjugate partition). LetP = (p1, . . . , ps), with p1 ≥ · · · ≥ ps,
be a partition of an integer n > 0. The conjugate partition P∨ of P is the partition
P∨ = (p∨1 , . . . , p

∨
t ) defined by

p∨i = #{j : pj ≥ i}.
This corresponds to swapping rows and columns in the Ferrers diagram.

The following well-known result allows us to compute the Jordan type, see
[HMM+13, Lemma 3.60].

Lemma 2.11. LetA be an Artinian graded or local algebra with maximum idealm and
socle degree j, and let ℓ ∈ m. LetM be a finite lengthA-module. The increasing dimension
sequence

(12) dℓ : (0 = d0, d1, . . . , dj , dj+1), where di = dimk M/ℓiM,

has first difference ∆(dℓ) = (δdℓ,1, δdℓ,2, . . . , δdℓ,j+1), which satisfies

(13) Pℓ = ∆(dℓ)
∨.

The (decreasing) rank sequence

(14) rℓ : (r0, r1, . . . , rj , 0), where ri = dimk(ℓ
i ·M) = rankmℓi on M,



2. PRELIMINARIES 13

has first difference ∆(rℓ) = (δrℓ,1, δrℓ,2, . . . , δrℓ,j) which satisfies

(15) P∨
ℓ = ∆(rℓ) = ∆(dℓ).





CHAPTER 3

Lefschetz properties

Lefschetz properties are defined for graded algebras. Here we will see that
Jordan type gives us a way of extending these definitions for the non-graded case.
We start by giving a summary of the graded case.

Definition 3.1 (Hilbert function). Let A be a graded k-algebra, with A0 = k,
and let M be a graded module over A. The Hilbert function of M is the function

H(M) : N → N given by i 7→ dimk Mi.

We say that H(M) is unimodal if there is an integer k such that for all i < k,
H(M)i ≤ H(M)i+1,

and for all i ≥ k,
H(M)i ≥ H(M)i+1,

If A is a local algebra, with maximal idealm, we can consider its associated graded
algebra

A∗ =
⊕

i≥0

mi

mi+1
.

We define the Hilbert function of A as that ofA∗, i.e. H(A) = H(A∗), so

H(A)i = dimk
mi

mi+1
.

More generally, if M is a module over a local algebra (A,m, k), we consider the
Hilbert function with respect to the m-adic filtration as

Hm(M) = dimk
miM

mi+1M
.

Definition 3.2 (Sperner number). Let A be a graded Artinian k-algebra and
let M be a finite-length graded module over A. The Sperner number of M is the
maximum value of the Hilbert function of M :

SpernerM = max{H(M)i : i ≥ 0}.

The following definitions are standard. Here we are adopting Definitions 3.1
and 3.8 in [HMM+13] (see also, for instance, Definition 2.4 in [MN13]).

Definition 3.3 (Weak Lefschetz property). Let A be a graded Artinian algebra
and consider a linear form ℓ ∈ A1. We say that ℓ is a weak Lefschetz (WL) element
if for each integer i ≥ 0, the map

×ℓ : Ai → Ai+1, x 7→ ℓx,

has maximal rank. We say thatA satisfies theweak Lefschetz property (WLP) if it has
a weak Lefschetz element.

15
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Definition 3.4 (Strong Lefschetz property). LetA be a gradedArtinian algebra
and consider a linear form ℓ ∈ A1. We say that ℓ is a strong Lefschetz (SL) element
if for each pair of integers i, d ≥ 0, the map

×ℓd : Ai → Ai+d, x 7→ ℓdx,

has maximal rank. We say that A satisfies the strong Lefschetz property (SLP) if it
has a strong Lefschetz element.

Note 3.5. If you read or hear Lefschetz element, in these notes or elsewhere, you
should understand it as “strong Lefschetz element”.

Example 3.6. Consider the Artinian algebra A = k[x, y]/(x2, xy2, y5), from Ex-
ample 2.3. It is easy to check that x+ y is a strong Lefschetz element, and, further-
more that any linear form ℓ = ax+ by, with b ̸= 0 is also SL.

Example 3.7. Consider the Artinian algebra A = k[x, y]/(x2, y2), from Exam-
ple 2.7. It is easy to check that any non-zero linear form ℓ = ax+ by is a weak
Lefschetz element. Furthermore, if ab ̸= 0 and char k ̸= 2 then ℓ is strong Lefschetz,
because ℓ2 ̸= 0, so the map ×ℓ2 : A0 → A2 is an isomorphism.

The following result is well known (see [HW03, Remark 3] or [HMM+13,
Proposition 3.2]). We include the proof from [HMM+13] for completeness:

Proposition 3.8. Let A be a standard-graded Artinian algebra and suppose that A
satisfies the weak Lefschetz property. Then the Hibert funtion of A is unimodal.

Proof. (See proof of Proposition 3.2 in [HMM+13].) SinceA satisfies theWLP,
there is a WL element ℓ ∈ A1. Let m =

⊕
i≥1 Ai, and let

k = min{i ≥ 0 : H(A)i > H(A)i+1}.
Since ℓ isWL, themap×ℓ : Ak → Ak+1 is surjective. SinceA has the standard grad-
ing, for any degree i, the ideal mi is generated by the homogeneous summand Ai.
In particular, we getmk+1 = ℓmk. By induction on i, we can check that for all i ≥ k,
mi+1 = ℓmi. In particular, for any i ≥ k, the map×ℓ : Ak → Ak+1 is surjective, and
therefore H(A)i ≥ H(A)i+1. Hence H(A) is unimodal. □

Harima and Watanabe showed the following result in [HW03]:
Proposition 3.9. (See [HW03, Remark 3 and Proposition 14].) Let A be a stan-

dard-graded Artinian algebra. Then a linear form ℓ ∈ A1 is a weak Lefschetz element if and
only if the number of parts in the Jordan type Pℓ,A equals the Sperner number of A.

Proof. Let ℓ ∈ A1 be any linear form. Note that the number of parts in Pℓ,A

is the number of blocks in the canonical Jordan form of ×ℓ : A → A, and equals
the dimension of the kernel of this map. If ℓ is WL then H(A) is unimodal, by
Proposition 3.8. Let

k = min{i ≥ 0 : H(A)i > H(A)i+1}.
Then, since ℓ is homogeneous, the dimension of the kernel of ×ℓ : A → A is the
sum

dimker(×ℓ : Ak → Ak+1) + dimker(×ℓ : Ak+1 → Ak+2) + · · ·
= (dimAk − dimAk+1) + (dimAk+1 − dimAk+2) + · · ·

= dimAk = SpernerA.
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The converse is easy to check, since this last computation shows that SpernerA is
a lower bound for the dimension of the kernel of ×ℓ : A → A. So if the number of
parts in Pℓ,A equals SpernerA then H(A) must be unimodal and ℓ must be a WL
element. □

Definition 3.10 (Conjugate partition of a Hilbert function). IfH is the Hilbert
function of an Artinian algebra, or a finite-length module over an Artinian algebra,
we consider the partition whose parts are the values ofH , after reordering them to
become non-increasing; we call the conjugate of this partition the conjugate partition
of H .

Example 3.11. Consider the Artinian algebraA = k[x, y]/(x2, xy2, y5), from Ex-
ample 2.3. The Hilbert function of A is H(A) = (1, 2, 2, 1, 1), and its conjugate is
H(A)∨ = (5, 2).

H(A) H(A)∨

(1, 2, 2, 1, 1) (2, 2, 1, 1, 1) (5, 2)

−→ −→

Definition 3.12 (Dominance). Let P = (p1, . . . , ps) and Q = (q1, . . . , qr), with
p1 ≥ · · · ≥ ps, and q1 ≥ · · · ≥ qr, be two partitions of a positive integer n. We say
that P dominates Q (written P ≥ Q), if for each k ∈

{
1, . . . ,min{s, r}

}, we have

k∑

i=1

pi ≥
k∑

i=1

qi.

One way of viewing dominance partial order graphically is to take a partition
and redraw it, putting the beginning of each new row at the point where the pre-
vious one ends. Here is the case of two partitions of 6:

(3, 2, 1) (2, 2, 1, 1)
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Then, if it is possible to draw one of the partitions right below the other, without a
space between first rows, and without overlapping, as in the next picture, we see
that the first partition dominates the second.

In this case, (2, 2, 1, 1) < (3, 2, 1). Let us look at the case of the next two partitions
of 9:

(3, 3, 3) (4, 2, 2, 1)

We see that we cannot fit one below the other, without space between first rows, or
without overlapping:

So (3, 3, 3) and (4, 2, 2, 1) are incomparable.
Using these two definitions, Harima et al. [HMM+13] obtained the following

result, giving an upper bound for the Jordan type of a homogeneous element, in
the case of a standard gradedArtinian algebrawhoseHilbert function is unimodal,
and a characterisation of strong Lefschetz elements in terms of their Jordan type.

Proposition 3.13. [HMM+13, Proposition 3.64] Let A be a standard graded
Artinian algebra, and let ℓ ∈ m be a homogeneous element.

(1) If H(A) is unimodal, then

Pℓ,A ≤ H(A)∨.

(2) If ℓ ∈ A1 is a linear form then ℓ is a strong Lefschetz element if and only if

Pℓ,A = H(A)∨.
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Iarrobino, McDaniel, and the author [IMMM22] were able to generalise the
upper bound in the first statement of this result to local algebras, or modules over
algebras having a non-standard grading, also dropping the hypothesis that the
Hilbert function is unimodal.

Theorem 3.14. [IMMM22, Theorem 2.5] Let (A,m, k) be a local Artinian algebra
over k and let M ⊂ Ak be an A-module, with Hilbert function H(M). For any ℓ ∈ m, its
Jordan type satisfies

(16) Pℓ,M ≤ H(M)∨.

If A has weight function w, for which A0 = k, and if M is a graded module over A with
w-Hilbert function Hw(M), then for any w-homogeneous element ℓ ∈ m its Jordan type
also satisfies

(17) Pℓ,M ≤ Hw(M)∨.

Furthermore, in the same paper, the second statement was generalised to non-
-standard graded Artinian algebras.

Proposition 3.15. [IMMM22, Proposition 2.10]LetA be a (possibly non-standard)
graded Artinian algebra and ℓ ∈ A1. Then the following statements are equivalent:

(1) For each integer b, the multiplication maps×ℓb : Ai → Ai+b have maximal rank
in each degree i. (That is, ℓ is a strong Lefschetz element.)

(2) The Jordan type of ℓ is equal to the conjugate partition of the Hilbert function,
i.e.

Pℓ = H(A)∨.

(3) There is a set of strings S1, . . . , Ss as in Equation (6), composed of homogeneous
elements, for the multiplication map ×ℓb : A → A such that for each degree u
and each integer i we have the equivalence

(18) dimk Au ≥ i if and only if Au ∩ Sa ̸= ∅, ∀a ≤ i.

Example 3.16. Consider the Artinian algebra A = k[x, y]/(x2, y2), from Exam-
ple 2.7, and suppose char k ̸= 2. Its Hilbert function is H(A) = (1, 2, 1), so we can
see that the number of parts in both Jordan types (3, 1) and (2, 2) is the Sperner
number ofA. Therefore, sincePax+by,A = (3, 1), if ab ̸= 0, andPx,A = Py,A = (2, 2),
we have a different way of checking that ax+ by, x, and y are all weak Lefschetz.
Furthermore, since H(A)∨ = (3, 1), we have that ax+ by is a strong Lefschetz ele-
ment, if ab ̸= 0.

The previous results motivated the extension of the definitions of Lefschetz
properties to non-graded algebras (see [IMMM22, Definition 2.12]):

Definition 3.17. Let (A,m, k) be a local Artinian algebra over k with Hilbert
function H(A). We say that an element ℓ ∈ m is

(1) a strong Lefschetz element if Pℓ,A = H(A)∨.
(2) a weak Lefschetz element if the number of parts in Pℓ,A equals the Sperner

number os A.

Additionally ifA is graded via a weight function wwith w-Hilbert functionHw(A),
then we say that a w-homogeneous element ℓ ∈ m has

(3) w-strong Lefschetz Jordan type (w-SLJT) if Pℓ = Hw(A)∨.
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We say thatA is strong Lefschetz, respectively weak Lefschetz, respectively w-SLJT
if it has an element ℓ ∈ m of that type.

In light of this extended definition, we can recover a well-known result on
Lefschetz properties (see [IMMM22, Lemma 2.15]), shown by Briançon in [Bri77]
in characteristic zero, and extended by Basili and Iarrobino in [BI08] for a large
enough characteristic. In the case of graded Artinian algebras, this result has also
been proved in [HMNW03, Proposition 4.4], for characteristic zero, in [Coo14,
Theorem 4.11], for monomial ideals in any characteristic.

Lemma 3.18 (Height twoArtinian algebras are strongLefschetz). [Bri77], [BI08,
Theorem 2.16] Let A = k[x, y]/I be a standard graded Artinian algebra, or a local
Artinian algebra of socle degree j, and suppose char k = 0 or char k ≥ j. Let ℓ be a general
element ofm. Then ℓ is a strong Lefschetz element andA has the strong Lefschetz property.



CHAPTER 4

Finer invariants, Jordan type, and their behaiviour
under deformations

One nice feature of Jordan type is its behaviour along flat families:
Lemma 4.1 (Generic Jordan type of a module). [IMMM22, Lemma 2.54]Given

anA-moduleM , there is an open dense subset UM ⊂ m for which ℓ ∈ UM implies that the
partition Pℓ,M satisfies Pℓ,M ≥ Pℓ′,M for any other element ℓ′ ∈ m.

Likewise, if A admits a weight function w, then for each weight i, there is a dense open
setUi,M ⊂ Ai(w) for which ℓ ∈ Ui,M implies thatPℓ,M ≥ Pℓ′,M for any other ℓ′ ∈ Ai(w).

Proposition 4.2 (Semicontinuity of Jordan type). [IMMM22, Corollary 2.44]
(1) LetMt, for t ∈ T , be a family of constant-length modules over a parameter space

T . Then for a neighbourhood U ⊂ T of t0, we have that the generic Jordan types
satisfy

t ∈ U ⇒ PMt
≥ PMt0

.

(2) Let At, t ∈ T be a constant-length family of local or graded Artinian algebras.
Then for a neighbourhood U ⊂ T of t0, we have

t ∈ U ⇒ PAt ≥ PAt0
.

(3) Let ℓt ∈ Mn(k) for t ∈ T be a family of n× n nilpotent matrices, and let Pt be
their Jordan type. Then there is a neighbourhood U ⊂ T of t0 such that

Pt ≥ Pt0 for all t ∈ U.

We have seen in the previous chapter that Jordan type is a finer invariant than
the Lefschetz properties. Wewill see now some refinements of Jordan type, starting
with Jordan degree type, for the graded case.

Example 4.3. Consider the Artinian algebra A = k[x, y]/(x2, y2), from Exam-
ple 2.7, and suppose char k ̸= 2. The generic Jordan type of A, PA = (3, 1) domi-
nates all other Jordan types. In fact we have a complete chain

(3, 1) > (2, 2) > (2, 1, 1) > (1, 1, 1, 1).

Definition 4.4 (Jordan degree-type). Let A be a graded Artinian algebra, let
M be a finite gradedA-module, and let ℓ ∈ A1 be any linear element. Let B be a ho-
mogeneous Jordan basis for ℓ, as in Definition 2.5, and consider the decomposition
of M as a direct sum

M = ⟨S1⟩ ⊕ · · · ⊕ ⟨Ss⟩
of cyclic k[ℓ]-modules generated by ℓ-strings, with homogeneous beads, of the form

Sk = {zk, ℓzk, . . . , ℓpk−1zk}.
The Jordan degree type of ℓ in M is the sequence of pairs of integers
(19) Sℓ,M =

(
(p1, ν1), . . . , (ps, νs)

)
,

21
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where Pℓ,M = (p1, . . . , ps) is the Jordan type of ℓ in M and for each k, νk is the
degree of the initial bead zk. For any k, k′ ∈ {1, . . . , s} if k < k′ and pk = pk′ , we
assume νk ≤ νk′ .

Remark 4.5. By Lemma 2.2 in [IMMM22], a homogeneous Jordan basis always
exists, and the sequence of pairs (19) is an invariant of (M, ℓ), so the Jordan degree
type is always well defined.

In the non-graded local case, the closest we have to degree is the order of an
element, (see Definition 2.4). The following invariants are introduced and studied
in the unpublished work [IMMS]:

Definition 4.6 (Sequential Jordan type andLoewy sequential Jordan type). Let
A be an Artinian local algebra of socle degree j, let m be its maximal ideal, and let
ℓ ∈ m.

The sequential Jordan type (SJT) of ℓ in A is given by the sequence
(Pℓ,A/mi), i ∈ {1, . . . , j}

of Jordan types of successive quotients of A by powers of the maximal ideal.
The Loewy sequential Jordan type (LJT) of ℓ in A is given by the sequence

(
Pℓ,A/(0:mj−k)

)
, k ∈ {1, . . . , j}

of Jordan types of successive quotients of A by the Loewy ideals.
The double sequential Jordan type (DSJT) is given by the table whose (a, i) entry

is the partition
Pℓ,Ba,i

, where Ba,i = A/
(
mi ∩ (0 : mj+1−a−i)

)
, 0 ≤ a ≤ j, 0 ≤ i ≤ j + 1− a

giving the Jordan type of the quotient of A by intersections of a Loewy ideal with
a power of the maximal ideal.

Proposition 4.7. [IMMS] LetR = k{x1, . . . , xr} be the local regular ring, and con-
sider an element ℓ in the maximal ideal (x1, . . . , xr) of R. Let A = {Aw | w ∈ W} be a
family of Artinian algebras, quotients of R, and denote mw the maximal ideal of each Aw.
Let w0 ∈ W .

(1) If the Hilbert functionH(Aw) is constant along the family, then there is a neigh-
bourhood U of w0 such that the sequential Jordan type satisfies

Pℓ,Aw/m i
w
≥ Pℓ,Aw0

/m i
w0
, for all i.

(2) If the dimensions of the Loewy ideals (0 : m i
w) are constant along the family,

then there is a neighbourhood U of w0 such that the sequential Loewy Jordan
type satisfies

Pℓ,Aw/(0:m i
w) ≥ Pℓ,Aw0/(0:m

i
w0

), for all i.

(3) If the dimensions of the idealsm i
w ∩ (0 : m k

w) are constant along the family, then
there is a neighbourhood U of w0 such that the double sequential Jordan type
satisfies

Pℓ,Aw/(m i
w∩(0:m k

w)) ≥ Pℓ,Aw0
/(m i

w0
∩(0:m k

w0
)), for all i and k.



CHAPTER 5

Artinian Gorenstein algebras

We will now focus on an important class of Artininan algebras, namely those
that are Gorenstein. AnArtinian algebraA as in Setting 2.1 is Gorentein if and only
if its socle (0 : m) is a one-dimensional vector space over k. In this case, we will
have (0 : m) = mj , where j is the socle degree of A.

Iarrobino showed in [Iar86, Iar89, Iar94] that the associated graded algebra
A∗ =

⊕
i≥0

mi

mi+1 of an Artinian Gorenstein algebra A has a canonical stratification
by ideals C(a) whose successive quotients Q(a) = C(a)/C(a+ 1) yield an exact
pairing:
(20) Q(a)i ×Q(a)jA−a−i → k.

Each graded piece of the module Q(a) admits a presentation

(21) Q(a)i ∼=
m i ∩ (0 : m j+1−a−i)

m i ∩ (0 : m j−a−i) +m i+1 ∩ (0 : m j+1−a−i)

(see [Iar89, page 350] or [Iar86, Section 3]). To better understand this quotient, we
may observe that A admits the m-adic filtration

A ⊃ m ⊃ m2 ⊃ · · · ⊃ mj ⊃ mj+1 = 0

and the Loewy filtration
A ⊃ (0 : mj) ⊃ (0 : mj−1) ⊃ · · · ⊃ (0 : m) ⊃ 0.

The graded piece Q(a)i is the quotient of an intersection of a power of m and a
Loewy ideal, modded out by the next two such intersections contained in it.

A very useful toolwhen studyingAGalgebras is their dual generator. Consider
the local regular ring R = k{x1, . . . , xr}, as in Setting 2.1, and the divided-power
ring D = kDP [X1, . . . , Xr] (for details see [IK99, Appendix A]). The ring R acts
on D by contraction:

(22) x k
i ◦X K

i =

{
X K−k

i ifK ≥ k,

0 ifK < k.

We have ([Mac94], [Iar94, Lemma 1.1]):
Lemma 5.1 (AG algebras and k-linear maps of R). There is a one-to-one isomor-

phism of sets

{AG quotients A of R having socle degree j} ↔
{k-linear homomorphisms ϕ : R → k, with ϕ|m j+1 = 0 but ϕ|m j ̸= 0}.

Here A = R/I with I = {h : ϕ(R · h) = 0}.

Definition 5.2. Let A be an AG algebra, quotient of R. We call an element
F ∈ D such that A = R/AnnF a dual generator for A.

23
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Example 5.3. Let A = k[x, y, z]/(yz − x3, y3, z2), from Example 2.8. Being a
complete intersection, we know that A is an AG algebra, and we can check that its
dual generator is F = X5Y +X2Y 2Z.



APPENDIX A

Jordan basis à la carte

Thematerial of this appendix was takenmainly fromwork in preparationwith
Tony Iarrobino and Johanna Steinmeyer [IMMS].

The following definition is the usual one for a Jordan basis, in the case of nilpo-
tent endomrophisms.

Definition A.1. Let V be a finite-dimensional vector space over a field k, let
ϕ : V → V be a nilpotent endomorphism, and let (p1, . . . , pk) be its Jordan type,
with p1 ≥ · · · ≥ pk. We say that a basis

(v1,1, . . . , v1,p1
, v2,1, . . . , v2,p2

, . . . , vk,1, . . . , vk,pk
)

of V is a Jordan basis for ϕ if for every s ∈ {1, . . . , k},

(23) ϕ(vs,m) =

{
vs,m+1, if m < ps

0, otherwise.
Definition A.2. Let V be a finite-dimensional vector space over a field k, let

ϕ : V → V be a nilpotent endomorphism, and let (p1, . . . , pk) be its Jordan type,
with p1 ≥ · · · ≥ pk. A pre-Jordan basis for ϕ is a basis

(v1,1, . . . , v1,p1
, v2,1, . . . , v2,p2

, . . . , vk,1, . . . , vk,pk
)

of V such that for every s ∈ {1, . . . , k},
(24) ϕ(vs,m) = vs,m+1, ifm < ps.

Remark A.3. We may construct a Jordan basis (v′s,m)1≤s≤k, 1≤m≤ps
by induc-

tion, from a given pre-Joradn basis (vs,m)1≤s≤k, 1≤m≤ps
. First note that since ϕ is

nilpotent, its only eigenvalue is zero. Also, we must have ϕp1 = 0, for p1 is the
maximum size of a Jordan block for ϕ. Therefore ϕ(v1,p1) = ϕp1(v1,1) = 0. Write
v′1,m = v1,m, for 1 ≤ m ≤ p1.

For the induction step, suppose that for some s, we have a list of vectors
v′1,1, . . . , v

′
1,p1

, . . . , v′s,1, . . . , v
′
s,ps

satisfying (23) and such that
v′1,1, . . . , v

′
1,p1

, . . . , v′s,1, . . . , v
′
s,ps

, vs+1,1, . . . , vs+1,ps+1 , . . . , vk,1, . . . , vk,pk

are linearly independent. Now, we know that the rank of ϕps+1 is
(p1 − ps+1) + · · ·+ (ps − ps+1) = p1 + · · ·+ ps − sps+1,

so its image is spanned by (v′l,m)1≤l≤s, ps+1<m≤pl
. Since for each l ∈ {1, . . . , s} and

each m ∈ {ps+1 + 1, . . . , pl} we have v′l,m = ϕps+1(v′l,m−ps+1
), we obtain

imϕps+1 = ⟨ϕps+1(v′l,m) : 1 ≤ l ≤ s, 1 ≤ m ≤ pl − ps+1⟩.
25



26 A. JORDAN BASIS À LA CARTE

Therefore there is u ∈ ⟨v′l,m : 1 ≤ l ≤ s, 1 ≤ m ≤ pl − ps+1⟩ such that
ϕ(vs+1,ps+1) = ϕps+1(vs+1,1) = ϕps+1(u).

Let us write v′s+1,1 = vs+1,1 − u, and v′s+1,m+1 = ϕ(v′s+1,m), for 1 ≤ m < ps+1. It
is now straighforward to check that v′1,1, . . . , v′1,p1

, . . . , v′s+1,1, . . . , v
′
s+1,ps+1

satisfy
(23) and

v′1,1, . . . , v
′
1,p1

, . . . , v′s+1,1, . . . , v
′
s+1,ps+1

, vs+2,1, . . . , vs+2,ps+2
, . . . , vk,1, . . . , vk,pk

are linearly independent, which concludes the induction step.
Lemma A.4. Let V be a finite-dimensional vector space over an infinite field k, let

ϕ : V → V be a nilpotent endomorphism, and let (p1, . . . , pk) be its Jordan type, with
p1 ≥ · · · ≥ pk. Let V = V0 ⊃ · · · ⊃ Vj be a strictly-decreasing filtration of vector sub-
spaces of V such that ϕ(Vi) ⊆ Vi+1, for 0 ≤ i < j. Then there is a pre-Jordan basis B for
ϕ such that the cardinality of B ∩ Vi equals dimVi, for each i ∈ {0, . . . , j}.

Proof. If p1 > 1, then ϕp1−1 ̸= 0, and therefore there is v1,1 ∈ V such that
ϕp1−1(v1,1) ̸= 0. Since k is infinite, we can ask that v1,1 ∈ V0 \ V1. For each m < p1,
define v1,m+1 = ϕ(v1,m), and letW1 = ⟨v1,1, . . . , v1,p1⟩.

Now, ϕ induces an endomorphism ϕ1 : V
W1

→ V
W1

, whose Jordan type is
(p2, . . . , pk). Let e1 be the lowest integer such that

Ve1

(Ve1 ∩W1) + Ve1+1
̸= 0.

We can then choose v2,1 ∈ Ve1 \ Ve1+1 such that ϕ p2−1
1 (v2,1 +W1) ̸= 0, for this is an

open condition on Ve1 . Define v2,m+1 = ϕ(v2,m), for each m < p2. Continuing in
this manner, suppose for some s < k we have vectors

v1,1, . . . , v1,p1
, . . . , vs,1, . . . , vs,ps

satisfying condition (24). In addition, suppose that, for each l ∈ {1, . . . , s− 1},
ϕ

pl+1−1
l (vl+1,1 +Wl) ̸= 0, where Wl = ⟨v1,1, . . . , v1,p1 , . . . , vl,1, . . . , vl,pl

⟩ and

ϕl :
V

Wl
→ V

Wl

is the endomorphism induced by ϕ, and vl+1,1 ∈ Vel \ Vel+1, where el is the lowest
integer such that

Vel

(Vel ∩Wl) + Vel+1
̸= 0.

By construction, we see that we get a basis for V
B = {v1,1, . . . , v1,p1 , . . . , vk,1, . . . , vk,pk

}
satisfying (24) and #(B ∩ Vi) = dimVi, for each i ∈ {0, . . . , j}. □

Definition A.5. Let A be an Artinian local algebra over a field k and let m be
its maximal ideal. Let B be a basis of A as a k-vector space. We say that B is
compatible with the Hilbert function of A if for every i ≥ 0, the cardinality of B ∩mi

equals dimmi.
A simple linear algebra argument shows that any Artinian local algebraA over

a field k always admits a basis as a k-vector space that is compatible with its Hilbert
function, but the following example by Chris McDaniel shows that it is not always
possible to find such a basis that is also a Jordan basis for the multiplication of an
element in the maximal ideal.
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Example A.6 (AG algebra A having no Jordan basis for the multiplication ×x

consistent with H(A) - C. McDaniel, private communication). Let
F = XY 3 +X2Y ∈ kDP [X,Y ],

A = k{x, y}/I , I = AnnF = (x2 − xy2, y4), having Hilbert function
H(A) = (1, 2, 2, 2, 1).

Considering ℓ = x, we easily find a pre-Jordan basis for the multiplication×x com-
patible with the Hilbert function:

(25)

1
� // x � // xy2

y � // xy � // xy3

y2

y3

Note that this is not a Jordan basis, as y2 and y3 are not kernel elements. We have
here, that multiplication by x onA does not admit a Jordan basis that is compatible
with the Hilbert function of A. See [IMM, Example 2.14].

Lemma A.7. Let A be an Artinian local algebra over a field k, let m be its maximal
ideal, and let ℓ ∈ m. Then the multiplication by ℓ admits a pre-Jordan basis compatible
with the Hilbert function of A.

Proof. Apply Lemma A.4 to the filtration A ⊃ m ⊃ m2 ⊃ · · · ⊃ mj , where j is
the socle degree of A. □
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1. Introduction

The strong and weak Lefschetz properties of graded Artinian algebras A have been extensively studied,
especially in the last twenty years. These properties are determined by the ranks of the multiplication
operators m`i : A ! A by powers `i of generic linear elements of ` 2 A. Our first main goal is to
generalize these properties in several ways. First, given any linear element ` in A1, we will consider the
set of all such ranks of m`i , which determine a Jordan type P`, which is a partition of n = dimk A. The
partition P` compared to the Hilbert function of A determines whether the pair (`, A) is strong Lefschetz,
or weak Lefschetz; however, in general there are many other possible Jordan types, and we explore these
possibilities. Second, we will consider not only graded (standard or nonstandard) Artinian algebras A, but
also extend the notions of Lefschetz properties and Jordan type to local Artinian algebras A with maximal
ideal mA: for these we will consider the Jordan type for either arbitrary or generic elements ` 2 mA.

Our second goal is to give a systematic account of the basic facts about Jordan type for multiplication
maps in Artinian local algebras, or modules over them. We state in broad terms what is known, prove
new results, and give many examples. One of our main new results, Theorem 2.5, establishes inequalities
between the Jordan type P`,M of any element ` 2 mA, acting by the map m` : M ! M on an A-module M
and its Hilbert function H(M); if A admits a weight function w, i.e., if it is graded, then the inequalities
are between P`,M and its w-Hilbert function Hw(M), where ` is w-homogeneous. We explore subtleties
of the definition of Jordan type and its connection with Lefschetz properties in Section 2C. We also
introduce a refinement, the Jordan degree type, which specifies not only the Jordan type, but the initial
degrees of the strings — the maximal cyclic k[`] submodules of A under the action of m` into which we
may decompose A, in Section 2F. For a graded Artinian Gorenstein algebra A the Jordan degree type is
symmetric: this greatly restricts the possible Jordan types for A. This invariant has been in effect studied
by T. Harima and J. Watanabe [53], and by B. Costa and R. Gondim [39], the latter introducing a colorful
notion of string diagrams.

Our third main goal, in Section 3, is to outline several other approaches to the study of Jordan type,
adding our own comments and results. For example, there have been studies in representation theory of
modules having a constant Jordan type, and of the generic Jordan type of a module, and, as well, of the
connection of Jordan type loci to vector bundles [17; 30; 42; 104; 105]. In addition there has been progress
in the study of the modular case of tensor products of Jordan types, generalizing the Clebsch–Gordan
formula in characteristic zero (Section 3B, Remark 3.16). These studies have been by several groups,
some apparently unaware of the related work of others: we give an overview in Section 3B.

Free extensions of an Artinian algebra A with fiber B were introduced by Harima and Watanabe [52];
in [66, Theorem 2.1] we showed that, geometrically, a free extension is a flat deformation of A ⌦k B. Our
Theorem 3.23 gives criteria for finding free extensions that are complete intersections.

There are subtle conditions, investigated by P. Oblak, T. Košir and others, on which pairs of Jordan
types P`, P`0 , partitions of n, “commute”, i.e., they can simultaneously occur for a single Artinian graded
algebra A or local algebra A of length n [13; 65; 71; 72; 74; 98; 99; 102] (Section 3D). We hope that our
discussion and results in Section 3 will suggest new connections that will be useful to the reader.

Detailed overview. In Section 2 we state and prove the basic properties for Jordan types for elements
of Artinian algebras. In Section 2A we present well known equivalent definitions of the Jordan type of
the multiplication map m` for an element ` 2 m, the maximal ideal, and we present some properties of
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Artinian algebras that we will need. In Section 2B we prove a main result, Theorem 2.5, bounding above
the Jordan type of a nonunit element ` of a local algebra A, acting via m` on an A-module M , by the
conjugate of the Hilbert function of M ; and we also show the analogue for graded algebras. Here we use
the dominance partial order on partitions (Definition 2.4).

In Section 2C we connect Jordan type with Lefschetz properties. We will also in Section 2C consider
Jordan type for more general elements ` 2 mA or for nonhomogeneous elements of mA when A is
graded. We say that an element ` of the maximal ideal mA has “strong Lefschetz Jordan type” (SLJT) if
P` = H(A)_, the conjugate partition of the Hilbert function H(A) (Definition 2.12) — this gives a fine
tuning of the concept of strong Lefschetz, and as well provides an additional invariant (namely, SLJT) for
distinguishing Artinian nonstandard graded algebras.

In Section 2D we define an invariant, the contiguous partition Pc(H) associated to a Hilbert function H
(Definition 2.17) and show that for a graded A-module M , its Jordan type is bounded above in the
dominance order by the contiguous partition Pc(H) (Theorem 2.20).

We introduce the Macaulay duality in Section 2E, which we use to define examples. In Section 2F
we introduce a finer invariant, the Jordan degree type (JDT) of a graded module over a graded algebra
(Definition 2.28) and relate it to the central simple modules of Harima and Watanabe. There is a
natural partial order on JDT related to specialization (Lemma 2.29). We use this to show that a Jordan
type locus in GT may have several irreducible components (Example 2.31). We show also that the
Jordan degree type is bounded in the concatenation order by a degree-invariant associated to the Hilbert
function (Proposition 2.32). Finally, we give in Section 2G several results and examples highlighting
the deformation properties of Jordan type; in particular we discuss Jordan type and initial ideal, and we
compare the generic Jordan types of a local algebra A and its associated graded algebra.

Section 3 outlines further work by many groups on several aspects of Jordan types. In Section 3A
we discuss the generic Jordan types for algebras constructed by idealization or by partial idealization:
these include some well-known non-WL examples of H. Sekiguchi (H. Ikeda), idealization examples of
Watanabe and R. Stanley, and, as well, partial idealization examples of Gondim and collaborators. These
Jordan types can be weak Lefschetz (number of parts equal to the Sperner number of H ) but not strong
Lefschetz. In Section 3B we report briefly on the Jordan type of tensor products, in both nonmodular
(char k is zero or char k = p is large) and modular cases. Our contribution is to introduce here the Jordan
degree type, and prove for it an analogue of the Clebsch–Gordan formula for the tensor product.

Harima and Watanabe introduced free extensions C of a base algebra A with fiber B [52], which we
have shown elsewhere are deformations of the tensor product [66]. We here in Section 3C show a new
result that is useful in deciding when C is a free extension and also in determining complete intersection
extensions (Theorem 3.23). In Section 3D we discuss which pairs of Jordan types are compatible for
different elements of the same Artinian algebra A. In Section 3E we propose further problems and
possible directions of study.

Related notes are [66], which focuses on free extensions; and [83], joint with S. Chen, which studies
Jordan type and rings of relative coinvariants. This paper is our introduction to Jordan type and Jordan
degree type for Artinian algebras A, and to some of the subtleties that arise, particularly in comparing
these invariants with the Hilbert function of A.
1A. Notation. Throughout the paper k will be an arbitrary field unless otherwise specified — except that
we will assume k is infinite when we discuss “generic” Jordan type or parametrization.
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Local Artinian algebras. We will on the one hand consider a local Artinian algebra A containing the field
k = A/mA, where mA is the maximal ideal. The Jordan type P` of an element ` 2 mA is the partition
of n = dimk(A) giving the sizes of the blocks in the Jordan block decomposition of the multiplication
operator m` : A ! A; since the homomorphism m` is nilpotent, it is determined up to similarity by the
partition P`. Recall that the socle of A is the ideal Soc(A) = 0 : mA. We denote by jA, the maximal socle
degree of A, the highest integer j such that m

j
A 6= 0. There is a natural mA-adic filtration

(1-1) A � mA � m 2
A � · · · � m

jA
A � 0

of A; the order ⌫(a) of a nonzero element a 2 A is the largest integer i such that a 2 m i
A. The associated

graded algebra A⇤ of A is A⇤ = GrmA(A) =
L j

i=0 Ai , where Ai = m i
A/m i+1

A . Here A⇤ is standard
graded, in the sense that A⇤ is generated over A0 = k by A1. The Hilbert function of the local algebra A
is H(A) = (h0, h1, . . . , h j ), where hi = dimk Ai .

Graded Artinian algebras. By an N-graded Artinian algebra over k we mean a graded ring A =
L

i�0 Ai

with A0 = k which has finite dimension as a k-vector space. In this graded case we denote by jA the largest
integer j for which A j 6= 0. We can write A = R/I , where R is the polynomial ring R = k[x1, . . . , xr ],
and I an ideal. A local Artinian algebra A (with a single maximal ideal, as we will always assume) can
be written A = R/I , where R is the regular local ring R = k{x1, . . . , xr }.

The socle of A is Soc(A) = 0 : mA ⇢ A, an ideal of A that includes A jA . The Hilbert function of the
graded algebra A is the sequence of nonnegative integers H(A) = (h0, . . . , h j ), where hi = dimk Ai . We
say that A is standard graded if A = k[A1], the algebra generated by degree one (linear) forms over
A0 = k; otherwise it is nonstandard graded.

We observe that a graded Artinian algebra A over k may be regarded as a local Artinian algebra A
over k, with maximal ideal mA =

L jA
i=1 Ai , and a weight function w specifying the grading. That is, there

is an algebra homomorphism w : A ! A[t], and the i -th graded component of A (with respect to w) is
given by Ai(w) = w�1(A · t i ). Then A(w) =

L
i�0 Ai(w) is a graded Artinian algebra in the above sense.

We will sometimes use the notation A(w) when we want to stress that the Artinian algebra A is endowed
with the weight function w. We define the w-socle degree of A to be the largest integer j = j (w) for
which A j (w) 6= 0, and the w-Hilbert function Hw(A) = (hw

0 , . . . , hw
j ) where hw

i = dimk Ai(w). Recall that
for a local ring A the Hilbert function H(A) is defined as that of the associated graded algebra GrmA(A);
thus, A(w) is standard-graded if and only if H(A) = Hw(A).

For either R or the regular local ring R = k{x1, . . . , xr } we may specify a weight function w, hence
a grading, on suitable quotients of either, using the shorthand notation w(x1, . . . , xr ) = (d1, . . . , dr ),
meaning that w(xi ) = tdi for each i : a quotient A = R/I is suitable for w if I is a homogeneous ideal in
the weighting w.

We fix a finite A-module M , of dimk M = n and we consider multiplication maps m` : M ! M by an
element ` 2 mA. The Jordan type P` = P`,M (to make M explicit) is the partition of n specifying the
block sizes in the Jordan canonical form of m`. When k is infinite, the generic Jordan type is PM = P`,M

for a sufficiently general element ` 2 mA (Definition 2.55). We can make similar definitions for N-graded
algebras A with A0 = k by localizing at the maximum ideal, so A = AmA where mA =

L
i�1 Ai . Evidently,

the Jordan type of a 2 A, the graded algebra, is the same as that of the corresponding element a 2A= AmA .
However, for a standard graded algebra (generated by A1 over A0 ⇠= k), a special role is played by linear
elements a 2 A1. We explore this in Sections 2B and 2C.
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Question 1.1. For a standard graded local algebra A are the two Jordan types JA defined by a generic
element a 2 A1 and the local algebra Jordan type defined by a generic element a 2 mA the same?
Of course, the latter is greater or equal JA in the dominance order (Definition 2.4). We will show
these Jordan types are the same when A is standard graded and the Hilbert function H(A) is unimodal
(Proposition 2.14). In the nonstandard graded context, the Jordan type of A over ` 2 m can be strictly
greater than JA [83, Proposition 3.9].

2. Basic properties of Jordan type

2A. Jordan type of a multiplication map. Let A = (A, m, k) be an Artinian local algebra over k and
let M be a finite A-module; in particular M is a finite-dimensional vector space over k. For any element
` 2 mA, let m` : M ! M denote the multiplication map m`(x) = ` · x . Then m` is a nilpotent k-linear
transformation. We will sometimes denote m` by ⇥`.

Definition 2.1 (Jordan type). (See also [58, Section 3.5]) For any element ` 2 m its Jordan type is the
partition of dimk M , denoted P` = P`,M = (p1, . . . , ps), where p1 � · · · � ps , whose parts pi are the
block sizes in the Jordan canonical form matrix of the multiplication map m`.

If P`,M = (p1, . . . , ps) is the Jordan type of `, then there are elements z1, . . . , zs 2 M (depending on `)
such that

�
`i zk |1 k  s, 0 i  pk �1

 
is a k-basis for M : we will term this set a pre-Jordan basis for M .

The Jordan blocks of the multiplication m` are determined by the strings Sk =
�
zk, `zk, . . . , `

pk�1zk
 
,

and M is the direct sum

(2-1) M = hS1i � · · ·� hSsi.

We say that the same set is a Jordan basis or `-basis for M if also, for each k, `pk zk = 0. In that case
the hSki are cyclic k[`]-submodules.

If A is a graded Artinian algebra and M is a graded A-module, we say that the string Sk is homogeneous
if each element `i zk is. For simplicity, we state the following lemma for ` 2 A1, but it has a natural
generalization to ` 2 Ad , d � 1.

Lemma 2.2. Let A be a graded Artinian algebra, M a finite-length graded A-module, and let ` 2 A1.
Then we may choose strings S1, . . . , Ss as in Definition 2.1 defining the unique Jordan type P`,M such that:

(i) Each zk is homogeneous of a degree ⌫k , and `i zk has degree ⌫k + i for 0  i < pk , but `pk zk = 0.

(ii) We have
dimk Md = #{k | ⌫k  d < ⌫k + pk}.

(iii) Any pre-Jordan basis for M as in Definition 2.1 may be refined to a set satisfying (i) and (ii) by
k[`]-linear operations.

(iv) Given ` 2 A1, the set of pairs of integers S`,M = {(pk, ⌫k), k = 1, . . . , s} is independent of the choice
of the set of strings {Sk} decomposing M , and satisfying (i).

Proof. This is the result of applying the standard method of finding a good basis of a vector space V = A
in which a transformation T = m` = ⇥` will have Jordan normal form [44, §VII.7]. We briefly
sketch the proof. For (i), choose an element z1 such that `p1�1z1 6= 0. Since ` is homogeneous, we
can assume that z1 is also homogeneous and make S1 = {z1, `z1, . . . , `

p1�1z1}. We can construct
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the remaining strings inductively, choosing in each step a homogeneous element zk+1 2 ker(⇥`pk+1)

such that `pk+1�1zk+1 /2 hS1i � · · ·� hSki — this is always possible, given that, by construction, we have
im(⇥`pk+1) ✓ hS1i � · · ·� hSki, but im(⇥`pk+1�1) 6✓ hS1i � · · ·� hSki, so we can take z0

k+1 such that
`pk+1�1z0

k+1 /2 hS1i � · · ·� hSki, and consider u 2 hS1i � · · ·� hSki such that `pk+1 z0

k+1 = `pk+1u.
Then z0

k+1 � u 2 ker(⇥`pk+1), and we may take zk+1 to be a homogeneous component of z0

k+1 � u
satisfying `pk+1�1zk+1 /2 hS1i � · · ·� hSki.

Alternatively, we could start with a Jordan basis z0

1, . . . , `
p1�1z0

1, . . . , z0
s, . . . , `

ps�1z0
s , and replace

each Jordan chain z0

k, . . . , `
p1�1z0

k by zk, . . . , `
pk�1zk , where zk is a homogeneous summand of z0

k
satisfying `p1�1zk 6= 0.

We easily see that (ii) is a direct consequence of (i).
To check (iii) we may also construct a new set of strings inductively. The key point here is that

if S1, . . . , Ss is a pre-Jordan basis of M as in Definition 2.1 then for each k, the generator zk is not
in im(⇥`), otherwise the lengths of the strings would not match the Jordan type. If S1, . . . , Sk are already
modified into strings {S0

1, . . . , S0

k}, with generators z0

1, . . . , z0

k , satisfying (i), we can observe that

`pk+1 zk+1 2
�
hS0

1i � · · ·� hS0

ki
�
\ im(⇥`pk+1) = hli z0

b : i � pk+1, 1  b  ki.

In particular there exists u 2 hS0

1i � · · ·� hS0

ki such that `pk+1 zk+1 = `pk+1u. We now set z0

k+1 = zk+1 � u
and S0

k+1 = {z0

k+1, . . . , `
pk+1�1z0

k+1}.
For the proof of (iv), let 1  n1 < · · · < nt = s be the integers defined by the conditions

p1 = pn1 > pn1+1 = pn2 > pn2+1 = pn3 > · · · ,

capturing the places where the partition P`,M = (p1, . . . , ps) drops. Let S1, . . . , Ss be any set of strings of a
Jordan basis satisfying (i). Then the classes of z1, . . . , zn1 form a homogeneous basis of the graded module

M
ker(⇥`p1�1)

=
ker(⇥`p1)

ker(⇥`p1�1)
,

so their degrees ⌫1, . . . , ⌫n1 are determined by the dimensions of its graded pieces, up to permutation,
which shows that the pairs (p1, ⌫1), . . . , (pn1, ⌫n1) are uniquely determined. For induction, suppose that
the pairs (p1, ⌫1), . . . , (pni , ⌫ni ) are uniquely determined. Then the classes of

`p1�pni +1 z1, . . . , `p1�pni +1 zn1, `pn1+1�pni +1 zn1+1, . . . , `pn1+1�pni +1 zn2, . . . , zni +1, . . . , zni+1

form a homogeneous basis of the graded module ker(⇥`pni +1)/ ker(⇥`pni +1�1). Since the first pairs are
determined, the degrees ⌫ni +1, . . . , ⌫ni+1 are also uniquely determined. ⇤

The set of pairs S`,M = {(pk, ⌫k)} in Lemma 2.2(iv) we will later term the Jordan degree type of (M, `)

(Definition 2.28).
For an increasing sequence d` = (d0  d1  · · ·  d j ) we let �d`,i = di � di�1 for 0  i with d�1 = 0.

For a decreasing sequence r` = (r0 � r1 � · · · � r j ) we let �r`,i = ri � ri+1.
The following result is well-known; see [58, Lemma 3.60].
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Lemma 2.3. (i) Let A be an Artinian graded or local algebra with maximum ideal mA and highest
socle degree j = jA (so A j 6= 0 but Ai = 0 for i > j); and assume ` 2 mA. Let M be a finite length
A-module. The increasing dimension sequence

(2-2) d` : (0 = d0, d1, . . . , d j , d j+1), where di = dimk M/`i M,

has first difference 1(d`) = (�d`,1, �d`,2, . . . , �d`, j+1), which satisfies

(2-3) P` = 1(d`)
_.

Here 1(d`)
_ is the conjugate (exchange rows and columns in the Ferrers diagram) of 1(d`).

(ii) The (decreasing) rank sequence

(2-4) r` : (r0, r1, . . . , r j , 0), where ri = dimk(`
i
· M) = rank m`i on M,

has first difference 1(r`) = (�r`,1, �r`,2, . . . , �r`, j ) which satisfies

(2-5) P_

` = 1(r`) = 1(d`).

Note. The Jordan type partition P` has sometimes been called the Segre characteristic of ` [112]. The
Weyr canonical form of a multiplication map is a block decomposition “dual” to the Jordan canonical
form [101, §2.4]; the Weyr characteristic is the partition giving the sizes of the blocks in the Weyr form,
and is just the conjugate P_

` of P`. For further discussion of the Weyr form, which may have advantages
for some problems, see [112; 81; 101; 100].

It is readily seen that the Jordan type of (A, `) may depend on the characteristic of k. For example
A. Wiebe notes that k[x, y, z]/(x2, y2, z2) is strong Lefschetz when char k 6= 2, but is not even weak
Lefschetz when char k = 2 [115, Example 2.10]. The same holds for k[x, y]/(x p, y p), which is strong
Lefschetz for char k = 0 or char k > p but is not SL when char k = p. This dependence is studied in
particular by D. Cook, II for monomial ideals, or in codimension two [35; 36]. We discuss it for tensor
products in Section 3B.

2B. Jordan type and Hilbert function for a local algebra.

Partitions and the dominance order. By a partition we mean a weakly decreasing sequence of nonnegative
integers P = (p1, . . . , ps), p1 � · · · � ps . The pi are called the parts of P , the length of P is the number
of its parts `(P) = s, and the size of P is the sum of its parts |P| = p1 + · · · + ps . We can represent the
partition P as a Ferrers diagram by which we mean a left justified array of boxes with pi boxes in the i-th
row. The conjugate partition P_ = (p_

1 , . . . , p_
t ) is the partition with parts p_

i = #{ j | p j � i}; its Ferrers
diagram can be obtained from that of P by reflection about the main diagonal, that is, swapping the rows
and columns. For example P = (2, 2, 1, 1) and the conjugate P_ = (4, 2) have Ferrers diagrams

and

respectively. Note that
�
P_

�_
= P .
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Definition 2.4 (Dominance order). Given two partitions P = (p1, . . . , ps) and P 0 = (p0

1, . . . , p0
t) with

p1 � · · · � ps and p0

1 � · · · � p0
t , we write

(2-6) P  P 0 if
iP

k=1
pk 

iP
k=1

p0

k for all i.

Thus, (2, 2, 1, 1) < (3, 2, 1) but (3, 3, 3) and (4, 2, 2, 1) are incomparable.
In the dominance partial order we have for two partitions P, P 0 of n (see [33, Lemma 6.3.1])

(2-7) P  P 0
, P_

� P 0_.

Any sequence H = (h0, . . . , h j ) of nonnegative integers can be made into a partition by simply rearranging
its parts so that they are in nonincreasing order. In particular if H = H(N ), the Hilbert function of an
Artinian module N over an Artinian algebra A and max{hk} = r (a special case is N = A, a local Artinian
algebra) then we form the conjugate partition of the Hilbert function

(2-8) H(N )_ = (h_

0 , . . . , h_

r ), where h_

i = #{k | hk � i} in H(N ).

The following key result says that the Jordan type is always bounded above in the dominance partial order
by the conjugate partition of the appropriate Hilbert function. We will consider modules M ⇢ Ak that are
subsets of free modules Ak , in particular their Hilbert functions satisfy H(M) =

�
h0(M), h1(M), . . .

�

with entries only in nonnegative degrees.

Theorem 2.5 (Jordan type and Hilbert function). Let A = (A, m, k) be a local Artinian algebra over k

and let M ⇢ Ak be an A-module, with Hilbert function H(M). For any ` 2 mA, its Jordan type satisfies

(2-9) P`,M  H(M)_.

If A has weight function w, for which A0 = k, and if M is a graded module over A(w) with w-Hilbert
function Hw(M), then for any w-homogeneous element ` 2 mA its Jordan type also satisfies

(2-10) P`,M  Hw(M)_.

Proof. To prove (2-9), let A and M be as above, fix any element ` of mA and let k[x] act on the Artinian
A-module M via x = m`, multiplication by `. Recall that the integer j (N ) is the socle degree of an
A-module N . For a 2 A the order ⌫(a) is the largest integer ⌫ such that a 2 (mA)⌫ , and we extend
the definition to elements of modules M ⇢ Ak : the order of m = (a1, . . . , ak) is the minimum order
min{⌫(a1), . . . , ⌫(ak)}. We will denote by {{H(N )}} the multiset of integers in the sequence H(N ), with
their multiplicities specified. We will show:

Claim. For any T = k[x] submodule N of the A-module M where dimk M = m, dimk N = n, we have
P`(N )  H(N )_.

Proof of claim. We proceed by induction on the pairs (m, n), where we let (m, n) < (m0, n0) if m < m0 or
if m = m0 and n < n0. The claim is true for all pairs (m, n) with m = 1 or n = 1. Fix (m0, n0) and suppose
the claim is true for all pairs (m, n) < (m0, n0), let M be an A-module of length m0 and N a T submodule
of length n0. Let S = (a, `a, `2a, . . .) ⇢ N be a longest string (k-basis of a cyclic T -submodule) in N .
Then S has length p1,` no greater than j (N )+1, the largest part of H(N )_, and hSi is a direct T -summand
of N (as it has maximum length). Consider a complementary T submodule N 0 ⇢ N with N 0 ⇠= N/hSi and



ARTINIAN ALGEBRAS AND JORDAN TYPE 373

N 0 �T hSi = N and choose N 0 of maximum possible order. Denote by {{H(N )}} the multiset of integers
from H(N ). Then {{H(N 0)}} is obtained from {{H(N )}} by decreasing p = p1,` entries of {{H(N )}} by
one. No entry H(N )i is decreased by 2 in H(N 0)i as the orders of a, `a, `2a, . . . are strictly increasing.
Evidently, P`,N = (p, P`,N 0) — we simply adjoin a largest part p to the Jordan partition P`,N 0 . Since
P`,N 0  H(N 0)_ by the induction assumption, we have by (2-7)

(2-11) P_

`,N 0 �
�
H(N 0)_

�_
.

The partition P_

`,N is obtained from P_

`,N 0 by increasing the first p entries by one. The multiset {{H(N )}}

is obtained from {{H(N 0)}} by increasing some subset of p entries by one. Thus we have (here
�
H(N )_

�_

is just the integers in the multiset {{H(N )}} rearranged in nonincreasing order to form a partition)

(2-12) P_

`,N 0 �
�
H(N 0)_

�_
) P_

`,N �
�
H(N )_

�_

in the dominance partial order, since the sum of the first k entries for P_

`,N remains greater than the
analogous sum of the first k entries of H(N ), for each k = 1, . . . , j (N )+ 1. We are using here that the
difference H(N )i � H(N 0)i  1 for each i . By conjugating the partitions in (2-12) and applying (2-7) we
have shown P`,N  H(N )_. This completes the induction step.

For (2-10), i.e., the graded version, let w be any weight function on A as above, so that A = A(w) is an
N-graded Artinian algebra over k, and let M be any finite A-module M ⇢ Ak with highest socle degree jM .

Fix a w-homogeneous element ` 2 mA, and let M =
L

i hSi i as in (2-1), where each Si is a w-
homogeneous Jordan basis of the string hSi i of M , pi = |Si | and p1 � · · · � ps . The Jordan type of `

acting on M is P`,M = (p1, . . . , ps). For each 1  i  s and each integer u, define the new integer m(i, u)

to be the number of elements of degree u in the disjoint union of strings S1 t · · · t Si ; clearly we have
X

u�0

m(i, u) = |S1 t · · · t Si | = p1 + · · · + pi .

Recall that H(M)_ = (q1, . . . , qt), where

qi = # {u | dimk Mu � i}| {z }
Ti

= |Ti |.

For each index 1  i  t , and each integer u, define the new integer n(i, u) to be the number of times
the index u appears in the multi-set T1 [ · · · [ Ti ; clearly we have

X

u�0

n(i, u) = |T1| + · · · + |Ti | = q1 + · · · + qi .

Since no two elements of the same string have the same degree, we see that 0  m(i, u)  i . Since
dimk(Mu) � m(i, u), the index u must appear in Tm(i,u), as well as in Tm(i,u)�1, . . . , T1. Thus we see that

(2-13) m(i, u)  n(i, u).

Summing (2-13) over all u, gives (2-10), and completes the proof of Theorem 2.5. ⇤

In the graded case we will see that those linear forms ` 2 A1 which achieve the bounds in Theorem 2.5
are exactly those with strong Lefschetz property (Proposition 2.10).
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Example 2.6. We thank Lorenzo Robbiano for pointing out that we needed to make explicit our assumption
that A0 = k in Theorem 2.5. He provided the following example when A0 6= k. Let k = Q be the rationals,
set P = Q[x], let M be the maximal ideal M = (x2 + 1) ⇢ P and denote by K = P/M the quotient
field. Consider the Artinian ring A = P/M2 over Q. Let mA be the maximal ideal of A, and consider the
associated graded algebra G =GrmA(A). It satisfies dimK G =2, with Hilbert function HK (G)= (1, 1); the
Jordan type of the multiplication mx is Px,G = (2) = HK (G)_. However, over Q we have dimQ(A) = 4,
dimQ mA = 2, so the Hilbert function HQ(A) = (2, 2). The multiplication mx on A has the string
1 ! x ! x2 ! x3, so the Jordan type Px,A = (4) > HQ(A)_ = (2, 2)_ = (2, 2).

Remark 2.7. The Hilbert function H = (1, 2, . . .) of a codimension two algebra is unimodal, and has no
strict increases; it follows that H is determined by the partition P(H) (a reordering of H ). This is no
longer true in height three.

2C. Lefschetz properties and Jordan type. We first recall in Definition 2.8 various traditional notions
of Lefschetz properties for graded Artinian algebras; see for example [58, Definition 3.8ff], or [89, Defini-
tion 2.4]. It is well known that if A is a standard graded Artinian algebra with Hilbert function H = H(A)

then ` 2 A1 is a strong Lefschetz element for A if and only if P` = H(A)_, the conjugate partition
(exchange rows and columns in the Ferrers diagram) of H(A) regarded as a partition (Proposition 2.10
refining [58, Proposition 3.64]). The element ` is weak Lefschetz for A if the number of parts of P` is
the Sperner number of A, the maximum value of the Hilbert function H(A) (Lemma 2.11). We then
define for a local algebra A the notion of its having an element of strong Lefschetz Jordan type (SLJT)
(Definition 2.12); we give examples and show that if H(A) is unimodal then A has SLJT implies that the
algebra is strong Lefschetz (Proposition 2.14).

Definition 2.8. Let A be a graded Artinian algebra of socle degree j (not necessarily standard graded),
and let ` 2 A1 be a linear form. We say that ` is

(i) (WL) weak Lefschetz if the multiplication maps ⇥` : Ai ! Ai+1 have maximal rank for each degree
0  i < j ;

(ii) (SL) strong Lefschetz if the multiplication maps ⇥`b : Ai ! Ai+b have maximal rank for each
degree 0  i < j and each integer b � 0.

A is said to have the weak (resp. strong) Lefschetz property if it has a weak (resp. strong) Lefschetz
element ` 2 A1.

For a survey (as of 2013) of the Lefschetz properties for graded Artinian algebras, see [89]. For more
recent discussion see relevant portions of [58].

Remark 2.9. Harima and Watanabe refer to the strong Lefschetz property in the narrow sense to mean
that for every degree 0  i 

⌅ j
2

⇧
the multiplication maps ⇥` j�2i : Ai ! A j�i are isomorphisms (see [58,

Definition 3.18]). If the Hilbert function H(A) is symmetric, i.e., hi = h j�i for each i , then SL in the
narrow sense is equivalent to SL in Definition 2.8.

Note that a necessary condition for A to have SL is that its Hilbert function H(A) is unimodal. The
following result, which is a generalization of Proposition 3.64 in [58], relates the strong Lefschetz property
and Jordan type.
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Proposition 2.10. Let A be a (possibly nonstandard) graded Artinian algebra and ` 2 A1. Then the
following statements are equivalent:

(i) For each integer b, the multiplication maps ⇥`b : Ai ! Ai+b have maximal rank in each degree i .
(That is, ` is SL.)

(ii) The Jordan type of ` is equal to the conjugate partition of the Hilbert function, i.e.,

P` = H(A)_.

(iii) There is a set of strings S1, . . . , Ss as in (2-1), composed of homogeneous elements, for the multipli-
cation map ⇥`b : A ! A such that for each degree u and each integer i we have the equivalence

(2-14) dimk Au � i , Au \ Sa 6= ? 8a  i.

Proof. For each integer i 2 [1, jA] define the set of indices Ti = {u | dim Au � i}, and let ni = #Ti . We
denote by t the maximum i such that Ti is nonempty. Let S1, . . . , Ss as in (2-1) be strings for the action
of ` on A, arranged so that their lengths pi = #Si are nonincreasing, and with Si having generator zi .
Note that since the map ⇥` : A ! A respects the grading of A, its kernel is a homogeneous ideal, and
therefore we can construct a Jordan basis composed of homogeneous elements, and we may assume
that the elements in each string Si are homogeneous. To these strings we associate their degree sets
deg(S1), . . . , deg(Ss), where

deg(Si ) =
�
deg zi , . . . , deg `pi �1zi

 
.

(i) ) (ii): Assume ⇥`b : Ai ! Ai+b has maximal rank for each i, b. We want to show that t = s and
pi = ni for 1  i  s.

Claim. There is an injective function � : {1, . . . , t}! {1, . . . , s} such that for each index i 2 [1, t], we have

Ti ✓ deg(S� (i)).

Note that the claim implies that ni  p� (i) for 1  i  t  s. Then we have

dimk A =

tP
i=1

ni 

tP
i=1

p� (i) 

rP
i=1

pi = dimk A

which implies that t = s and ni = pi for all 1  i  t , as desired.

Proof of claim. We proceed by induction on i . We have T1 = { j | dimk(A j ) � 1} = {0, . . . , d}. Since
⇥`d : A0 ! Ad has full rank, we conclude that T1 must belong to the degree sequence of some Jordan string,
say S� (1). Inductively, assume that we have defined an injective function � : {1, . . . , i � 1} ! {1, . . . , s}
for which

(2-15) T1 ✓ deg(S� (1)), . . . , Ti�1 ✓ deg(S� (i�1)).

Write Ti = {u | dimk Au � i} = {u1 < · · · < uni }. By our assumption, the multiplication map

⇥`uni �u1 : Au1 ! Auni

has rank at least i , hence there are at least i distinct Jordan strings which meet both Au1 and Auni
. Since

there are only (i � 1) strings appearing in (2-15), there must be one not listed, call it S� (i) for which
Ti ✓ deg(S� (i)). This completes the induction step and proves the claim. ⇤
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(ii) ) (iii): Assume that P` = H(A)_. Then s = t and pi = ni = #{u | dimk Au � i}. Clearly, if
Au \ Sa 6= ? for all a  i then dimk Au � i . We prove the other implication by downward induction on
the integers i  s. For the base case, if dimk Au � s, then Au must contain exactly one element from
each Jordan string, hence Au \ Sa 6= ? for all a  s. For the inductive step, assume the implication )

of (iii) for indices greater than i , and suppose that dimk Au � i . If dimk Au � i + 1 then by the induction
hypothesis Au \ Sa 6= ? for all a  i + 1. On the other hand if dimk Au = i , then Au \ Sa = ? for all
a � i + 1. Indeed, for each index m � i + 1,

dimk Au � m ) Au \ Sm 6= ?.

By our assumption there are exactly pm such indices u, hence if dimk Au = i < m then Au \ Sm = ?. So
if dimk Au = i we must have Au \ Sa 6= ? for all a  i . This completes the induction step.

(iii) ) (i): Assume that for each 1  i  t we have the equivalence

dimk Au � i , Au \ Sa 6= ? 8a  i.

Fix an index i 2 [1, t] and an integer b, and consider the multiplication map ⇥`b : Ai ! Ai+b. Let
m = min{dimk Ai , dimk Ai+b}. Then

dimk Ai , dimk Ai+b � m

implies that the m Jordan strings S1, . . . , Sm each intersect both Ai and Ai+b, which in turn implies that
⇥`b : Ai ! Ai+b has rank m. ⇤

Recall that for A graded Artinian the Sperner number satisfies Sperner(A) = max{H(A)i | i 2 [0, j]}
[58, §2.3.4]. For a local ring A, we have Sperner(A) = max{µ(mAi ) | i 2 [0, j]}, where µ(I ) = # minimal
generators of I .

Lemma 2.11 [58, Proposition 3.5]. When the Hilbert function H(A) for a standard graded Artinian
algebra A is unimodal and symmetric then ` 2 A1 is weak Lefschetz for A if and only if dimk A/`A =

Sperner(A) or, equivalently, if P` has Sperner(A) parts.

Lefschetz properties for local algebras. Here we use Jordan type to extend the strong and weak Lefschetz
properties to local Artinian algebras.

Definition 2.12. Let A = (A, m, k) be a local Artinian algebra over k with Hilbert function H(A). We
say that an element ` 2 m has

(i) (SLJT) strong Lefschetz Jordan type if P` = H(A)_.

(ii) (WLJT) weak Lefschetz Jordan type if P` has Sperner(A) parts.

Additionally if A is graded via a weight function w with w-Hilbert function Hw(A), then we say that a
w-homogeneous element ` 2 m has

(iii) w-strong Lefschetz Jordan type (w-SLJT) if P` = Hw(A)_.

We say that A has SLJT, WLJT, or w-SLJT if it has an element ` 2 m of that type.
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Remark 2.13. Note that if A is graded with weight function w, and H(A)_ < Hw(A)_, then A cannot
possibly be w-SLJT and A(w) cannot possibly be SL, while SLJT may or may not hold. On the other
hand in the standard graded case we have H(A) = Hw(A), and hence w-SLJT and SLJT are equivalent
conditions on A. Evidently, in the standard graded case the SL condition on A(w) implies the SLJT
condition on A. The next result shows that the converse holds under the additional assumption that the
Hilbert function H(A) is unimodal.

Proposition 2.14. Assume that A is a standard graded Artinian algebra and H(A) is unimodal. Then A
has an element of strong Lefschetz Jordan type if and only if A has a strong Lefschetz element.

Proof. Assume that A has an element ` (possibly nonhomogeneous) of strong Lefschetz Jordan type, so
P` = H(A)_ = (p1, p2, . . . , ps) with p1 � p2 � · · · � ps . All that is needed for the forward direction
is to show that there is a linear element `0 that is of strong Lefschetz Jordan type. Consider Jordan
strings S1, . . . , Ss for ` as in Definition 2.1, where Sk = (zk, `zk, . . . , `

pk�1zk). The orders of elements
in a single string are distinct. Let `0 be the initial form of `, which, as we will see, must be linear. We will
modify the strings, if needed, to a set of Jordan strings S0

1, . . . , S0
s for ` whose initial forms are Jordan

strings for `0: this will show P`0 = P` = H(A)_, and prove that A is strong Lefschetz.
Given that H(A) is unimodal, we claim that we may choose the strings so that

(i) the first t strings together contain min{H(A)i , t} elements of order i for each i 2 [0, jA]; and the
initial forms of these elements are linearly independent;

(ii) the order ⌫(`i zt) = ⌫(zt) + i for each pair (t, i) satisfying 1  t  s and 0  i  pt � 1.

We prove (i) and (ii) by complete induction on t . Considering t = 1, the longest string S1 is equal
to (z1, `z1, . . . , `

p1�1z1), where p1 � 1 = jA, the socle degree of A; and we may choose, after scaling by
a nonzero constant, z1 = 1 +↵, ↵ 2 mA. It follows (since A has standard grading) that the initial term `0

of ` is linear, and that the elements in the string S0

1 =
�
1, `0, . . . , (`0)p1�1

�
satisfy S0

1 = ⇡(S1), where ⇡ is
the projection of the elements of S1 onto their initial forms, and form a string of length p1 for `0.

For the induction step we will need several facts. Denote by m(t, H) the smallest integer i such that
H(A)i � t , and n(t, H) the largest integer i such that H(A)i � t .

Fact 1. That H(A) is unimodal is equivalent to the inequalities

(2-16) m(1, H)  m(2, H)  · · ·  m(s, H)  n(s, H)  n(s � 1, H)  · · ·  n(1, H).

Also, we have pu = 1 + n(u, H) � m(u, H).

Fact 2. Given t 2 [1, s] the condition (i) above implies:

(iii) Let i < m(t, H) then the initial forms of all elements of S1 [ · · ·[ St having order no greater than i
are a basis for A/m i+1

A
⇠=

Li
k=0 Ak .

(iv) Let i > n(t, H). The union
St

k=1(m
i
A \ Sk) is a basis for mi

A =
L jA

k=i Ak .

Induction step: Fix u 2 [1, s � 1] and assume that a set S1, . . . , Ss of Jordan strings for m` has been
chosen satisfying (i) and (ii) for all integers t  u. We will keep the strings S1, S2, . . . , Su fixed and
will modify the chain Su+1 to obtain a set of s Jordan chains for ` so that the conditions (i), (ii) will be
satisfied for all t 2 [1, u + 1].
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Consider the next string Su+1, of length pu+1; by assumption, its elements are linearly independent of
the span of those from S1 [ · · · [ Su . Using that (i) and (ii), hence (iii), (iv) are satisfied for t  u, we
may adjust the generator zu+1 for the string Su+1 by linear combinations of elements from the previous
strings to obtain a possibly new generator within the span of S1, . . . , Su+1 having order m(u + 1, H),
and whose initial form z0

u+1 = ⇡(zu+1) is linearly independent of the degree m(u + 1, H) initial forms
from elements of the strings S1, . . . , Su . Using (iv), we may adjust the generator zu+1 further by suitable
elements of order at least m(u + 1, H) from the previous u strings so that `pu+1 · zu+1 = 0. It follows
that `0pu+1 · z0

u+1 = 0, and z0

u+1 is generator of an `0 string of length pu+1, linearly independent from
the `0 strings S0

1, . . . , S0
u determined by the initial elements from S1, . . . , Su . It follows that (i) and (ii)

are satisfied for t 2 [1, u + 1]. This completes the induction step.
We have shown (i) and (ii) for S1 and the induction step. It follows that P`0 = P` = H(A)_, as claimed.
The converse, that A has a strong Lefschetz element implies it has an element of strong Lefschetz

Jordan type, is obvious from the definitions. ⇤

The following result is well known (and has been reproved several times).

Lemma 2.15 (height two Artinian algebras are strong Lefschetz). Let A = k[x, y]/I be Artinian standard
graded of socle degree j , or A = k{x, y}/I be local Artinian, and suppose char k = 0 or char k > j . Let `

be a general element of mA in the first case, or of mA in the second. Then ` has strong Lefschetz Jordan
type and A is strong Lefschetz, or A is of strong Lefschetz Jordan type, in the second.

Proof. These statements follow readily from J. Briançon’s standard basis theorem for ideals in C[x, y] [26],
that extends to the case char k = p > j (see [14, Theorem 2.16]).1 ⇤

Example 2.16. Let A = k{x, y}/(xy � x3, y2) with weight function w(x, y) = (1, 2). Then the Hilbert
function and w-Hilbert function are, respectively H(A) = (1, 2, 1, 1, 1) and Hw(A) = (1, 1, 2, 1, 1), with
conjugate partitions H(A)_ = Hw(A)_ = (5, 1).

A standard basis B for the local algebra A is one such that the elements of B \m i
A are a basis for m i

A.
Such a basis for A is {1, x; y, x2; x3, x4}. The multiplication ⇥x in this basis has Jordan strings

(2-17) 1 ! x ! x2
! x3

! x4
! 0 and (y � x2) ! 0.

Thus, Px,A = (5, 1).
A basis for the graded ring A(w) are the classes of {1, x, y, x2, xy, x2 y} and the only linear element is x :

the strings of mx on this basis for A are (1 ! x ! x2 ! xy = x3 ! x2 y = x4 ! 0) and
�
(y � x2) ! 0

�

so here we have Px,A = (5, 1) = Hw(A)_.

However, the Example 2.57 shows that a generic linear element ` of the graded algebra A, and a
generic element `0 2 mA of the related local algebra A, may satisfy P`,A = (7, 1, 1) < (7, 2) = P`0,A.

2D. Jordan types consistent with a Hilbert function. In Section 2B we proved an inequality for Jordan
types of elements of A and the Hilbert function (Theorem 2.5). Here we show a similar inequality for
graded algebras A, that is sharper when the Hilbert function is non-unimodal. It depends on a certain
refinement Pc(H) of the conjugate partition H_, that we now define.

1Proofs in the case A is graded occur also in [57, Proposition 4.4] and [36, Theorem 4.11]; see [89, Theorem 2.27].
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The contiguous partition Pc(H) of a Hilbert function. In general, given any finite sequence of nonnegative
integers H = (h0, . . . , h j ) we consider its bar graph as an array of dots (or boxes) arranged into columns
with hi dots (or boxes) in the i-th column. For example if H = (2, 3, 1, 4, 0, 2) then its bar graph is

•

• •

• • • •

• • • • � •

Definition 2.17 (contiguous partition, relative Lefschetz property). (i) The contiguous partition Pc(H)

of the Hilbert function H is the partition whose parts are the lengths of the maximal contiguous row
segments of the bar graph of H .

(ii) We say a linear form ` 2 A1 in a graded Artinian algebra A has the Lefschetz property relative to H if
its Jordan type is equal to the contiguous partition of H :

P` = Pc(H).

The following result is immediate.

Lemma 2.18 (Hilbert function H(M) of a finite-length module over R and P`). Let M = M0 �

M1 � · · · � M j be an Artinian graded module over the polynomial ring R = k[x1, . . . , xr ], satisfying
H(M) = (h0, . . . , h j ), and let ` 2 R1. Then for 1  k  j

(2-18) rk mk
` 

j�kX

i=0

min{hi , hi+1, . . . hi+k}.

Also, P` = Pc(H) if and only if there is equality for every k in (2-18).

Proof. We give the proof for M = A. We observe that for any ` 2 A1, the map mk
` : Ai ! Ai+k has rank

at most min{hi , . . . , hi+k}. Summing over all i we get the inequality of (2-18).
Recall that the conjugate Jordan type P_

` = (q1, . . . , q j ) is the first difference of the rank sequence
of m`, i.e.,

qk = rk(mk
`) � rk(mk+1

` ).

Hence if ` has the Lefschetz property relative to H , then it follows that (2-18) is actually an equality. In
particular, a Lefschetz element ` 2 A1 relative to H is one whose multiplication maps mk

` : A ! A have
the maximal possible rank, given the Hilbert function, for each integer k. ⇤

The following result pertains to the conjugate of Pc(H): when H is unimodal then Pc(H)_ = {H},
that is, the Hilbert function viewed as a partition.

Lemma 2.19. Given any finite sequence of nonnegative integers H =(h0, . . . ,h j ) if Pc(H)_=(p1, . . . , ps),
then the parts are given by

(2-19) pi =

j+1�iX

k=0

min{hk, . . . , hk+i�1} �

j�iX

k=0

min{hk, . . . , hk+i }.
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Proof. The i-th part of Pc(H)_ is

pi = # maximal contiguous row segments of length � i in the bar graph of H .

Note that the sum

(2-20)
j+1�iX

k=0

min{hk, . . . , hk+i�1}

counts the maximal contiguous row segments of length greater or equal to i with a multiplicity equal to
the number of length i-intervals it contains; in particular it counts a contiguous row segment of length i
exactly once. On the other hand, the sum

(2-21)
j�iX

k=0

min{hk, . . . , hk+i }

counts maximal contiguous row segments of length � i + 1 with multiplicity one less than they are
counted in (2-20). Therefore the difference of the sums in (2-20) and (2-21) must count every maximal
contiguous row segment of length � i exactly once. ⇤

Theorem 2.20. For a finite graded module M over a graded Artinian algebra A with Hilbert func-
tion H(M), we have for any linear form ` 2 A1

P`,M  Pc
�
H(M)

�
.

Proof. Given ` 2 A1 we may choose a Jordan basis for m` : M ! M with strings S1, . . . , Ss as in (2-1),
each of cardinality |Si | = pi with P`,M = (p1, . . . , ps) with p1 � · · · � ps . Since ` is linear, each string
must belong to some maximal contiguous row segment of the Hilbert function H(M), which implies the
desired inequality. ⇤

Example 2.21. Let A = k{y, z}/(yz, z3, y7) with weights w(y, z) = (1, 2), and w-Hilbert function
Hw(A)= (1, 1, 2, 1, 2, 1, 1). Then y 2A1 is a generic linear form with Jordan type Py = Pc(H)= (7, 1, 1),
the maximum possible by Theorem 2.20; in particular y has the Lefschetz Property relative to Hw(A)

(Definition 2.17). On the other hand the conjugate partition of the w-Hilbert function is Hw(A)_ = (7, 2).
The Hilbert function for the related localization A at mA =

P
i�1 Ai is H(A) = (1, 2, 2, 1, 1, 1, 1); the

conjugate partition of this Hilbert function is also H(A)_ = (7, 2). Thus y does not have the strong
Lefschetz Jordan type for A, nor is it strong Lefschetz for A(w) (or even WL). But the non-w-homogeneous
element ` = (y + z) 2 m has Jordan type P` = (7, 2), hence A has strong Lefschetz Jordan type (SLJT).

Note. Recall that we have adopted in Definition 2.8(ii) the convention of Harima and Watanabe that a
nonstandard graded algebra A is strong Lefschetz if and only if there is a linear form ` 2 A1 that has
SLJT (see [54; 58]). Thus, the rings A of Examples 2.21, 2.57, 3.14 and 3.26 are not strong Lefschetz,
even though in each Example the corresponding local ring A has an element of strong Lefschetz Jordan
type: as y + z in Example 2.21 is an element in A having SLJT — so A has SLJT by our Definition 2.12.
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Remark 2.22. Instead of using (dimk M, dimk M/`M, dimk M/`2 M, . . .) as in (2-2) to define P`,M

we may replace each `k by (`1 · `2 · · · `k), a product of different — generic — linear forms, yielding a
partition Q(M). It can be shown similarly to the proof of (2-9) that

(2-22) P`,M  Q(M)  H(M)_.

We can ask similar questions for Q(M) to those we ask about P`,M . When is P`,M = Q(M)? Also, the par-
tition Q(M) appears to be related to the concepts of “k-Lefschetz” [58, §6.1] and “mixed Lefschetz” [31].
What is the relation of these concepts to Jordan type?

We note that Jordan type and Hilbert function has been in particular studied for codimension two
complete intersections in [3]; also Costa and Gondim have used mixed Hessians to study other examples
of Jordan type in higher codimension [39].

2E. Artinian Gorenstein algebras and Macaulay dual. The polynomial ring R = k[x1, . . . , xr ], acts on
its dual D = kD P [X1, . . . , Xr ] by contraction: xk

i � X [k0]

j = �i, j X [k0�k]

j for k 0 � k, extended multilinearly.2

We say that a graded Artinian algebra is standard graded if A is generated by A1. We next define a
homogeneous element of R, the Macaulay dual generator for a graded Artinian quotient A = R/I .

Likewise, the regular local ring R = k{x1, . . . , xr } acts on D, also by contraction and we will define
similarly a dual generator in R for a local Artin algebra A = R/I .

Definition 2.23 (Macaulay dual generator). An Artinian Gorenstein (AG) algebra quotient A = R/I
(resp. A = R/I ) satisfies A = R/Ann f (resp. A = R/Ann f ), where f 2 D = kD P [X1, . . . , Xr ] is called
the dual generator of A. The module Â = R � f in the graded case, or Â = R � f in the local case is the
Macaulay dual of A, equivalent to the Macaulay inverse system of the ideal I . The socle of A (resp. of A)
is Soc(A) = (0 : mA) ⇢ A (resp. Soc(A) = (0 : mA) ⇢ A), is the unique minimal nonzero ideal of A or
of A, and dimk Soc(A) = 1.

For a more general Artinian algebra A = R/I (graded) or A = R/I (local), a set of Macaulay dual
generators of A are a minimal set of A (or A) module generators in D of I ? = {h 2 D | I � h = 0}.

Example 2.24 (Artinian Gorenstein). (i) Let R = k[x, y], A = R/I , I = Ann f with f = XY 2

D = kD P [X, Y ]. Then I = (x2, y2) and A = R/(x2, y2) of Hilbert function H(A) = (1, 2, 1). Here
x2 � XY = 0 is the contraction analogue of @2(XY )/(@ X)2 = 0 and the dualizing module satisfies
Â = R � f = h1, X, Y, XY i.

(ii) Let R = k{x, y}, the regular local ring, and take f = X [4] + X [2]Y . Then A = R/I , I = Ann f =

(xy�x3, y2), and the Hilbert function H(A) = (1, 2, 1, 1, 1). The dualizing module satisfies Â = R� f =

h1, X, Y, X [2], X [3] + XY, f i.

Letting mA be the maximal ideal of the Artinian Gorenstein local algebra A, we have Soc(A) = m
j

A,
where m

j
A 6= 0 and m

j+1
A = 0. Then we have the following result ([77, §60–63], [60, Lemma 1.1], or, in

the graded case, [85, Lemma 1.1.1]):

2F.H.S. Macaulay used the notation x�s
i for the element we term X [s]

i in D.
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Lemma 2.25 (dual generator for AG algebra). (i) Assume that A = R/I is Artinian Gorenstein of socle
degree j . Then there is a degree- j element f 2 D such that I = I f = Ann f . Furthermore f is
uniquely determined up to action of a differential unit u 2 R: that is

(2-23) Ann f = Ann(u � f ). Also, Ann f = Ann g , g = u � f for some unit u 2 R.

The R-module (Ann f )? = {h 2 D | (Ann f ) � h = 0} satisfies (Ann f )? = R � f . When f is
homogeneous, it is uniquely determined by Ann f up to nonzero constant multiple.

(ii) Denote by � : Soc(A) ! k a fixed nontrivial isomorphism, and define the pairing h ·, · i� on A⇥A by
h(a, b)i� = �(ab). Then the pairing h( ·, ·)i� is an exact pairing on A, for which (m i

A)? = (0 : m i
A).

We also have 0 : m i
A = Ann(m i

A � f ) and Ann(`i � f ) = I f : `i .

(iii) When A =
L j

0 Ai is graded (not necessarily standard-graded) of socle degree j (largest integer
for which A j 6= 0), analogously to (ii), we choose an isomorphism � : A j ! k, and then define the
bilinear map h ·, · i� .

We note that in the above pairing (A�i )
? = (0 : A�i ) = A� j+1�i . Passing to quotients Ai =

A�i/A�i+1 we conclude that each Ai · A j�i ! A j is an exact pairing, and the Hilbert func-
tion H(A) is symmetric about j/2. When A is standard graded, we also have, taking mA =

L j
k=1 Ak ,

that (m i
A) = A�i .

When the AG algebra A = R/I is a local ring then in general the dual generator f is not homogeneous,
and the Hilbert function H(A) is not in general symmetric; however the associated graded algebra A⇤ has
a filtration whose successive quotients are reflexive k modules, and H(A) has a corresponding “symmetric
decomposition” [60; 63]. When the AG algebra A is (perhaps nonstandard) graded, then the dual generator
f 2 D may be taken homogeneous in a suitable grading of D, and (iii) implies that the Hilbert function
H(A) is symmetric about j/2, where j is the socle degree of A.

Example 2.26. We let R = k[x, y], with weights w(x, y) = (3, 1), and consider the complete intersection
algebra A = R/(x2 � y6, xy), then I ? = R � f , where f = X2 + Y 6, which is homogeneous in the
analogous grading of D. We have H(A) = (1, 1, 1, 2, 1, 1, 1).

Lemma 2.27. Let A = R/I be local Artinian Gorenstein of socle degree j with Macaulay dual generator
F 2 D and let ` 2 mA. The conjugate (P`)

_ to the Jordan type P` satisfies

(2-24) (P`)
_

= 1
�
dimk A, dimk A(1), . . . , dimk A(i), . . . , dimk A( j)

�

where A(i) = R/(I : `i ) = A/(0 : `i ) = R/ Ann(`i � F).

Proof. This result is standard and follows from Lemma 2.3. See also [58, Lemma 3.60]. ⇤
For a generalization of Macaulay dual over a field k (as here) to Macaulay dual over any base, see

S. Kleiman and J. O. Kleppe [73]. Several authors have studied the Artinian Gorenstein algebras arising
from polynomials attached to combinatorial objects such as a matroid [78; 95].

2F. Jordan degree type and Hilbert function. We next introduce a finer invariant than Jordan type of
an A-module M , the Jordan degree type. We will define the Jordan degree type for graded modules M
over a graded ring A.

Definition 2.28 (Jordan degree type, contiguous degree type of H , order on JDT).
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(i) Jordan degree-type of M. We give several equivalent notations for Jordan degree type. Let A be a
graded Artinian algebra, let M be a finite graded A-module, and let ` 2 A1 be any linear element.

(a) Suppose P`,M = (p1, . . . , ps), and write M as a direct sum M = hS1i � · · · � hSsi of cyclic
k[`]-modules generated by `-strings of the form Sk = {zk, `zk, . . . , `

pk�1zk} satisfying `pk zk = 0,
as in Definition 2.1, and let ⌫k be the order of zk . For any k, k 0 2 {1, . . . , s} if k < k 0 and pk = pk0 ,
we assume ⌫k  ⌫k0 . By Lemma 2.2(iv) the sequence of pairs of integers

(2-25) S`,M =
�
(p1, ⌫1), . . . , (ps, ⌫s)

�

is an invariant of (M, `), that we term the Jordan degree type of M with respect to `.

Notation. With ` understood, we will denote the pair (n, ⌫) by

(2-26) n⌫ = a string — a cyclic k[`]-module — of length n beginning in degree ⌫.

Therefore, S = (50, 31, 31, 12) denotes a Jordan degree type consistent with the Hilbert function
H = (1, 3, 4, 3, 1).

(b) Denote by P`,i (or P`,i,M ) the partition giving the lengths of those strings of m` acting on M
that begin in degree i ; that is P`,i = (pk | ⌫k = i). We denote by P = Pdeg,` or by P`,M = Pdeg,`,M

(to specify the module M) the sequence

(2-27) Pdeg,` = (P`,0, . . . , P`, j�1),

which we also term the Jordan degree type (JDT) of `. For example the JDT S = (50, 31, 31, 12) can
be written P =

�
P0 = (5), P1 = (3, 3), P2 = (1)

�
. Given such a JDT sequence S`,M or Pdeg,`,M as

in (2-25) or (2-27) we denote by H(S) or H(P) the sequence H = (h0, . . . , h j ), where hi counts
the number of beads (basis elements) of the strings of S having degree i ; it is the Hilbert function of
any module having JDT S or P .
Given an A-module M , we will denote by Q`,i (or Q`,i,M ) the partition giving the lengths of those
strings of m` acting on M that end in degree i . We analogously define Q`,M the end Jordan degree
type to how we defined P`,M .

(c) We give an alternate notation for Jordan degree type, closer to Harima and Watanabe’s central
simple modules (Definition 2.33 below, see [53] and also Costa and Gondim’s [39, Definition 4.1]).
Recall from Lemma 2.2(i) that, given an element ` 2 mA =

L j
i=1 Ai , we may write M =

Ls
k=1hSui

where each Sk is an `-string of M , a cyclic k[t]/(t pk )-submodule with generator zk , where t acts as
m`; the Jordan type P`,M = (p1, . . . , ps) where pk = |Sk |. We define

E`,M = {en
i (M, `), i 2 [0, j], n 2 [ps, p1]},

where

(2-28)
en

i (`) = en
i (M, `) = #{length-n strings Sk , hSki ⇠= k[`]/(`n), in M beginning in degree i}

= #{(pk, ⌫k) 2 S`,M | pk = n, ⌫k = i}.

By Lemma 2.2(iv) the integers en
i (`) are an invariant of the pair (M, `) and do not depend on the

particular decomposition.
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(ii) Contiguous degree type of H. Given a Hilbert function H of an Artinian algebra, we define the
contiguous Jordan degree type Pc,deg(H) to be the degree-type obtained from the bar graph of H
(similar construction to the continguous Jordan type Pc(H) of Definition 2.17). More precisely,
let H = (h0, h1, . . . , h j ) be a sequence of nonnegative integers (the Hilbert function). We denote
by Pdeg,i (H) the partition having [hi � hi�1]

+ parts, each of which is the length of a contiguous
string of the bar graph of H beginning in degree i . The degree-type of the sequence H is the
sequence Pdeg(H) of partitions

(2-29) Pc,deg(H) =
�
Pdeg,0(H), Pdeg,1(H) . . . , Pdeg, j (H)

�
.

It is the stratification of the contiguous partition Pc(H) by the initial degree of the bars. We may
also write Sc,deg(H) as the JDT associated to H in the sense of (2-26).

(iii) We will say for Jordan degree types P, P 0 with the same Hilbert function H(P) = H(P 0) that

(2-30) P c P 0

if the strings of P can be concatenated — that is, combined — so as to form P 0. For example,
S = (30, 23) c S 0 = (50) (notation of (2-25), (2-26)).

(iv) We say that ` has the relative degree-Lefschetz property with respect to H if Pdeg,` = Pc,deg(H).

(v) A truncation S`,A,k of the Jordan degree type S`,A of a graded algebra A to degree less or equal k
is its projection to A/mk+1

A . That is, each pair (pi , ⌫i ) 2 S`,A is replaced by

(2-31) (min{pi , k + 1 � ⌫i }, ⌫i ) 2 S`,A,k (or is omitted if ⌫i � k + 1).

(vi) Given two standard-graded algebras A, B 2 BT , A = R/I, B = R/J of the same Jordan type
P`,A = P`,B with respect to a fixed element ` 2 R1 we say that the Jordan degree type S`,A � S`,B if
for each k, the partition associated to S`,A,k is greater or equal to that associated to S`,B,k in the
dominance partial order (Definition 2.4).

For an example of (v), the Jordan degree type S =
�
(3, 0), (3, 1), (3, 2), (3, 3)

�
has truncation S`,4 =�

(3, 0), (3, 1), (3, 2), (2, 3)
�
. The JDT S 0 =

�
(3, 0), (3, 1), (3, 1), (3, 2)

�
with S0

4 = S 0 satisfies S 0 > S.
See Example 2.31.

Lemma 2.29 (specialization of Jordan degree type). Fix ` 2 R1 and let A(w), w 2 W\w0 be a family of
graded Artinian algebras in GT of constant Jordan type P`, and constant Jordan degree type S`,A(w) = S`

for w 6= w0. Assume that the limit algebra A(w0) has the same Jordan type P`. Then S` � S`,A(w0).

Proof. The projection from GT to GT k , forgetting the portion of the algebra in degrees k + 1 and higher,
is an algebraic morphism. If there is a specialization of Jordan types, it needs to extend to a specialization
of the Jordan types projected to A(w)k . Now the condition is obtained by reading the Jordan types of
the projections from the Jordan degree types of A(w), then applying Corollary 2.44 below about the
semicontinuity of Jordan types in the dominance order. ⇤

The following result is a consequence of Briançon’s “vertical strata” analysis of ideals in k[x, y] [26].
See also [51; 116, §2; 4, pp. 6–7].
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Lemma 2.30. When A is a standard graded algebra of codimension two, and has Jordan type P`,A =

(p1, p2, . . . , ps) with respect to an element ` 2 A1 and char k = 0 or char k > j , the socle degree of A,
the Jordan degree type satisfies

(2-32) S`,A =
�
(p1, 0), (p2, 1), . . . , (pi , i � 1), . . . , (ps, s � 1)

�
.

Proof. Let A = R/I , I graded. Supposing P`,A = P , then replacing ` by x (change of basis), and using
degree-lex order 1 < x < y < · · · < xi < xi�1 y < · · · < yi < · · · we may project I to its initial monomial
ideal EP , which satisfies

(2-33) EP = (x p1, yx p2�1, . . . , yi�1x pi �1, . . . , ys�1x ps�1, ys).

The Jordan degree type of I and EP are the same, as the projection to initial form fixes degree. Also,
the JDT of EP is S`,A of (2-32). ⇤

The beginning idea of the next example is that when I ⇢ R is a monomial ideal defining A = R/I ,
and z 2 R1 there is a kind of “order ideal” of z-strings: that is, if µ is a monomial generator of a
length-t z-string of A and if ⌫ divides µ then A has a z-string with generator ⌫ whose length is at least t .
For the first algebra A we begin with a length-3 string xyW , where W = {h1, z, z2i}. For the second
algebra B we begin with a length-3 string x3W . Our subsequent discussion of structure/components
involves more general AG algebras — where I is non-monomial — and shows that for P = (34, 14) the
locus GT,P ⇢ GT ⇥ P(R1), T = (1, 3, 5, 4, 2, 1) of pairs (A, `), A 2 GT , ` 2 P(R1) (linear forms up to
constant multiple) for which the Jordan type P`,A = P , has several irreducible components.

Example 2.31 (JDT not equivalent to JT in codimension three). Let R = k[x, y, z] and set T =

(1, 3, 5, 4, 2, 1). We will define A = R/IA, B = R/IB , each with Jordan type Pz,A = Pz,B = (34, 14) for
the linear form z, where

SA = Sz,A =
�
(3, 0), (3, 1)2, (3, 2); (1, 2), (1, 3), (1, 4), (1, 5)

�
,

and
SB = Sz,B =

�
(3, 0), (3, 1), (3, 2), (3, 3); (1, 1), (1, 2)2, (1, 3)

�
;

after (2-26), SA = (30, 31, 31, 32, 12, 13, 14, 15) and SB = (30, 31, 32, 33, 11, 12, 12, 13). Let

A = hW, xW, yW, xyW, {xi , 2  i  5}i,

where W = h1, z, z2i; it is defined by the ideal IA = (y2, x2z, x2 y, z3, x6). Let

B = hW, xW, x2W, x3W, y, y2, xy, y3
i,

defined by the ideal IB = (yz, x2 y, xy2, z3, x4, y4). Note that both A and B are strong Lefschetz, as the
Jordan type of x + y + z is (6, 4, 3, 2, 1) = T _.

Specialization of JDT, structure of GT,P ⇢ GT . From Lemma 2.29 one concludes that a family of
graded AG algebras having JDT SB cannot specialize to an algebra having JDT SA. We now show the
converse. Let A0 have JDT SA and B 0 have JDT SB with respect to z. Evidently, there is an element yz
(for a suitable choice of y) in I2(B 0). We will now show that either

(i) I2(A0) is a perfect square. Then a family I2(A0(w)) = x2
w cannot specialize to an I2 which is

composite, or

(ii) I2(A0) = hxyi and A
0_

5 = (aY � bX)[5], a pure power. But we will show in (iii) that B_

5 is composite,
and again this subfamily with JDT SA cannot specialize to an algebra with JDT SB .
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Proof that A0 satisfies (i) or (ii). The elements of A0

2 must include z R1: we may assume then that
I2(A0) = xy (up to change of basis x, y), or, case (i), that I2(A0) = hu2i for some u 2 hx, yi.

(ii) Let us assume that I2(A0)= xy. Then A0

2 � x2, y2, and the string beginning in degree two has generator
↵ = x2 + cy2, and last element z2(x2 + cy2). Then we claim I5(A0) � (z, xy) \ R5: this is so, since
(zxk, zyk) 2 hI, ↵z, ↵z2i for all k � 2 because of the JT (34, 14) and JDT SA. For example zx4 2 I since
there is no string {x4, zx4} as 24 does not occur. So we may assume that (after possible base change) I5 =

h(z, xy)5, (ax +by)5i. Then the dual A0_
5 can be written as a pure 5-th power, (aY �bX)[5], showing (ii).

Other ingredients:
(iii) B 0_

5 is composite. It needs to have a mixed Z [2]� term where � 2 kD P [X, Y ]. This cannot be part
of a perfect power as Z [2] is the highest power of Z that can occur.

This completes the proof that families of AG algebras with the Jordan degree type SA and Hilbert
function T cannot specialize to an algebra in GT having Jordan degree type SB . We have also shown
that those algebras in GT of JDT SA have two irreducible components, corresponding to whether I2 is
a perfect square or is composite.

(iv) There are no further JDT associated to P = (34, 14) for T . Let (A, z) 2 GT,P . First there must
be 30 and 31 (else I2 � xz, yz, but dimk I2 = 1). We must rule out (30, 31, 31, 33) and (30, 31, 32, 33) as
the 34 part of JDT. The former requires I3 � hzx2, zxy, zy2i but then z2 A3 ⇢ I and there is no room for
a string 33. The latter requires hyzi = I2 (for suitable y); and A2 = hy2, x2, xy, z2, zxi. It follows that
one of the two strings 32, 32 must begin with ↵ = ay2 + byx , but then z↵ 2 (zy) 2 I , a contradiction.

We have shown that there are exactly two JDT SA, SB associated to the pair (P, T ), P = (34, 14),
T = (1, 3, 5, 4, 2, 1), and that a family of algebras having one of the JDT cannot specialize to an algebra
having the other JDT. We have also shown that the JDT locus SA has two components. This implies that
the locus of pairs (A, ` 2 A1) ⇢ GT,P has three irreducible components. ⇤
Comments. When H(A) is not unimodal, the relative degree-Lefschetz property is the closest one can
get to strong Lefschetz (Proposition 2.32).

In the Jordan type P` the part n occurs with multiplicity
P

i en
i where en

i is from (2-28) so

(2-34) P`,i = (. . . , nen
i , . . .) and P` = (. . . , n

P
i en

i , . . .).

Evidently, the degree-type Pc,deg(H) of the Hilbert function determines H , so it is equivalent to H — in
contrast to P(H) or even Pc(H) which, when H is non-unimodal, may not determine H (see Example 2.35
below). Here are two more examples of concatenation: first, using the Sc,deg(H) notation, (22, 24) c

(42) of Hilbert function H = (0, 0, 1, 1, 1, 1); and, second, (22, 22, 34) c (52, 22) of Hilbert function
H 0 = (0, 0, 2, 2, 1, 1, 1).

Note that Pdeg,` c Pc,deg(H) implies that P`  Pc(H), but not vice versa. Note also that the contiguous
Jordan degree type Pc,deg(H) determines H , so is equivalent in information content to giving H . Recall
that Theorem 2.20 bounded the Jordan type by the contiguous Hilbert function. We prove a refinement
to JDT in the special case A is standard-graded.

Proposition 2.32 (Jordan degree type bound). Let M be a finite-length graded module over a standard
graded Artinian algebra A. Let ` 2 A1 be any linear form and let Pdeg,` = Pdeg,`,M be its Jordan degree
type as in (2-27). Then in the concatenation partial order,

(2-35) Pdeg,`,M c Pc,deg
�
H(M)

�
.
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Let M be a fixed finite-length graded A-module. Then there is a generic linear Jordan degree type
Pdeg(M) = Pdeg,`(M) for ` 2 U , a dense open set of A1.

Proof. The first statement is evident. For the second, begin with the generic Jordan type P(M), consider
the set of highest length parts of P(M), and their initial degrees: that these initial degrees are minimal is
an open condition on `. Now fix this open set U1 and go to the set of next highest-length parts for ` 2 U1,
forming an open U2. In a finite number of steps one shows that Pdeg(M) is achieved for an open dense
set U of ` 2 A1. ⇤

For a graded Artinian algebra A, knowing the Jordan degree type Pdeg,` is equivalent to knowing
the Hilbert functions with respect to mA of the central simple modules (CSM) defined by Harima and
Watanabe in [54]. We now explain this.

Definition 2.33 (central simple module). Let A be a graded Artinian algebra. Suppose that ` 2 A satisfies
`c 6= 0, `c+1 = 0. The central simple modules defined by Harima and Watanabe in [53] are the nonzero
factors in the series,

(2-36) A = (0 : `c+1) + (`) � (0 : `c) + (`) � · · · � (0 : `) + (`).

Let s` be the number of distinct parts of P`. We denote by Vi,` for 1  i  s` the i-th central simple
module: the vector space span of the initial elements of length- fi strings of the multiplication m` on M :

(2-37) Vi,` ⇠= h(0 : ` fi ) + (`)i mod h(0 : ` fi �1) + (`)i.

Let Wi =
L fi �1

k=0 `k Vi`, a direct sum of those cyclic submodules hSui from (2-1) corresponding to length- fi

strings. Then, evidently M =
L

i Wi .

We have, for the dimension of the degree-u component of Vi,`,

(2-38) dimk(Vi,`)u = e fi
u (`) and dimk Vi,` =

X

u

e fi
u (`).

This definition of CSM is perfectly general, and does not require A to be graded nor ` 2 mA to be special.
See [58, §3.1], [54, §5.1]; the latter treats nonstandard grading.

The following lemma connects the Jordan degree type and the central simple modules. The proof
is straightforward. Besides [54] and [58, §4.1] see also [61, Corollary 2.7] for an approach using the
symmetric decomposition with respect to the principal ideal (`).

Lemma 2.34. The set H` =
�
H(V1,`), . . . , H(Vs`,`)

�
of Hilbert functions of the central simple modules

Vi,` is equivalent to the Jordan degree type of `, rearranged according to the lengths f1 > f2 > · · · > fs` .
In particular H(Vi,`)u = (. . . , e fi

u (`), . . .).

Example 2.35 (degree types of Hilbert functions). We illustrate that the contiguous Hilbert func-
tion partition Pc(H) can distinguish two Hilbert functions of the same partition P(H); also, the
Jordan degree-type Pc,deg(H) can distinguish two Hilbert functions of the same contiguous partition
Pc(H). For H = (1, 3, 2, 3, 3, 1) we have P(H) = (6, 4, 3), Pc(H) = (6, 4, 2, 1) and Pc,deg(H) =�
(60), (41, 11), (23)

�
. For H 0 = (1, 3, 1, 3, 3, 2) we have P(H 0) = (6, 4, 3), Pc(H 0) = (6, 3, 2, 1, 1), and

Pc,deg(H 0)=
�
(60), (11, 11), (33, 23)

�
. For H 00 = (1, 3, 3, 2, 1, 3) (not pictured) we have P(H 00)= (6, 4, 3),

Pc(H 00) = Pc(H 0) = (6, 3, 2, 1, 1), but Pc,deg(H 00) =
�
(60), (31, 21), (14, 14)

�
. This last illustrates that the
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Hilbert function is not determined by the contiguous partition Pc(H), but is determined by the contiguous
degree-type Pc,deg(H). We chose these examples, even thought they are not standard-graded, because
their diagrams in Figure 1 are particularly transparent. Note that by Macaulay’s inequalities for Hilbert
functions, none of the Hilbert functions H, H 0, H 00 above can occur for a standard graded algebra. We
next give some similar comparisons whose Hilbert functions do occur for a standard graded algebra.

Standard graded Hilbert functions: we compare contiguous partitions Pc(H) and contiguous degree-types
Pc,deg(H) (2-29). Here {Hi , i 2 [1, 8]} denotes Hilbert functions.

Same partition P(H) = H_ but different Pc(H): take H1 = (1, 3, 6, 4, 5, 6, 2), H2 = (1, 3, 4, 5, 6, 6, 2)

then Pc(H1) = (7, 6, 5, 4, 2, 13), Pc(H2) = (7, 6, 5, 4, 3, 2).

Same Pc(H) but different Hilbert function (so different Pc,deg(H)): compare H3 = (1, 3, 5, 7, 6) with H4 =

(1, 3, 5, 6, 7). The Hilbert functions H5 = (1, 3, 6, 10, 9, 11, 12, 10) and H6 = (1, 3, 6, 10, 9, 10, 11, 12)

have the same Pc(H), but their degree types S(H) differ in having the subsequence (13, 25, 16) for
H5 but (13, 26, 17) for H6. All of H1, H2, . . . , H6 satisfy the Macaulay growth conditions. A simpler
example compares H7 = (1, 3, 3, 4, 5) with H8 = (1, 3, 4, 5, 3): since they are unimodal, and P(H7) =

P(H8) we have also Pc(H7) = Pc(H8), but, of course, H7 6= H8 so Sc,deg(H7) = (50, 42
1, 23, 14) is not

Sc,deg(H8) = (50, 42
1, 22, 13).

Question 2.36. For which Hilbert functions H can we find graded Artinian algebras A with H(A) = H
and such that for a generic ` 2 A1 we have, in increasing level of refinement,

(2-39) P`,A = P(H), or Pc,` = Pc(H), or Pc,deg,` = Pc,deg(H)?

Note that a graded algebra A = k[x, y, z]/I of Hilbert function H(A) = (1, 3, 3, 4) cannot be even weak
Lefschetz as the minimal growth from degree 2 to degree 3 implies that I2 = a1(x, y, z) for some a1 2 A1,
so multiplication by an ` 2 A1 cannot be injective from A1 to A2.

There has been some study of a different question, namely, which Hilbert functions H force A to have
one of the Lefschetz properties [90; 117]. See also [89].

Example 2.37. We first construct the idealization of B = k[x, y, z]/m3 of Hilbert function H(A) =

(1, 3, 6) with its dual giving an algebra A of Hilbert function H(A)= (1, 3, 6, 0)+(0, 6, 3, 1)= (1, 9, 9, 1)

(see also Section 3A below). We may take a Macaulay dual generator F =
P6

i=1 Uiµi where µi runs
through the six monomials of degree 2 in X, Y, Z , in lexicographic order, and U1, . . . , U6 are variables,
as

F = U1 X [2]
+ U2 XY + U3 X Z + U4Y [2]

+ U5Y Z + U6 Z [2].

Take R =k[x, y, z, u1, . . . , u6] acting by contraction on S =kD P [X, Y, Z , U1, . . . , U6]. Then A_

2 = R1�F
satisfies

(2-40) A_

2 = hX [2], XY, X Z , Y [2], Y Z , Z [2], U1 X+U2Y +U3 Z , U2 X+U4Y +U5 Z , U3 X+U5Y +U6 Zi

while A_

1 = S1 = kD P [X, Y, Z , U1, . . . , U6]. We may take (after scaling) as a generic linear form
` = x + y + z +

P6
i=1 ui . Then the rank of m` : A1 ! A2 is by duality the same as that of m` : A_

2 ! A_

1 .
But m` : A_

2 ! A_

1 takes a 6-dimensional space hX [2], XY, X Z , Y [2], Y Z , Z [2]i to the 3-dimensional
space hX, Y, Zi so has a 3-dimensional kernel. Thus, using symmetry of Proposition 2.38 we have that
P` = (4, 25, 16) and the Jordan degree type is P` = (40, 25

2, 31, 32).
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H = (1, 3, 2, 3, 3, 1)

• • •

• • • •

• • • • • •

H 0
= (1, 3, 1, 3, 3, 2)

• • •

• • • •

• • • • • •

Figure 1. Pc(H) = (6, 4, 2, 1) and Pc(H 0) = (6, 3, 2, 1, 1).

Evidently, we may make similar examples using, say, a general-enough 4-dimensional subspace
µ1, . . . , µ4 of k[x, y, z]2, and F =

P
µiUi , and finding there is a 1-dimensional kernel, this gives

an algebra A of Hilbert function (1, 7, 7, 1) where ` = x + y + z + u1 + · · · + u4 has Jordan type
(4, 25, 1, 1) and Jordan degree type S` = (40, 25

1, 11, 12). Likewise we can determine A of Hilbert function
H = (1, 8, 8, 1) with ` a generic enough linear form having Jordan type P` = (4, 25, 14) and Jordan
degree-type S` = (40, 25

1, 12
1, 12

2).

Costa and Gondim show the following symmetry proposition using the numerics of central simple
modules [39, Lemma 4.6]; thus, this result along with the string diagrams they introduce [39, Remark 4.9]
is essentially a felicitous and visual interpretation of the work of Harima and Watanabe in [54; 55].3

Proposition 2.38 (symmetry of Jordan degree type for graded AG algebras). Let A be a standard graded
Artinian Gorenstein algebra of socle degree j , and let ` 2 A1. Then the Jordan degree type is symmetric:
The integers en

⌫ from (2-28) satisfy

(2-41) en
⌫ = en

j+1�n�⌫ .

In other words, the set of strings of S = S`,A of (2-25) and notation (2-26) satisfy n⌫ 2 S , n j+1�n�⌫ 2 S,
with the same multiplicity en

⌫ = en
j+1�n�⌫ .

Proof. The homomorphism m` fi �1 : Vi,` ! ` fi �1Vi,` is an isomorphism of A-modules, so we have
H(Vi,`)u = H(` fi �1V )u+ fi �1, but from the exact pairing A ⇥ A ! k : (a, b) ! �(ab) of Lemma 2.25,
we have that H(` fi �1Vi,`) j�u = H(Vi,`)u . We conclude H(Vi,`)u = H(Vi,`) j+1� fi �u ; taking n = fi and
using (2-38) we obtain the result. ⇤

The proposition is also a consequence of symmetric decomposition of the associated graded algebra
Gr`(A) with respect to `. The reflexive Gr`(A) module Q`( j + 1 � fi ) in the symmetric decomposition
of Gr`(A) has first graded component Vi,` and last component ` j+1� fi Vi,` (see [61, Corollary 2.7]). This
symmetry, which essentially states that there is a 1-1 map between the strings nu(`) and the strings
n j+1�n�u(`) of the Jordan degree type of an AG algebra, greatly restricts the possible Jordan types;
see [3; 39] for examples.

Example 2.39 [3, Example 4.6, Figure 14]. We let H = (1, 2, 3, 2, 1) and consider the Jordan degree
types for elements ` 2 A1 for Artinian complete intersections A = R/( f, g) of Hilbert function H .
These are (50, 31, 12), (50, 21, 22), (40, 41, 12), (30, 31, 32), in the notation of (2-26). The partition

3It was in a work group at the conference Lefschetz Properties and Jordan Type at Levico, Italy, 25-29 June 2018 that Rodrigo
Gondim had presented the symmetric string diagrams of [39]; we realized a few days later in a discussion with Alessandra
Bernardi and Daniele Taufer at University of Trento that the Jordan degree type we introduce here is a natural context for
understanding this symmetry, leading to the proposition.
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P = (3, 3, 1, 1, 1), which ostensibly could correspond to a symmetric Jordan degree type (30, 32, 11, 12, 13),
does not occur for a CI (Gorenstein) quotient of R = k[x, y]. Thus, the symmetry condition of (2-41),
although quite restrictive, is not sufficient to determine the Jordan types for Artinian Gorenstein algebras
of given Hilbert function.

Question 2.40. How does the degree type S`,M or Pdeg,`,M behave under

(i) deformation of ` 2 A1?

(ii) deformation of M within the family of A-modules of fixed Hilbert function H? See [68].

(iii) tensor product (see Corollary 3.11)?

(iv) projection to the quotient R/inI ? Are there JDT that cannot occur for an Artin graded algebra of
Hilbert function T defined by a monomial ideal?

Also, does the inequality of (2-35) of Proposition 2.32 extend to finite length modules over a local
Artinian A, taking ` 2 mA?

Question 2.41. Can we extend the notion of Jordan-degree type of (A, `) for graded algebras to a
“Jordan-order type” for local algebras A, with properties analogous to those of Lemma 2.2, replacing
degree by order, and omitting homogeneity? In particular, concatenating the orders of all elements in a
good set of strings for (A, `) should give the Hilbert function of A.

That there are issues in defining Jordan order type for a local algebra is illustrated in the following
example. Recall from (1-1) and the paragraph after, that the order ⌫(a) of a 2 A is the largest power of
the maximum ideal m of A such that a 2 m⌫ .

Example 2.42. Let A = k{x, y}/I , I = (x2 � xy2, x4, y4) = (x2 � xy2, y4, x3 y2), variables each
of weight 1, with k-basis the classes of {1, x, y, xy, y2, xy2, y3, xy3} and Hilbert function H(A) =

(1, 2, 2, 2, 1). Consider ` = x for which Px = (3, 3, 1, 1) and the Jordan strings S1 = (1, x, x2 = xy2)

of orders (0, 1, 3), S2 = (y, xy, x2 y = xy3) of orders (1, 2, 4), S3 = (x � y2) and S4 = (xy � y3) of
orders (1) and (2); the choice of the strings has been made so that x pi mi = 0, where mi is the cyclic
generator of Si (hence the choice of m3 = (x � y2), so xm3 = 0). There are three basis elements (of the
form xkmi , 0  k  pi � 1) in the strings having order one; also, there is no k[x] linear combination of
the strings with the property that the orders of the basis elements match the Hilbert function (compare
with Lemma 2.2(i, iv) for the graded case).

One “solution” might be to adjust the sense of order in the presence of previous strings: for example S3 =

hx � y2i would be considered to have adjusted order two, as all of R1, in particular x , is already in hS1, S2i.

2G. Deformations and generic Jordan type. We assume that k is an infinite field when discussing
either generic Jordan type or deformation. A deformation of a local Artinian algebra A over k is a flat
family At , t 2 T of Artinian algebras with special fiber At0 = A; then At0 is a specialization of the
family At . We note that an algebraic family At , t 2 T of Artinian algebras over a parameter space is flat
if the fibers At , t 2 T have constant length.4 If also, for t 6= t0 the algebras At have constant isomorphism

4A flat deformation means that relations among generators at the special point extend to relations among generators at
the general point (see §I.3 “Meaning of flatness in terms of relations” in [7]). The flatness of a reduced family of Artinian
algebras over an algebraically closed field that has constant fiber length is well known, and noted by Briançon in [26]. See [93,
Proposition 8, p. 44; 59, Exercise 5.8c, p. 125].
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type, we will say At , t 6= t0 is a jump deformation of At0 . We use the dominance partial order on partitions
of n (Definition 2.4). The following result is well known in other contexts. See the related Lemma 2.54,
and the Definition 2.55 of generic Jordan type PM for a finite A-module M , where A is a local algebra.

Lemma 2.43. Let V be a k-vector space of dimension n. Let T be a parameter variety (as T = A1).
Let `(t) 2 Matn(V ), t 2 T be a family of nilpotent linear maps, and let P be a partition of n. Then the
condition on Jordan types, P`(t)  P is a closed condition on T .

Proof. This is straightforward to show from Lemma 2.3 and the semicontinuity of the rank of `(t)i

(see [33, Theorem 6.2.5], or [62, Lemma 3.1]) ⇤

This result is not unrelated to the work of V.I. Arnol’d [6, §4.4. Theorem], who studied the versal
deformation of a matrix M having a single eigenvalue (for us, the eigenvalue is 0), and gives its dimension
as p1 + 3p2 + 5p3 + · · · . His article discusses singularities related to the different Jordan loci in the
deformation space of M , a generalization of “bifurcations”, a topic we do not develop here. The centralizer
of M is given in [44, §VIII.2], and is basic to the study of the nilpotent commutator of M — see the
discussion after Example 3.37, and references there.

Corollary 2.44 (semicontinuity of Jordan type).

(i) Let Mt for t 2 T be a family of constant length modules over a parameter space T . Then for a
neighborhood U0 ⇢ T of t = t0, we have that the generic Jordan types satisfy t 2 U0 ) PMt � PMt0

.

(ii) Let At , t 2 T be a constant length family of local or graded Artinian algebras. Then for a neighbor-
hood U0 ⇢ T of t = t0, we have t 2 U0 ) PAt � PAt0

.

(iii) Let `t 2 Mn(k) for t 2 T be a family of n ⇥ n nilpotent matrices, and let Pt be their Jordan type.
Then there is a neighborhood U ⇢ T of t0 such that Pt � Pt0 for all t 2 U.

Applying this result to the deformation from the associated graded algebra A⇤ to the local Artinian
algebra A we have:

Corollary 2.45. Suppose that A is a local Artinian algebra with maximum ideal m and ` 2 m. Then
P`(A) � P`(A⇤).

Proof. Consider the natural flat deformation5 from A⇤ to A. For t 6= 0, At has constant isomorphism
type: this is a jump deformation, so the open neighborhood U of Corollary 2.44 includes elements where
P`,At = P`,A. ⇤

Corollary 2.45 gives the following sufficient condition for checking SLJT:

Corollary 2.46. If an element ` 2 m is SL for the associated graded Artinian algebra A⇤, then ` is SLJT
for A.

5See [41, Theorem 15.17]. This was shown by M. Gerstenhaber [45] but [43, Chapter 5] gives a history showing prior use
by D. Rim in 1956 and D. Mumford in 1959. It is easy to show in the Artinian case using the constant-length-fiber criterion
for flatness.
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Jordan type and initial ideal. We thank the referee for calling to our attention the work of Wiebe,
connecting Lefschetz properties of ideals with those of the initial ideals. We assume that < is a term order
(monomial order) on the monomials of R: that is, if µ < µ0 then ⌫µ < ⌫µ0 for each monomial ⌫. The
initial ideal in I is the monomial ideal generated by the initial monomials of its elements, and gin< I ⇢ R
is the initial monomial ideal of ↵� I where ↵ is a general enough element of Glr (k) = Aut(R1) acting on I .
Wiebe has shown the first two parts of the next lemma. Part (iii) is newly stated here, but it follows from
the discussion after [115, Proposition 2.8], based on A. Conca’s [34, Lemma 1.2]; we include the proof.
See also [58, §6.1.2] for a further discussion in the context of k-Lefschetz properties, which we do not
treat here. The reverse-lex order is <revlex and satisfies x1 > x2 > · · · > xr > x2

1 > x1x2 > x2
2 > x1x3 > · · ·

(see [58, Definition 6.12]).

Proposition 2.47 [115]. Let I ⇢ R be an m-primary graded ideal.

(i) [115, Proposition 2.8]. Then A = R/I has SLP (resp. WLP) if and only if R/gin<(I ) has SLP
(resp. WLP)

(ii) [115, Proposition 2.9]. Let J be the initial ideal of I with respect to a term order. If S/J has the
weak (resp. strong) Lefschetz property, then the same holds for R/I .

(iii) Let K = gin< I . Then the generic Jordan type PA of A = R/K is the same as that of R/I . For
K = gin<revlex

I in the reverse lex order, this is the Jordan type of R/K with respect to xr .

Proof of (iii). Wiebe [115, Proposition 2.8ff]6 stated that by generalizing Conca’s proof [34, Lemma 1.2],
using inrevlex(gI +(rk))= inrevlex(gI )+(x k

r ) for all k �1 one obtains that the Hilbert function of S/(J, x k
r )

is equal to the Hilbert function of S/(I, `k) for a general linear form ` 2 S and all k � 1. By the theorem
of A. Galligo (char k = 0) and D. Bayer and M. Stillman (arbitrary characteristic), the ideal J = gin< I is
Borel-fixed ([115, Theorem 2.4], proved in [41, Theorem 15.20]). It follows that for the revlex order, the
generic Jordan type of R/J is Pxr (R/J ). ⇤

Wiebe’s discussion brings in the upper semicontinuity of dim
�
R/(I, `k)

�
i : attention to this semicontinu-

ity in a more general setting shows Lemma 2.43. Wiebe used his results to give criteria for componentwise
linear ideals to have the WLP or SLP in terms of the Betti numbers of a resolution; these criteria were
extended to all m-full ideals by Harima and Watanabe [56], and further studied by J. Ahn, Young Hyun
Cho, and J. P. Park [1].

However, the Jordan type may be different for A = R/I and for R/in(I ) when the latter is not strong
Lefschetz.

Example 2.48. Take R = k[x, y, z], consider the graded lex monomial order 1 < x < y < z < x2 < xy <

xz < y2 < yz < z2 < · · · and consider the complete intersection A = R/I , I = (x2, xy + z2, xz + y2) of
Hilbert function H(A) = (1, 3, 3, 1). The generic Jordan type of A is (4, 2) = H(A)_, so A is strong
Lefschetz. But J = inI = (x2, xy, xz, y3, z4), B = R/J has Jordan type (4, 1, 1) since for any linear
form `, m` : A1 ! A2 has kernel x . Thus, B is not weak Lefschetz.

6There are some misprints in the statements and proofs of these results in [115], that are correct in the arXiv version we have
referenced.
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Examples of deformation, generic Jordan type. Recall that a local Artinian algebra A is curvilinear if
H(A) = (1, 1, . . . , 1 j , 0), in which case A is isomorphic to k{x}/(x j+1). In the following example we
illustrate that a local algebra A determined by I = (x, y)2 in R = k[x, y] can be deformed to a curvilinear
algebra. This is a special case of Briançon’s celebrated result that the fiber of the Hilbert scheme Hilbn(A2)

over (0, 0) is irreducible, and is the closure of the curvilinear locus — which for embedding dimension
two is the locus where the ideal defining I has an element of order one [26].7

Example 2.49. Let A(t) = k{x, y}/It where for t 2 k, t 6= 0, we let It = (t x � y2, y3) and where
A(0) = limt!0 A(t) = k[x, y]/(x2, xy, y2) (since for t 6= 0 the ideal It � {t x � y2, xy, x2, y3}). For t 6= 0
the local algebra A(t) is a complete intersection with Hilbert function (1, 1, 1). This family specializes
to A(0) which is non-Gorenstein, with Hilbert function (1, 2). Here for t 6= 0, taking ` = x + y, we have
that the generic linear Jordan type P`,A(t) = (3) > (2, 1) = P`,A(0).

In the next examples we use the Macaulay dual generator notation from Definition 2.23. The examples
use standard grading.

Example 2.50. Let Bt = k[x, y]/ Ann Ft , where Ft = t X [5] + X [2]Y . Then for t 2 k, t 6= 0, the al-
gebra Bt is a curvilinear complete intersection, as in the previous example, with Hilbert function
(1, 1, 1, 1, 1, 1). The family specializes to B0 = k[x, y]/(y2, x3), also a complete intersection (CI),
with Hilbert function (1, 2, 2, 1). Here ` = x + y determines the generic (also generic linear) Jordan type
P`.Bt = (6) > (4, 2) = P`,B0 .

Example 2.51. Let Bt = k{x, y, z}/ Ann Ft , where Ft = t2 X [3]Y [2] + t X [2]Y Z + X Z [2]. Then for t 6= 0
the algebra Bt = k{x, y, z}/(t z � xy, y3, x4) is an Artinian complete intersection with Hilbert function
(1, 2, 3, 3, 2, 1). The family specializes to the complete intersection B0 = k[x, y, z]/(y2, z2, x3), which
has Hilbert function (1, 3, 4, 3, 1). Here for t 6= 0 PBt = (6, 4, 2) > (5, 3, 3, 1) = PB0 .

Definition 2.52 (the poset PM ). Let M be a finite-length A module for an Artinian algebra A. We
denote by PM the poset {P` | ` 2 mA}, with the dominance partial order. We denote by Pi,M the
subposet Pi,M = {P` | ` 2 (mA)i }.

There is a related poset ZM of loci within mA or mA determined by the set of partitions P`: this is a
subposet of PM but may be a proper subset; see Example 3.37.

Example 2.53. For At = k{x, y}/(t x � y2, y3), t 6= 0, from Example 2.49, we have that PAt =

{Py = (3), Px = (2, 1), P0 = (1, 1, 1)}. For A0 =k[x, y]/(x2, xy, y2), we have that PA0 ={(2, 1), (1, 1, 1)}.

Recall that the elements of a local Artinian algebra A are parametrized by the affine space An ,
n = dimk(A) and with our assumption mA is parametrized by the affine space An�1. So mA is an
irreducible variety. Since the rank of each power of m` acting on M is semicontinuous, and since by
Lemma 2.3 these ranks determine the Jordan type of m` we have:

Lemma 2.54 (generic Jordan type of M). Given an A or A module M , there is an open dense subset
UM ⇢ m = An�1 for which ` 2 UM implies that the partition P` satisfies P` � P`0 for any other
element `0 2 m.

7Briançon proved his result over k = C; his proof extends to algebraically closed fields satisfying char k > n: this was
improved to char k > n/2 by R. Basili [12] and to all characteristics by A. Premet [108]; see also V. Baranovsky’s [11].
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Likewise, if A admits a weight function w, then for each weight i , there is a dense open set Ui,M ⇢Ai (w)

for which ` 2 Ui,M implies that P` � P`0 for any other `0 2 Ai (w). So P`,M takes on a generic value PM

for ` 2 UM .

Definition 2.55. For M a finite module over a local Artinian algebra A over k, we define the generic
Jordan type PM by PM = P` where ` is a generic element of the maximal ideal of A. In the graded case,
we may also define the generic degree i Jordan type for M is Pi,M = P` for ` a generic element of Ai

(it is not defined when A1 = 0); for i = 1, we call P1,M the generic linear Jordan type.

Evidently we have
PM � P1,M � · · · � Pj,M .

As we next see in Example 2.57, when A is a nonstandard graded algebra the generic Jordan type PA

may not equal P1,A even when A1 6= 0.

Question 2.56. Under what conditions on a graded module M over a graded Artinian algebra A does
its generic Jordan type satisfy PM = P1,M , the generic linear Jordan type? In particular, let A be a
standard-graded Artinian algebra A with unimodal Hilbert function. Is the generic linear Jordan type
of A always the same as the generic Jordan type of A? Proposition 2.14 shows this when the generic
Jordan type of A is strong Lefschetz.

Let A be a nonstandard-graded Artinian algebra. The Jordan type P` of a nonhomogeneous element
` 2 mA may be the same as that would be expected for a strong Lefschetz element, even though A may
have no linear strong Lefschetz elements, so A is not SL. This we first noticed on the following example
of relative covariants proposed by the third author (see [83, Example 3.7]).

Example 2.57. We let R = k[y, z], with weights w(y, z) = (1, 2), and let A = R/I , I = (yz, z3, y7),
having k-basis A = h1, y, y2, z, y3, y4, z2, y5, y6i and having Hilbert function H(A)= (1, 1, 2, 1, 2, 1, 1),
with Macaulay dual R � hZ2, Y 6i. The only linear element of A, up to nonzero constant multiple is y, and
the partition given by the multiplication my is Py = (7, 1, 1), so A is not strong-Lefschetz. However the
nonhomogeneous element `= y+z, has strings {1, y+z, y2+z2, y3, y4, y5, y6} and {z, z2} so P` = (7, 2),
which is the maximum possible given H(A), so ` has strong Lefschetz Jordan type (Definition 2.12). The
Macaulay dual generator for A is F = Z [2] + Y [6]

A related local algebra is A = R/(yz, z3 + y6), with weights w0(y, z) = (1, 1), of Hilbert function
H(A) = (1, 2, 2, 1, 1, 1, 1); here the element `0 = (y + z) 2 mA has Jordan type (7, 2), so A is strong
Lefschetz. The associated graded algebra A⇤ with respect to mA is k[y, z]/(yz, z3, y7), with standard
grading; and P`0,A⇤ = P`0,A = (7, 2). See also Theorem 2.5 and Example 2.21.

3. Constructions, examples, and commuting Jordan types

3A. Idealization and Macaulay dual generator. The principle of idealization, introduced by M. Nagata
to study modules, has been used to “glue” an Artinian algebra to its dual, and so to construct graded
Artinian Gorenstein (AG) algebras either having non-unimodal Hilbert functions; or with unimodal Hilbert
functions but not having a strong or weak Lefschetz property [19; 20; 21; 23; 91; 113]. Examples of
M. Boij [20] show that the Hilbert functions of AG algebras may have an arbitrarily high number of valleys,
with local maxima at assigned values, at the cost of increasing the embedding dimension. The Jordan types
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and Jordan degree types — which are symmetric by Proposition 2.38 — of these examples have in general
not been studied, and could be of interest. H. Ikeda (H. Sekiguchi) [111], H. Ikeda and Watanabe [70],
and also Boij [21] gave examples of Artinian Gorenstein (AG) algebra having unimodal Hilbert functions,
but not satisfying even weak Lefschetz. Similar examples involving a partial idealization, also not strong
Lefschetz or not weak Lefschetz have been constructed more recently by R. Gondim and G. Zappalà
[48; 49] and by A. Cerminara, Gondim, G. Ilardi, F. Maddaloni [32]. An example where mL has Jordan
type strictly between weak and strong Lefschetz was already given in [58, Section 5.4], referencing [70].

We will give here several idealization or partial idealization examples where we calculate the generic
Jordan type. These idealizations that are Artinian Gorenstein can arise from a particular structure for
a homogeneous Macaulay dual generator for the AG algebra (Section 2E). There is a far-reaching
generalization by Kleiman and Kleppe to Macaulay duality over an arbitrary Noetherian base ring [73],
and it would be natural to ask how the notions of Jordan type and idealization studied below might
generalize from a base field, as here, to a more general base.

Nagata [94] introduced the following definition of idealization, see also [58, Definition 2.75]; for some
further developments and history see D. Anderson and M. Winters [5]. For characterization by dual
generator see [19; 58, Theorem 2.77] and for another approach to idealization see [80, Lemma 3.3].

Definition 3.1. Let M be an A-module. The idealization of M is the algebra A� M whose multiplication
is given by (a, m) · (b, n) = (ab, an + bm).

The idealization makes A� M into a ring, in which the R-submodules of M correspond to the subideals
of M . A particular example is formed when M = Hom(R, k) the dual of an Artinian level ring A (i.e.,
the socle of A is in a single degree): then the idealization is an Artinian Gorenstein algebra. Stanley and
subsequently others used this construction to give examples of AG algebras having non-unimodal Hilbert
function (Example 3.2).

Examples of Idealization and Jordan type. Our first is the Jordan type for the example of Stanley in
codimension 13. See also [61, Example 2.28] where this was also calculated. We will find that the actual
generic linear Jordan type is very far from the bound Pc(H) given in Theorem 2.20. We will use the
notation mk to represent the partition (m, . . . , m) with k parts.

Example 3.2 [113, Example 4.3]. We let R = k[x, y, z] and S = k[x, y, z, u1, . . . u10], D = kD P [X, Y, Z ]

and F = kD P [X, Y, Z , U1, . . . , U10]. Stanley’s example results from idealization of R/mR
4 and its dual.

We let I ⇢ S, I = Ann F , F =
P

Ui4i 2 F4 where 41, . . . 410 is a basis for D3 ⇢ D. Then A = S/I
has dual module S � F satisfying

(3-1)

S1 � F = hR1 � F, 41, . . . ,410i,

S2 � F = hD2, R2 � Fi,

S3 � F = hX, Y, Z , U1, . . . , U10i.

Consequently, H(A) = (1, 13, 12, 13, 1) is of length 40. Taking a general element ` 2 S1, i.e., up to
action of (k⇤)⇥13, take ` = x + y + z + u1 + · · · + u10, it is straightforward to calculate

H
�
S/ Ann(` � F)

�
= (1, 9, 9, 1), (S/ Ann

�
`2

� F)
�
= (1, 6, 1),

H
�
S/ Ann(`3

� F)
�
= (1, 1),

�
S/ Ann(`4

� F)
�
= (1).
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By Lemma 2.27, the conjugate (P`)
_ is the first differences 1 of the lengths of the modules S/ Ann(`k �F)

for 0  k  4, so here

(3-2) (P`)
_

= 1(40, 20, 8, 2, 1) = (20, 12, 6, 1, 1).

Thus, P` = (5, 35, 26, 18) with 20 parts in contrast to Pc(H)= (5, 311, 12). This is related to the following:

m`2 : A1 ! A3 has rank 6 (from the five parts 3, and one part 5), but

m` : A1 ! A2 has rank 9, and kernel rank 4.

By symmetry m` : A2 ! A3 also has rank 9 and cokernel rank 4.
Note that the contraction R1 � D3 = D2 takes a 10-dimensional space to a 6-dimensional space; thus

any multiplication map m` : D3 ! D2 has kernel rank at least 4. The Jordan degree type of this ` is

(3-3) P` =
�
P`,0 = 5, P`,1 = (35, 23, 14), P`,2 = (23), P`,3 = (14)

�
.

According to Theorem 2.20 the maximum Jordan type of a multiplication map m` for ` 2 mA (nonhomo-
geneous) consistent with the Hilbert function H = H(A) would be Pc(H) = (5, 311, 12) with 14 parts
for a linear form. For an element ` 2 m the upper bound would be P(H) = (5, 311, 2) with 13 parts
expected — if a quadratic term in ` takes the kernel of the linear part m`1 on A1 to an element of A3 not
in `1 · A2. Here the actual generic linear Jordan type P` = (5, 35, 26, 18) with 20 parts for ` 2 A1 (see
above) or even for ` 2 mA (verified for several random ` 2 mA, by calculation in MACAULAY2) is very
far from these bounds; therefore, A does not have the Lefschetz property relative to H of Definition 2.17.

Gondim, applying work of T. Maeno and Watanabe [79] relating higher Hessians and Lefschetz
properties, exhibited Gorenstein algebras A with bihomogeneous dual generators of the form F =

P
µi⌫i ,

in F = kD P [X, U ], such that A does not satisfy weak Lefschetz, or, sometimes, has generic Jordan type
strictly between WL and SL [48]. Here are two examples from Gondim.8

Example 3.3 (Gondim). Consider the cubic f 2 F

(3-4) f = X1U1U2 + X2U2U3 + X3U3U4 + X4U4U1.

The associated algebra A = R/I , of Hilbert function H(A) = (1, 8, 8, 1) with I = Ann f does not have
the WLP: the map ` : A1 ! A2 is not injective for any ` 2 A1. The algebra A is presented by 28 quadrics:

I =
�
m2

x , u2
1, u2

2, u2
3, u2

4, u1u3, u2u4, x1u3, x1u4, x2u4, x2u1, x3u1, x3u2, x4u2, x4u3,

x1u1 � x2u3, x2u2 � x3u4, x3u3 � x4u1, x4u4 � x1u2
�
,

and has Jordan type (4, 26, 1, 1) so strictly less than H(A)_ = (4, 27). A random element (nonhomoge-
neous) gives the same Jordan type (calculation in MACAULAY2).

Example 3.4 (Gondim). Let F = XU [3] + YU V [2] + ZU [2]V 2 F = kD P [U, V, X, Y, Z ]. Consider
R = k[u, v, x, y, z] and the algebra A = R/I, I = Ann F , where

I = hx2, y2, z2, u4, v3, xy, xz, yz, xv, zv2, yu2, u2v2, u3v, xu � zv, zu � yvi.

8The first example is from Gondim’s talk at the workshop “Lefschetz Properties and Artinian algebras” at BIRS on March 15,
2016, at “https://www.birs.ca/workshops/2016/16w5114/files/Gondim.pdf”. The second is a private communication from
Gondim, following a discussion there with the first author.
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Since A is a bigraded idealization it is easy to see that H(A) = (1, 5, 6, 5, 1). Since the partial derivatives
x � F = U [3], y � F = U V [2] and z � F = U [2]V are algebraically dependent, by the Gordan–Noether
criterion [50; 48; 79] the Hessian HessF = 0. By the Maeno–Watanabe criterion [79; 58, Theorem 3.76]
this implies that A fails the strong Lefschetz property. On the other hand it is easy to see that u + v is
a WL element for A.

Since A is not strong Lefschetz, the Jordan decomposition P` for `= u+v+x +y+z (a generic-enough
linear form) is by Theorem 2.5 less in the dominance order than the conjugate H(A)_ = (5, 34, 1); since A
has WLP, P` has the same number of parts as H(A)_, namely the Sperner number H(A)max = 6. Since
`4 6= 0 in A, the string S1 = (1, `, `2, `3, `4) so P` has a part 5; since P` < (5, 34, 1) and has 6 parts the
only possibility is P` = (5, 3, 3, 3, 2, 2), with Jordan degree type P` = (50, 33

1, 21, 22). By Proposition 2.14
since A is standard graded, has unimodal Hilbert function, and is not strong Lefschetz, A cannot have an
element — even nonhomogeneous — that has strong Lefschetz Jordan type.

Gondim gives many further examples, using special bihomogeneous forms. Gondim and Zappalà
have determined further graded Gorenstein algebras that are non-unimodal, sometimes completely non-
unimodal (with decreasing Hilbert function from h1 to h j/2, then increasing to degree j � 1): they
accomplish this by using properties of complexes to choose a suitable bihomogeneous dual generator
f 2 F [49]. In a sequel work Cerminara, Gondim, Ilardi, Maddaloni study “higher order” (d1, d2) AG
Nagata idealizations determined by Macaulay dual forms

P
µi g j where µi runs through the d1 powers of

one set X1, . . . , Xr of variables, while gi 2 k[U1, . . . , Us]d2 have degree d2: they show in specific cases
that the idealization is not SL, but when d1 � d2 they show it is WL [32, Proposition 2.7]; their main results
are related to geometric properties and “simplicial” Nagata polynomials [32, Theorem 3.5]. A. Capasso,
P. De Poi, and Ilardi generalize this work in [29]. J. McCullough and A. Seceleanu use idealization and
a subtle choice of base level algebra to construct a new infinite sequence of quadratic Gorenstein rings
with, in general, non-unimodal Hilbert functions, that are non-Koszul, with non-subadditive minimal
resolutions [82, Theorem 4.3]: they have not been studied for their Jordan types. A. Dimca, Gondim and
Ilardi study the connections between higher order and mixed Hessians and the Lefschetz properties of
Milnor algebras in [40].

3B. Tensor products and Jordan type. It is well known that a graded Artinian algebra A with symmetric
Hilbert function is SL with Lefschetz element ` 2 A1 if and only if A carries an sl2-representation where
the raising operator E in the standard basis of sl2 is multiplication by `, and element of A1, and the
weight space decomposition agrees with the grading of A, see [58, Theorem 3.32]. Equivalently, such a
pair (A, `) is strong Lefschetz if P` = H_ (Proposition 2.10). The well-known Clebsch–Gordan formula
decomposes a tensor product of sl2 representations into irreducibles; it is equivalent to the strong Lefschetz
property of k[x, y]/(xm, yn).

Lemma 3.5 (Clebsch–Gordan). Assume m � n are positive integers, and char k = 0 or char k � m +n �1.
Then the Jordan type of ` = x + y in k[x, y]/(xm, yn) satisfies

(3-5) P` = (m + n � 1, m + n � 3, m + n � 5, . . . m � n + 1).

To prove this it is sufficient to know the strong Lefschetz property of standard graded quotients of
k[x, y] in characteristic zero or characteristic larger than the socle degree (Lemma 2.15). See also [58,
Theorem 3.29 and Lemma 3.70]. As a consequence we have:
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Proposition 3.6 [58, Proposition 3.66].9 Let z 2 A, w 2 B be two nonunit elements of Artinian local
algebras A, B. Set Pz = (d1, d2, . . . , dt) and Pw = ( f1, f2, . . . fs). Denote by ` = z ⌦1+1⌦w 2 A⌦k B.
Assume char k = 0, or char k � max{di + f j � 1}. Then

(3-6) P` =
L
i, j

min{di , f j }L
k=1

(di + f j + 1 � 2k).

Also, dimk ker(⇥`) =
P

i, j min{di , f j }.

Recall that we denote by jA the socle degree of A. The following corollary of Proposition 3.6 is
not hard to show, and we leave the proof to the reader. With the additional assumption that H(A) and
H(B) are unimodal (so A, B are SL in the narrow sense of Remark 2.9) this corollary is shown in [58,
Theorem 3.34].

Corollary 3.7. Assume that A, B are graded Artinian algebras with symmetric Hilbert functions and that
char k = 0 or char k > jA + jB . Then the element ` = z ⌦ 1 + 1 ⌦w 2 A ⌦k B is SL if and only if z and w

are both SL, respectively, in A and in B.

For a different proof of Corollary 3.7, resting on the connection between the strong Lefschetz property
of C and the weak Lefschetz properties of C ⌦k k[t]/(t i ) see Harima and Watanabe’s [54, Theorem 3.10].
It is open whether A ⌦k B is SL implies both A and B are SL, without a prior assumption on the Hilbert
functions of A, B.

We may use Proposition 3.6 to determine the Jordan types of other, special elements ` 2 mA for certain
Artinian algebras A.

Example 3.8 [2, Corollary 0.4]. Consider ` = x2 + y2 2 A = k[x, y]/(x3, y3) and suppose char k 6= 2, 3.
Then P` = (3, 2, 2, 1, 1). Indeed here Px2 = (2, 1) on k[x]/(x3); likewise Py2 = (2, 1) on k[y]/(y3), and
hence by Proposition 3.6

P` = (2+2+1�2, 2+2+1�4)� (2+1+1�2)� (1+2+1�2)� (1+1+1�2) = (3, 2, 2, 1, 1).

We found that for char k 6= 2, 3 we could achieve all Jordan types of ` 2 mA from elements of the form
` = xa + yb or ` = xa using Proposition 3.6, except for Px2 y = (2, 2, 15) [2, Corollary 0.4].

The following is a special case of a family of examples due to J. Migliore, U. Nagel, and H. Schenck [92]:
they show that without the assumption that the component Hilbert functions are symmetric, the tensor
product in general will not preserve any Lefschetz properties.

Example 3.9. With the standard gradings, set

A = B =
k[x, y]

(x2, y2, xy)
and C = A ⌦k B ⇠=

k[x, y, z, w]

(x2, y2, z2, w2, xy, zw)
.

9Although [58] restricts to char k = 0, there is no change in showing it for char k = p large enough.
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A k-basis for the tensor product C is {1, x, y, z, w, xz, yz, xw, yw}, of Hilbert function H(C) = (1, 4, 4).
For a general linear form ` = ax + by + cz + dw 2 C1 the matrix for ⇥` : C1 ! C2 with respect to that
basis is given by

M` =

0

BB@

c 0 a 0
d 0 0 a
0 c b 0
0 d 0 b

1

CCA

which has det(M) = 0 for every a, b, c, d 2 k. Therefore C is not even WL, let alone SL. Also, since C is
standard graded, Proposition 2.14 implies that C cannot have SLJT. On the other hand, A and B certainly
have all of these properties.

Jordan degree type and Clebsch–Gordan. Following the Definition 2.28 (2-26) of Jordan degree type,
we denote by ms a string of length m beginning in degree s, and by nt a string of length n beginning in
degree t . We next specify the Jordan degree type of their tensor product ms ⌦k nt : our result refines the
Clebsch–Gordan Lemma 3.5.

Proposition 3.10. Under the same assumptions on characteristic as in Corollary 3.7, we have for Jordan
degree type,

(3-7)
ms ⌦k nt =

�
(n + m � 1)s+t , (n + m � 3)s+t+1, . . . , (n � m + 1)s+t+m�1

�

=

mL
k=1

(n + m + 1 � 2k)s+t+k�1

Proof. This follows from the Definition 2.28 of contiguous Jordan degree type of a Hilbert function,
and noting that when s = t = 0 the Jordan degree type of the algebra A = k[x, y]/(xm, yn) is just the
contiguous Jordan degree type Pc(H) of the Hilbert function H = H(A), which is the right side of (3-7).
For s, t 6= 0 one just shifts the degrees by s + t . ⇤

We leave to the reader the statement of the obvious analogue of Proposition 3.6 where we replace
the di and f j by (di)↵i and (fj)�j , respectively. Using this, we may define the tensor product of contiguous
partitions (which have the initial degree information for strings) Pc,deg

�
H(A)

�
⌦ Pc,deg

�
H(B)

�
. The

following corollary is shown using the layering of Pc,deg(H) when H is unimodal: then the Jordan degree
type Pc,deg(H) is determined by the conjugate partition H_.

Corollary 3.11. Assume that A, B are standard graded with unimodal Hilbert functions H(A), H(B).

(i) Then we have for the contiguous partitions

(3-8) Pc,deg(H(A ⌦k B)) = Pc,deg(H(A)) ⌦ Pc,deg(H(B)).

(ii) Also, if ↵ 2 A1 has Jordan degree-type Pc,deg(H(A)) and � 2 B1 has that of the contiguous partition
Pc,deg(H(B)), then ` = ↵ ⌦ 1B + 1A ⌦ � has the Jordan degree type Pc,deg(H(A ⌦k B)).

The following example shows that the unimodal condition is necessary for (3-8).

Example 3.12. Letting H(A)=(1,13,12,13,1) and H(B)=(1,1), we have Pc
�
H(A)

�
=(50,311

1 ,11,13),
and Pc

�
H(B)

�
= (20) with product Pc

�
H(A)

�
⌦ Pc

�
H(B)

�
= (60, 412

1 , 211
2 , 21, 23). But H(A)⌦ H(B) =

(1, 14, 25, 25, 14, 1), and Pc
�
H(A ⌦k B)

�
= (60, 413

1 , 211
2 ).
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The next example shows that even with symmetric Hilbert functions, we should not expect tensor
products to preserve the relative Lefschetz property of Definition 2.17 (involving Jordan degree-type and
the contiguous Hilbert function) when the grading of A or B is not standard.

Example 3.13. Let ↵ 2 k and A = k[a, b]/(a3 � ↵ab, b3) with weight function w(a, b) = (1, 2), and
B = k[t]/(t2) with the standard grading. It is easy to see that both A and B have the relative Lefschetz
property for their Hilbert functions, which are, respectively, H(A)= (1, 1, 2, 1, 2, 1, 1) and H(B)= (1, 1).
On the other hand, the Hilbert function of their tensor product C = A⌦k B is H(C)= (1, 2, 3, 3, 3, 3, 2, 1)

which is unimodal. If char k = 0 or char k > 7 then C cannot have the relative Lefschetz property: if it
did, then by Proposition 2.14 C would also be SL which would imply by Corollary 3.7 (for which we
need the assumptions on characteristic of k) that both A and B are SL, which is impossible since H(A) is
not unimodal.

Example 3.14 (SLJT in a tensor product). Let S = k[e] with weight w(e) = 2, S_ = E = k[E] and
A = S/IF , F = E2, so A = S/(e3) and H(A) = (1, 0, 1, 0, 1). Now let R = k[x, y] with standard grading
and take B = k[x, y]/(x2, y2); here (x2, y2) = Ann(XY ), XY 2 R_ = kD P [X, Y ], and H(B) = (1, 2, 1).
Now consider A ⌦k B = k[x, y, e]/(x2, y2, e3) of Hilbert function H(A)⌦ H(B) = (1, 25, 1). Note that
` = x + y + e has Jordan type P` = (7, 5); ` is not homogeneous but this shows that A ⌦k B has SLJT.
Since A ⌦k B is not standard-graded, even though H(A ⌦k B) is unimodal and symmetric, having an
SLJT element does not imply that A ⌦k B is SL. It is not SL as the only linear elements x, y, x + y (up
to scalar) of A ⌦k B are not SL: for example Px+y = (33, 13).

If we regrade so that e has degree one, then we have a standard graded CI of generator degrees (2, 2, 3),
Hilbert function H(2,2,3) = (1, 3, 4, 3, 1) and Jordan type P` = (5, 3, 3, 1), and it is SL.

This example suggests:

Conjecture 3.15. If A has SLJT, and B is standard graded SL, and if H(A ⌦k B) = H(A) ⌦ H(B) (the
graded product) then A ⌦k B has SLJT.

Clebsch–Gordan in the modular case.

Remark 3.16. There is substantial work determining Clebsch–Gordan formulas in the modular case
char p  j . S.P. Glasby, C.E. Praeger, and B. Xia in [46] summarize previous algorithmic results
of Kei-ichiro Iima and Ryo Iwamatsu [69] using Schur functions, and of J.-C. Renaud [110]; they
obtain formulas that in principle allow one to compute the generic Jordan type of R(m, n) in arbitrary
characteristic p — they term this the Jordan type �(m, n, p) of R(m, n, p), which always has m parts —
so R(m, n, p) is always weak Lefschetz (a result they ascribe to T. Ralley [109]). In [47, Theorem 2]
they show that R(m, n, p) has SLP (in their language, “is standard”) if n 6⌘ ±1, ±2, · · · ± m mod p.
They define a deviation vector ✏(m, n, p) = �(m, n, p) � (n, n, . . . , n), and show

Lemma 3.17 [47, Theorems 4,6,7]. Let m  min{pk, n, n0}.

(periodicity) If n ⌘ n0 mod pk then ✏(r, n, p) = ✏(r, n0, p).

(duality) If n0 = �n mod pk then ✏(m, n0, p) = (�✏r , . . . ,�✏1), the “negative reverse” of ✏(m, n, p).

(bound) There are at most 2m�1 different deviation vectors ✏(m, n, p) for all n � m and characteristics p.

(computation) For fixed m, a finite computation suffices to compute the values of ✏(m, n, p) for all n with
n � m, and all primes p.
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The authors warn that, in contrast, determining �(m, n, p) is not a finite computation as it involves
considering n mod p for infinitely many n.

Such tables of �(m, n, p) for m = 3 and m = 4 have been calculated by Jung-Pil Park and Yong-Su
Shin in [103]. Recent articles by L. Nicklasson [97] and S. Lundqvist and Nicklasson [76] further clarify
the strong Lefschetz property for monomial complete intersections

We can similarly define for sequences M = (m1, . . . , mr ), m1  m2  · · ·  mr deviation vectors
✏(M, p) = ✏(m1, . . . , mr ; p) for the Jordan types of CI algebras R(M) = k[x1, . . . , xr ]/(xm1

1 , . . . , xmr
r )

when char k = p.

Question 3.18. What does Lemma 3.17 tell us about determining modular Jordan types �(m1, m2, m3, p)

(three variables) or in more variables? This is a problem that has been studied and appears quite complex.
For example in three variables work on it has involved tilings by lozenges [37; 38], see also [25; 35; 36; 75].
Further studies of the weak Lefschetz properties of monomial ideals and the relation to algebraic-geometric
Togliatti systems have been made by E. Mezzetti, G. Ottaviani, R. M. Miró-Roig, and others [86; 87; 88]

G. Benkart and J. Osborn studied representations of Lie algebras in characteristic p [16]. Subsequently,
Premet [107, Lemmas 3.4, 3.5], and J. Carlson, E. Friedlander and J. Pevtsova in [30, §10, Appendix
“Decomposition of tensor products of k[t]/(t p) modules”] gave formulas for such products that apply
to R(m, n, p) when m, n  p. Carlson et al. regard T = k[t]/(t p) as a self-dual Hopf algebra, with
coproduct t ! 1 ⌦ t + t ⌦ 1 and determine the tensor product of irreducible modules over T .

There has been substantial work on rank varieties and connections between commutative algebra and
the representation theory of p-groups, beyond our scope; see, for example [9; 18].

3C. Free extensions. We have remarked that the Jordan type of the multiplication map does not depend
on the grading of the algebra A — a remark also of Kleiman and Kleppe in [73]. Nevertheless, the Hilbert
function of A will depend on its grading, and, in particular, whether it is regarded as a graded algebra A
or an mA-adic filtered local algebra A; thus the strong Lefschetz property is grading-dependent.

We will give some examples where A is the base of a free extension C with fiber B. We first recall the
definition of free extensions, introduced by Harima and Watanabe in [52]. Then we give Examples 3.25
and 3.26 of algebras C where C is A-free, and we compare A with the related local algebra A. In
Theorem 3.23 we give a method of producing/verifying free extensions related to complete intersections.

Definition 3.19 [52; 66]. Given graded Artinian algebras A, B, and C , we say that C is a free extension
of A with fiber B if there exist algebra maps ◆ : A ! C and ⇡ : C ! B

(i) ◆ makes C into a free A-module,

(ii) ⇡ is surjective and ker(⇡) = ⌧ (mA) · C .

We showed in [66, Theorem 2.1] that a free extension C is a flat deformation of a finite algebra B
over a local Artinian algebra (A, m, k). Thus, a free extension C of A with fiber B is an A-algebra
such that the associated map � : Spec(C) ! Spec(A) is finite and flat, and with a closed embedding
⇡ : Spec(B) ! Spec(C) inducing a cartesian diagram:

Spec(B)

✏✏

� � ⇡
// Spec(C)

�

✏✏

Spec(k) �
�

// Spec(A).
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Related to the notion of free extension is that of a coexact sequence.10 Given graded Artinian algebras
A, B, and C we say that a sequence of algebra maps A ◆ // C ⇡ // B is coexact at C if ker(⇡)= ◆(mA)·C ,
and a coexact sequence is a sequence of algebra maps

(3-9) k // A ◆ // C ⇡ // B // k

that is coexact in every slot (here k is the graded Artinian algebra concentrated in degree zero with mk = 0).
The following result is not difficult, but we record it here for future reference.

Lemma 3.20. Let A, B, C be graded Artinian algebras with maps ◆ : A ! C and ⇡ : C ! B and suppose
that ⇡ is surjective. Then the following are equivalent.

(i) For every k-linear section s : B ! C of ⇡ , the A-module map 8s = ◆ ⌦ s :A (A ⌦k B) !A C is an
isomorphism, i.e., C is an A-module tensor product.

(ii) The sequence (3-9) is coexact and ◆ : A ! C is a free extension.

(iii) ◆ : A ! C is a free extension and ker(⇡) =
�
◆(mA)

�
· C.

(iv) ker(⇡) =
�
◆(mA)

�
· C and dimk C = dimk A · dimk B.

Proof. (i) ) (ii). Assume (i) holds and fix an k-linear ⇡-section s : B ! C so that 8s : A ⌦k B ! C
is an A-module isomorphism. Let ⇡0 : A ⌦k B ! k ⌦k B ⇠= B be the natural projection onto the B
factor of the tensor product, with ker(⇡0) = mA ⌦k B. Then clearly we have ⇡0 = ⇡ � 8s, and hence
ker(⇡) = 8�1

s (mA ⌦k B) = ◆(mA) · C .

(ii) ) (iii) follows from the definitions.

(iii) ) (iv). Assume (iii). Then we have B ⇠= C/ ker(⇡) = C/◆(mA) · C . By Nakayama’s Lemma any
k-linear basis for B ⇠=C/◆(mA)·C lifts to an A-linear basis for C , hence we have dimk C =dimk A·dimk B.

(iv) ) (i). Assume (iv) holds. Then B ⇠= C/◆(mA) ·C , and hence Nakayama’s lemma implies any k-linear
basis for B lifts to an A-generating set for C . Put another way, for any k-linear ⇡-section s : B ! C ,
Nakayama implies that we have an A-linear epimorphism 8s : A ⌦k B ! C . But since the dimensions of
these two vector spaces are equal, 8s must in fact be an isomorphism. ⇤

Note that the tensor product algebra C = A ⌦k B is a free extension over A with fiber B (it is also a
free extension over B with fiber A). In general a free extension C is isomorphic to the tensor product
A ⌦k B, but only as A-modules. A free extension is a deformation of the tensor product algebra [66,
Theorem 2.1]. Thus we have:

Proposition 3.21 [66, Theorem 2.4]. Given graded Artinian algebras A, B, and C such that C is a free
extension over A with fiber B, the generic linear Jordan type of C is at least as large as the generic linear
Jordan type of the tensor product algebra A ⌦k B with respect to the dominance order, i.e.,

PC � PA⌦k B .

This can be used to prove the following result of Harima and Watanabe.

10This notion was introduced by J.C. Moore, and occurs in the topology literature.
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Proposition 3.22 [54, Theorem 6.1]. Let C be a free extension of A with fiber B. Assume that char k = 0
or char k � jA + jB , that the Hilbert functions of both A and B are symmetric, and that both A and B are
strong Lefschetz. Then C is also strong Lefschetz.

We prove the following general result which gives a useful construction and criterion for obtaining
A-free extensions. If I = ( f1, . . . , fs) is an ideal in a ring S and ⌧ : S ! R is a ring homomorphism, we
denote by

�
⌧ (I )

�
the ideal in R generated by {⌧ ( f1), . . . , ⌧ ( fs)}. Note that in general, the image ⌧ (I ) is

not itself an ideal of R (Remark 3.24).

Theorem 3.23. Let S = k[e1, . . . , ed ], R = k[x1, . . . , xr ] be (not necessarily standard) graded polynomial
rings, and let ⌧ : S ! R be a map of k-algebras which makes R into a finite S-module. For any ideal
I ✓ S of finite colength, set A = S/I and C = R/

�
⌧ (I )

�
, and let ◆ = ⌧̄ : A ! C be the induced map

between them. Set B = R/(⌧ (mS)) where mS = (e1, . . . , ed) ⇢ S is the homogeneous maximal ideal of S,
and let ⇡ : C ! B be the natural projection map.

(i) Then A, B, C are all graded Artinian algebras, and we have

(3-10) ker(⇡) =
�
◆(mA)

�
.

In particular, we have a coexact sequence of graded Artinian k-algebras

k // A ◆ // C ⇡ // B // k.

(ii) Furthermore, if d = r , and if A is a complete intersection, then so are B and C ; also C is a free
extension with base A and fiber B.

Proof. (i) That A, B, and C are Artinian follows from our finiteness assumptions on I and the algebra
extension ⌧ : S ! R. To see that (3-10) holds, note that we have the string of equalities

ker(⇡) =
�
⌧ (mS)

�
/
�
⌧ (I )

�
=

�
◆(mS/I )

�
=

�
◆(mA)

�
.

(ii) If d = r and A is a complete intersection, then A = S/I = k[e1, . . . , ed ]/( f1, . . . , fd) for some
S-regular sequence f1, . . . , fd . Then since B = R/

�
⌧ (mS)

�
= k[x1, . . . , xr ]/

�
⌧ (e1), . . . , ⌧ (ed)

�
and

C = R/
�
⌧ (I )

�
= k[x1, . . . , xr ]/

�
⌧ ( f1), . . . , ⌧ ( fd)

�
are both Artinian (so Krull dimension zero) and since

d = r , the sequences ⌧ (e1), . . . , ⌧ (ed) and ⌧ ( f1), . . . , ⌧ ( fd) must be R-regular, hence B and C are
complete intersections too. Since ⌧ (e1), . . . , ⌧ (ed) is an R-regular sequence, they are algebraically
independent and R is a free module over S. In particular, we have C = R/

�
⌧ (I )

�
⇠= R ⌦S S/I which

shows that C is free as an A = S/I -module, hence C is a free extension over A with fiber B. ⇤

Note. The statement (ii) seems to be related to a result of L. Avramov on flat extensions [8]. See also
Proposition 23.8.4 in https://stacks.math.columbia.edu/tag/09PY.

Remark 3.24. It is tempting to think that the hypothesis that R and S have the same Krull dimension in
Theorem 3.23(ii) could be replaced by the requirement that B is a complete intersection. But we have the
following counterexample: Define ⌧ : k[e1, e2, e3] ! k[x, y], ⌧ (e1) = x2, ⌧ (e2) = y2, ⌧ (e3) = x2 + y2 and
A = k[e1, e2, e3]/(e2

1, e2
2, e2

3 �e1e2). Then B = k[x, y]/(x2, y2, x2+ y2)= k[x, y]/(x2, y2) is a complete
intersection, but C = k[x, y]/

�
x4, y4, (x2 + y2)2 � x2 y2

�
= k[x, y]/(x4, y4, x2 y2) is not. Moreover C

has A torsion, e.g., 0 = ⌧ (e3 � e2 � e1), hence it cannot be an A-free extension. Note that, as is usual,
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⌧ (I ) is not an ideal of R: here, for example x(x2) is not in ⌧ (I ); hence our notation
�
⌧ (I )

�
throughout

for the ideal in R generated by ⌧ (I ).

A level Artinian algebra A = R/ Ann F is one having its socle 0 : m in a single degree. The level
algebra is a connected sum over a field k if its dual generator is a sum F = F1 + F2 where F1, F2 are in
two distinct set of variables (see [28] and references cited there). For some discussion of Jordan type in
more general connected sums over a Gorenstein algebra T in place of k see [67] and a related paper of
E. Babson and E. Nevo [10]. In the next examples A is a connected sum over k.

Example 3.25 (C is an A-free CI). Take S = k[e1, e] with weights w(e1, e) = (1, 4), take R = k[x, y]

with w(x, y) = (1, 1), define ⌧ : S ! R by ⌧ (e1) = x + y, ⌧ (e) = x2 y2. We consider A = S/IF where
F = E [3] + E [12]

1 , a connected sum, we let B = k[x, y]/(x + y, x2 y2), and take C = R/
�
⌧ (IF )

�
. Here

the ideal IF satisfies

(3-11) IF = (e1e, e3
� e12

1 ) and S � F = A_
= hF, {E [i]

1 , 0  i  11}, F, E [2]
i,

and the ideal
�
⌧ (IF )

�
=

�
(x + y)x2 y2, (x2 y2)3 � (x + y)12

�
⇢ R. We have11

H(A) = (1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1), H(B) = (1, 1, 1, 1),

H(C) = H(A) ⌦ H(B) = (1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1).

Here H(C) is the Hilbert function of the complete intersection C = k[x, y]/
�
⌧ (IF )

�
of generator de-

grees (5, 12): being of codimension two C is SL by Lemma 2.15; also B ⇠= k[x]/(x4) is SL. That
H(C) = H(A) ⌦ H(B) implies by Lemma 3.20 (iv) that C is a free extension of A with fiber B. We
note that A is not strong-Lefschetz, as there is no linear SLJT element: the only linear element is e1

(up to constant multiple), and the partition Pe1,A = (13, 1, 1), not H(A)_ = (13, 2). But ` = e1 + e, a
nonhomogeneous element of A, satisfies P`,A = (13, 2) so ` has SLJT. The corresponding element ` in
the local ring A = k{e1, e}/(e1e, e3 � e12) (a quotient of standard-graded k{e1, e}) also has SLJT (the
Jordan type does not change with grading); thus, the local ring A is strong Lefschetz, of Hilbert function
H(A) = (1, 2, 2, 110). This example generalizes to F being any quasihomogeneous polynomial in E1, E .

In the following example, the Macaulay dual generators of A, B and C are simply related.

Example 3.26 (C is A-free). Let R = k[x, y, z] with the standard grading, S = k[e1, e2, e3] with grading
w(e1, e2, e3) = (2, 2, 2), and ⌧ : S ! R be the morphism defined by ⌧ (e1) = x2, ⌧ (e2) = y2, ⌧ (e3) = z2.
Let F = E [3]

1 + E [3]

2 + E [3]

3 2 F = Homk(S, k); the algebra A = S/IF is a connected sum

A = S/IF , IF = Ann F = (e1e2, e1e3, e2e3, e 3
1 � e 3

2 , e 3
1 � e 3

3 ),

an Artinian Gorenstein non-CI ring of Hilbert function H(A) = (1, 0, 3, 0, 3, 0, 1); it is not SL as
A1 = 0, but it is straightforward to see that for e = e1 + e2 + e3 we have Pe,A = (4, 2, 2) so e has SLJT.
Considering A as the local ring A regraded to standard grading, we have that A is SL of Hilbert function
(1, 3, 3, 1).

11Given sequences of nonnegative integers H(A) = (a0, . . . , ar ) and H(B) = (b0, . . . , bs) we use the shorthand notation
H(A) ⌦ H(B) = (c0, . . . , cr+s) for the convolution sequence c j =

P j
i=0 ai b j�i .
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Recall ⌧ : S ! R: ⌧ (e1)= x2, ⌧ (e2)= y2, ⌧ (e3)= z2, and set B = R/(x2, y2, z2), a complete intersection
of Hilbert function H(B) = (1, 3, 3, 1) and Macaulay dual generator XY Z 2 D = Homk(R, k). Then
Px+y+z,B = (4, 2, 2) so x + y + z is SL.

C = R/
�
⌧ (IF )

�
, where

�
⌧ (IF )

�
= (x2 y2, x2z2, y2z2, x6

� y6, x6
� z6),

of Hilbert function H(C) = (1, 3, 6, 10, 12, 12, 10, 6, 3, 1) = H(A) ⌦ H(B), so C is A-free and is a
free extension of A with fiber B.12 We have that C is Gorenstein, as I ?

C = R � GC with dual generator
GC =

�
XY Z · (X [6] + Y [6] + Z [6])

�
; note that GC is the product of the dual generator XY Z for B and

⌧ 0(F) where F is the dual generator for A, and the homomorphism ⌧ 0 : F ! D corresponds to ⌧ : S ! R.
Although C is strong Lefschetz (calculated using MACAULAY2), we note that the tensor product

A ⌦k B, unlike C , is not standard graded: the only degree-one elements of A ⌦k B are of the form
` = 1 ⌦k `0, `0 2 hx, y, zi and since `3 = 0 we have that P`,A⌦k B  (4, 2, 2)8 = (48, 28, 28) rather than
the conjugate H(A ⌦k B)_ = H(C)_. So A ⌦k B is not SL, but its deformation C is SL. 13

A similar example is obtained, replacing F by F 0 = E [3]

1 + E [3]

2 + E [3]

3 + E1 E2 E3, defining the algebra
A0 = S/I 0 where I 0 = IF 0 =

�
e1e2 �e 2

3 , e1e3 �e 2
2 , e2e3 �e 3

1 , e 6
1 �e 6

2 , e 6
1 �e 6

2

�
, and defining ⌧ as before.

Then C 0 = R/
�
⌧ (I 0)

�
is Gorenstein, again an A0-free extension with fiber B, and with dual generator

GC 0 = XY Z ·
�
X [6]+Y [6]+ Z [6]+ X [2]Y [2]Z [2]

�
, again the product of the dual generator for B and ⌧ 0(F 00).

For further discussion of free extensions or the strong Lefschetz property for complete intersection
extensions see [52; 54; 58, §4.2–4.4; 106]. For examples of free extensions related to invariant theory,
with some similar behavior to the examples above see [66; 83].

3D. Commuting Jordan types. Work of the last ten years has shown that there are strong restrictions
on the pairs P`,A, P`0,A that can coexist for an Artinian algebra A [62; 71; 72; 74; 98; 99; 102]. We state
several such results. For a more complete discussion, including open questions, see [13; 65; 96; 99].

We say that a partition P = (p1, p2, . . . , ps) where p1 � p2 � · · · � ps of n is stable if its parts differ
pairwise by at least two:

(3-12) P is stable if pi � pi+1 � 2 for 1  i  s � 1.

Let B be a nilpotent n ⇥ n matrix over an infinite field k having Jordan type P = PB . Denote by CB the
commutator of B in Matn(k), and by NB the nilpotent elements of CB . It is well known that NB is an
irreducible variety, hence there is a generic Jordan type Q(B) of matrices in NB .

Theorem 3.27 (Oblak and Košir [74]).14 Assume char k = 0 or char k = p > n, let B be an n ⇥n nilpotent
matrix of Jordan type P. Then Q(B) is stable and depends only on the Jordan type P.

12Here H(C) is the Hilbert function of a CI of generator degrees (4, 4, 4) but IF has five generators: is there some importance
to this: can we make a similar example where IF is a CI of this Hilbert function?

13In [66, Theorem 2.1] the deformation is explicitly given as a one-parameter family C = {C(t), t 2 A1 = k}. The embedding
dimension in a constant length family C is semicontinuous, has the value 4 for A ⌦k B above (namely {x, y, z, e}) but three
({x, y, z}) for C ; so this must be a jump deformation: for t 2 U , an open dense of A1 not containing t = 0, the algebra C(t) is
standard-graded and also is SL (Corollary 2.44).

14This is shown in [74] over an algebraically closed field of char k = 0, but their proof carries through for any infinite field of
char k = 0 or char k = p > n. See [65, Remark 2.7].
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Their proof relied on showing that for a general enough matrix A 2 NB , the local ring A = k{A, B} is
Gorenstein (note that, in general, it is nonhomogeneous). A result of Macaulay shows that a Gorenstein
(so complete intersection) quotient of k{x, y} has a Hilbert function H(A) whose conjugate H(A)_ is
stable; and by Lemma 2.15 the generic Jordan type PA = H(A)_. See also [14, Theorem 2.27] for a
discussion of these steps and [15, Section 2.4] for a discussion of the Oblak-Košir result that k[A, B] is
Gorenstein for A general enough in NB .

Corollary 3.28. There can be at most one stable partition among the partitions P`, ` 2 mA for a local
Artinian algebra A.

For example no two of {8, (7, 1), (6, 2), (5, 3)} can occur for partitions P` for the same (commutative)
local algebra A.

Oblak has made a conjecture giving a recursive way to determine Q(P) from P . The largest and
smallest part of Q(P) were determined in [98; 72], and “half” the conjecture was shown in [60]. Showing
the other half is equivalent to proving a combinatorial result about a certain poset associated to NB

[72; 62], that would be independent of the characteristic of k. Basili established the Oblak conjecture
very recently in [13].

Given an Artinian graded algebra A, or a local algebra A there is a generic Jordan type PA or PA
(Definition 2.55) by Lemma 2.54, simply because mA is an affine space, so is irreducible. However, PA

or PA need not be stable in the sense of (3-12).

Example 3.29. For A = k[x, y]/(x2, xy, y2), or, more generally, for Ar,k = k[x1, . . . , xr ]/m
k for r, k � 2

the algebra A has generic Jordan type P = H(A)_, which is nonstable. For example H(A2,k) for k > 1
satisfies H = (1, 2 . . . , k), whose conjugate H_ is (1, 2, . . . , k).

These are examples of algebras having constant Jordan type (CJT): the Jordan type P`,A is the same
for each linear element ` 2 A. Modules of CJT have been extensively studied, and connected to vector
bundles over projective space [30].

When the partition P` occurs for a pair (`, M) where M is a finite A-module and A is Artinian, and
` 2 A is nilpotent, then P`k for a power `k can be simply described in terms of P`, and of course must
also occur for M or for A (and likewise for A local and ` 2 mA). We briefly describe this.

Definition 3.30 (almost rectangular partition, [74]). A partition P of n is almost rectangular if its parts
differ pairwise by at most 1. We denote by [n]k the unique almost rectangular partition of n having k
parts. If n = qk + r, 0  r < k then

(3-13) [n]
k
=

�
(q + 1)r , qk�r�.

Given a partition P = (p1, p2, . . . , ps), with p1 � p2 � · · · � ps , we denote by [P]k the partition�
[p1]

k, [p2]
k, . . . , [ps]

k
�

having ks parts.

For example [7]2 = (4, 3), [7]3 = (3, 2, 2), [7]4 = (2, 2, 2, 1), [7]5 = (2, 2, 1, 1, 1), and if P = (7, 5)

then [P]2 = (4, 3, 3, 2).

Lemma 3.31. Suppose a nilpotent n ⇥ n matrix M is regular: has Jordan type [n]. Then Mk has Jordan
type [n]k . Suppose that the Jordan type of M is PM , then PMk = [PM ]k .
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The term “almost rectangular partition” was introduced by Košir and Oblak; the notion is key in
studying Q(P), and occurs earlier in Basili’s [12], who showed that the number of parts of Q(P) is rP ,
the smallest number of almost-rectangular subpartitions needed to cover P .

The question of determining which Jordan types may commute (may coexist in the same Artinian
local algebra A) is quite open in general. See J. Britnell and M. Wildon’s [27, §4] and Oblak’s [99] for
some discussion. The former shows that the problem of when two nilpotent matrices commute is in
general characteristic dependent: when k is infinite the orbits (d, d) and (d + 1, d � 1) are commuting,
but when k is a finite field, whether those orbits commute depend on the residue classes of d mod powers
of p [27, Proposition 4.12, Remark 4.15]. A result of G. McNinch [84, Lemma 22] shows that the Jordan
type of a generic element in the pencil of matrices M + t N can depend on the characteristic. See also
[62, Remark 3.16].

There appears to be substantial structure to the set of partitions P having Q(P) = Q where Q is a
given stable partition — see [65] which shows this structure for stable partitions Q with two parts, and
poses a “box conjecture” for general stable Q.

3E. Problems. We end with some further problems concerning Jordan type.

Compatibility of the partition P` and its refinements with the Hilbert function H.

Question 3.32. For which Hilbert functions H can we find graded Artinian algebras A with H(A) = H ,
such that for a generic ` 2 A1 we have, in increasing level of refinement,

(3-14) P`,A = P(H), or Pc,` = Pc(H), or Pc,deg,` = Pc,deg(H)?

Note that a graded algebra A = k[x, y, z]/I of Hilbert function H(A) = (1, 3, 3, 4) cannot be even weak
Lefschetz as the minimal growth from degree 2 to degree 3 implies that I2 = a1(x, y, z) for some a1 2 A1,
so multiplication by an ` 2 A1 cannot be injective from A1 to A2.

Remark 3.33. In codimension two, the Hilbert function of a graded ideal (actually, also of nongraded
ideal) is determined by the partition P(H); here, the family Gr(H) parametrizing all graded quotients
of R = k[x, y] having Hilbert function H is (smooth and) irreducible. However, in codimension three,
even for graded algebras the family Gr(H) of quotients of R = k[x, y, z] having Hilbert function H may
be reducible. One example is given in [22, Theorem 2.3], where H = (1, 3, 4, 4). Here the behavior of
one component of Gr(H) with respect to Jordan type may be different than that of another. Considering
the family Gor(H) of nongraded Gorenstein height three algebra quotients of R = k{x, y, z} (the regular
local ring) of Hilbert function H , in [64], the first and second authors use the Jordan type and the
semicontinuous property of the symmetric decomposition, to show that Gor(H) has several irreducible
components, for suitable H , in particular for H = (1, 3, 3, 2, 2, 1).

There has been some study of a different question, which Hilbert functions force one of the Lefschetz
properties [90; 117]. See also [89].

Additivity of Jordan type.

Question 3.34. Let 0 ! L ! M ! N ! 0 be an exact sequence of finite A-modules (or A-modules).
How can we compare the generic Jordan types PL , PM , and PN ? Under what conditions could we have
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additivity PM = PL + PN , in a suitable sense for the Jordan types, or have PM = PL + PN for the Jordan
degree types (Definition 2.28)?

We can ask the analogous question for nongeneric Jordan types (see, for example, [3]).

Example 3.35 (additivity). Let R = k[x, y], and consider the ideals I = (x4, xy, y3) and J = (x6, xy, y6).
Let L = I/J , M = R/J , and N = R/I . Then ` = x + y computes the generic Jordan type in each of the
modules L , M , and N . We have, for the Jordan degree types,

L = I/J = hy3, y4, x4, y5, x5
i, and P`,L = (33, 24);

N = R/I = h1, x, y, x2, y2, x3
i, and P`,N = (40, 21);

M = R/J = h1, x, y, x2, y2, x3, y3, x4, y4, x5, y5
i, and P`,M = (60, 51).

Thus, PM =
�
60 = 40 +c 24, 51 = 21 +c 33

�
showing that the Jordan degree type P`,M is equal to

P`,N + P`,L in a natural sense. On the other hand the Jordan type P`,M = (6, 5) is not equal to the sum
P`,L + P`,N = (4, 3, 2, 2), nor is it equal to the dominance sum P`,L +b P`,N = (4 + 3, 2 + 2) = (7, 4).
Each Jordan type P`,N , P`,L , and P`,M is SL.

Question 3.36. What partitions P`,M and degree-partitions P`,M can we obtain for M , fixing those
invariants for L and N?

Loci in P(mA) defined by Jordan type. Recall from Definition 2.52 that the set of Jordan types of elements
of A acting on M is a poset PM under the “dominance” partial order; this poset PM is an invariant of
the module M . Given a partition P of m = dimk M , the locus ZP,M ⇢ P(mA), the projective space of
the maximal ideal, parametrizes those elements ` 2 mA such that the action of m` on M has Jordan type
P` = P . The closures ZP,M form a poset under inclusion. Of course, the actual loci ZP,M in either the A
graded or A local case give more information than just the poset.

Example 3.37. Let M = k[x, y]/(x2, y3): then Px = (2, 2, 2), Py = (3, 3) and P` = (4, 2) for ` = x +by,
b 6= 0. Here PM = {(4, 2) � (3, 3) � (2, 2, 2)}. However ZP,M = {Z4,2} � {Z3,3 [ Z2,2,2} as Z3,3 is a
single point. So the two posets PM and the poset of closures of loci ZP,M may be different, the latter
being necessarily a subposet of the former, by the semicontinuity of Jordan type.

There has been some study of these Jordan type loci by commutative algebraists, for example Boij,
Migliore, Miró-Roig, and Nagel, on the nonweak Lefschetz locus [24], and the notes [2]. On the other
hand, there has been recent study of the Jordan type loci ZP in the nilpotent commutator NB of an n ⇥ n
matrix B [98; 99]; when B is a Jordan matrix of stable Jordan type Q, then it is conjectured that the set
B(Q) of loci in the nilpotent commutator NB can be arranged in a rectangular r -box, whose dimensions
are determined by the r parts of Q (see [65, Conjecture 4.11]), and that the equations for these loci are
complete intersections [65, Remark 4.13]. The first conjecture is shown for stable Q having r = 2 parts
[65, Theorem 1.1].

Question 3.38. Let x 2 mA have Jordan type Q. Denote the matrix of mx by B and recall that NB is the
nilpotent commutator of B (Section 3D). Is there a morphism ⌧x,A : mA ! NB , such that the Jordan type
of y 2 mA satisfies Py = P⌧x,A(y)?

Recall that for x 2 A we denote by ⌫(x) its order: the maximum i such that x 2 mAi .
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Question 3.39. Given an Artinian algebra A with socle degree jA, by a simple linear algebra argument,
we can always find a k-basis B for A such that for every i 2 {0, . . . , jA}

(3-15) #{x 2 B | ⌫(x) = i} = H(A)i .

Given ` 2 mA, is it possible to find a Jordan basis for m` also satisfying (3-15)?

This is clearly possible when A is graded, and ` is homogeneous.

Tensor products of local Artinian algebras and Hilbert function.

Question 3.40. Assume that for local Artinian k algebras A and B their tensor product A ⌦k B is also
a local Artinian k algebra. By a criterion of M. Sweedler [114, Theorem, b.iii.] this is equivalent to
(A/mA)⌦k (B/mB) is local. How is the Hilbert function for A⌦k B related to the Hilbert functions of A
and of B? Here we assume the residue fields are equal (A/mA) = (B/mB) ⇠= k: then what is the relation
between the associated graded algebra (A ⌦k B)⇤ and A⇤ ⌦k B⇤, the tensor product of the associated
graded algebras of A, B?
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Universidade de Évora, Rua Romão Ramalho, 59, P–7000–671 Évora, Portugal
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Abstract

We consider Artinian algebras A over a field k, both graded and local algebras.
The Lefschetz properties of graded Artinian algebras have been long studied, but more
recently the Jordan type invariant of a pair (ℓ,A) where ℓ is an element of the maximal
ideal of A, has been introduced. The Jordan type gives the sizes of the Jordan blocks
for multiplication by ℓ on A, and it is a finer invariant than the pair (ℓ,A) being strong
or weak Lefschetz. The Jordan degree type for a graded Artinian algebra adds to the
Jordan type the initial degree of “strings” in the decomposition of A as a k[ℓ] module.
We here give a brief survey of Jordan type for Artinian algebras, Jordan degree type for
graded Artinian algebras, and related invariants for local Artinian algebras, with a focus
on recent work and open problems.
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1 Introduction.

Notation.

Let A be a graded or local Artinian algebra quotient of R = k[x1, . . . , xr] (polynomial ring)
or of R = k{x1, . . . , xr} (regular local ring) with maximal ideal m and highest socle degree
j: that is Aj 6= 0, but Ai = 0 for i > j. Here, for A local we take Ai to be the i-th graded
piece of the associated graded algebra A∗ =

⊕
mi/mi+1 of A. For A graded we let m = ⊕j

1Ai.
The Hilbert function of A is the sequence H(A) = (h0, h1, . . . , hj) where hi = dimk Ai; the
Sperner number of H(A) is the maximum value of H(A). The Jordan type Pℓ,A of a nilpotent
element ℓ ∈ m of A is the partition P giving the sizes of the Jordan blocks of the (nilpotent)
multiplication map mℓ. The properties of (ℓ, A) being strong-Lefschetz (P = H(A)∨, the
conjugate of the Hilbert function viewed as a partition) or weak-Lefschetz (the number of
parts of P is the Sperner number) of a pair (ℓ, A), have been investigated as such since at
least 1978 - see [St, H-W, MiNa]. Earlier, J. Briançon in 1972 showed the strong Lefschetz
property Pℓ,A = H(A)∨ in characteristic zero for each codimension two Artinian algebra A and
a generic ℓ ∈ R1 [Bri]. But Jordan type is a finer concept: there are in general many partitions
that can occur for Pℓ,A given just the Hilbert function H = H(A). A basic introductory paper
is the second two authors’ joint paper with C. McDaniel [IMM2]; other resources include
[BMMN, IMM1, IMM3, CGo]. Our attention in this note will be to the more general notion
of Jordan type, as opposed to merely the Lefschetz properties.

Let H be a sequence that occurs as the Hilbert function of an Artinian quotient of R or
R. First, take R to be the polynomial ring. We denote by G(H) and GGor(H) the family
of graded or graded Gorenstein, respectively, quotients of R having Hilbert function H . Now
take R to be the regular local ring, and denote by Z(H) or ZGor(H), respectively, the family
of all (not necessarily graded) quotients of R having Hilbert function H , or, respectively,
the Gorenstein quotients of R having Hilbert function H . We regard these in this survey
as subvarieties (not necessarily irreducible) of the Grassmanian Grass(R/mn), n = |H|; but
some have also looked at the scheme structures, namely the Hilbert scheme Hilbn(R) (see, for
example [Hui, Je, BCR, Kl, CaJN] and [IKa, Appendix C]). We will write R for both R and
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R, when considering both at the same time. There is a natural notion of dominance of Jordan
types (see Definition 1.5). Our goals in this survey are

(a). Review the definitions and properties of Jordan type and Jordan degree type.

(b). Report on progress on the several major questions below, and

(c). Suggest some further problems.

1.1 Major problems.

The development of the subject has been related to some questions:

(i). How does Jordan type behave as one deforms the the element ℓ ∈ m, or the algebra
A = R/I among algebras of a given Hilbert function? Two cases: graded A, and local
A = R/I. In particular, does the Hilbert function determine a bound (in the sense of
domination) on the possible Jordan types?

(ii). For graded A, there is a refinement of Jordan type to a Jordan degree type [IMM2].
Determine its properties and avatars (Sections 2.3 and 2.4 below).

There is a natural generalization of Jordan type to “contiguous Jordan type” for graded
algebras having non-unimodal Hilbert function. There are similar questions of deforma-
tion (see [IMM2, Section 2F, Definition 2.28ii], not treated here).

(iii). Generalizations and refinements of Jordan type from graded algebras to local algebras
[IMS] (see Section 3 below).

(iv). When A is local Gorenstein, what is the relation of these refinements of Jordan type to
the symmetric decomposition of A (see [IM1, IMS])?

(v). Using Jordan type and other invariants to show that various families Z(H) or ZGor(H)
have several irreducible components [IM2] (Section 3.1 below).

(vi). Given the Artinian algebra A, and a fixed partition P of |A|, what is the locus ZP ⊂
P(A1) ∼= Pr−1 of linear forms ℓ for which Pℓ,A = P ? The non-Lefschetz locus [BMMN]?

(vii). What is the relation between Jordan type and the Betti minimal resolution of A? [Ab,
AbSc]

(viii). What pairs of Jordan type partitions Pℓ,A and Pℓ′,A may occur together in an Artinian
A? OR, what Jordan types PM , PN may occur for a pair (M,N) of n × n commuting
matrices (see [Kh]).

Some of these questions are now partially answered, ideas behind them have inspired other
questions that remain open. We discuss (i)-(v) in more detail below, and then pose some
specific questions.
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1.2 What is Jordan type?

We first present the definitions and some properties of Jordan type, and then in Section 2.1
discuss the relationship to the weak and strong Lefschetz properties for graded algebras. Since
the definition of Jordan type does not require grading, we start by stating it in the general
setting, for a module over an algebra that may not be graded.

Definition 1.1 (Jordan type). (See also [IMM2, Definition 2.1] and [H-W, Section 3.5]) Let
M be a finitely generated module over the Artinian algebra A, and let ℓ ∈ m. The Jordan type
of ℓ in M is the partition of dimk M , denoted Pℓ = Pℓ,M = (p1, . . . , ps), where p1 ≥ · · · ≥ ps,
whose parts pi are the block sizes in the Jordan canonical form matrix of the multiplication
map mℓ : M → M , x 7→ ℓx. The generic Jordan type of A, denoted PA, is the Jordan type
Pℓ,A for a generic element ℓ of A1 (when A is graded), or of mA (A local).

The Jordan block form for the similarity class of a matrix is sometimes called the Segre
characteristic, in contrast to its conjugate, the Weyr characteristic (see Note 1.10 below).

Definition 1.2 (Jordan basis, pre-Jordan basis). With the notation of the previous definition,
a pre-Jordan basis for ℓ is a basis of M as a vector space over k of the form

B = {ℓizk | 1 ≤ k ≤ s, 0 ≤ i ≤ pk − 1}, (1.1)

where Pℓ,M = (p1, . . . , ps) is the Jordan type of ℓ. We call the subsets Sk = {zk, ℓzk, . . . , ℓpk−1zk}
strings of the basis B, and each element ℓizk a bead of the string. The Jordan blocks of the
multiplication mℓ are determined by the strings Sk, and M is the direct sum

M = 〈S1〉 ⊕ · · · ⊕ 〈Ss〉. (1.2)

If the elements z1, . . . , zs ∈ M satisfy ℓpkzk = 0 for each k, we call B a Jordan basis for ℓ,
recovering the usual definition in linear algebra, since a matrix representing the multiplication
by ℓ with respect to B, ordering elements as (ℓp1−1z1, . . . , z1, ℓ

p2−1z2, . . . , z2, . . . , ℓ
ps−1zs, . . . , zs),

is a canonical Jordan form. In that case the 〈Sk〉 are cyclic k[ℓ]-submodules of M .

The following is well-known (see [Ar, §4.7], [We]).

Lemma 1.3. If B has a pre-Jordan basis B as in (1.1), then for each k, we have

ℓpkzk ∈ 〈ℓazi | a ≥ pk, i < k〉.
There is a Jordan basis of M derived from the pre-Jordan basis, and having the same partition
invariant Pℓ,M giving the lengths of strings.

Algorithm 1.4. Often it is useful to consider a pre-Jordan basis (or a Jordan basis) to study
the Jordan type of an element ℓ ∈ m. However, to compute the Jordan type of an element
in a module, we do not need to choose a basis. We can consider the sequence (d0, . . . , dj+1),
where di = dimk M/ℓiM , and compute the sequence of differences ∆ℓ = (δ1, . . . , δj+1), where
δi = di − di−1. Then taking the conjugate partition of this sequence, we get the Jordan type
of ℓ in M (see [IMM2, Lemma 2.3]):

Pℓ,M = ∆∨
ℓ .

This is the algorithm used in Macaulay 2.
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A key notion is specialization of Jordan types, which follows the dominance partial order
on partitions (Lemma 1.6).

Definition 1.5 (Dominance order). Let P = (p1, . . . , ps), p1 ≥ · · · ≥ ps, and Q = (q1, . . . , qr),
q1 ≥ · · · ≥ qr, be two partitions of n =

∑
pi =

∑
qi. We say that P dominates Q (written

P ≥ Q, if for each k ∈ [1,min{s, r}], we have

k∑

i=1

pi ≥
k∑

i=1

qi.

For example, the partition (5, 4, 2) ≥ (5, 3, 2, 1), but (5, 3, 3, 2) and (4, 4, 4, 1) are incompa-
rable.

Let P be a partition of n we denote by P ∨ the conjugate partition of n: switch rows and
columns in the Ferrers diagram of P . Let H be a sequence that occurs as the Hilbert function
of an Artinian algebra, and denote by PH the associated partition of n = |A|, H∨ its conjugate.

H = (1, 2, 3, 2, 1), PH =

• • •
• •
• •
•
•

H∨ = (PH)
∨ = (5, 3, 1) :

• • • • •
• • •
•

Figure 1: Hilbert function, its partition (3, 2, 2, 1, 1), and conjugate (Example 1.8).

The following result is well known.

Lemma 1.6. [IMM2, Theorem 2.5] Let A be a standard graded Artinian algebra, and let
ℓ ∈ A1 be a linear form. Then Pℓ,A ≤ H(A)∨ in the dominance partial order on partitions.

There is an analogous statement for local algebras A (ibid.).

Corollary 1.7. Let A be an Artinian quotient of A and let ℓ ∈ mA. Then Pℓ,A has at least as
many parts as the Sperner number of H(A).

Proof. That H(A)∨ ≥ Pℓ,A and are partitions of n = dimk A is equivalent to H(A) =(
H(A)∨

)∨ ≤ P ∨
ℓ,A [CM, Lemma 6.3.1]. So the largest part of H(A) (viewed as a partition) is

less or equal the largest part in P ∨
ℓ,A, which is just the number of parts of Pℓ,A. �

Example 1.8 (Comparison of Jordan type for algebra B and associated graded algebra
A = B∗). (a) Consider the graded CI algebra A = k[x, y]/I, I = (x3, y3) = Ann(X2Y 2), with
H(A) = (1, 2, 3, 2, 1) and H∨ = (5, 3, 1) (Figure 1). Here

Pℓ,A = (5, 3, 1) for ℓ = ax+ by when ab 6= 0, but Px,A = Py,A = (3, 3, 3).

The strings for ℓ = x are {1, x, x2}, {y, yx, yx2}, {y2, y2x, y2x2}, and (5, 3, 1) > (3, 3, 3).

5



(b) Consider the non-homogeneous CI algebra B = R/J , with R = k{x, y}, and ideal
J = (x3, y3 − x2y2) = Ann(X2Y 2 + Y 3) satisfying B∗ = A. We have for char k = 0, again
Pℓ,B = (5, 3, 1) for ℓ = ax + by when ab 6= 0, and Px,B = (3, 3, 3). But now Py,B = (4, 3, 2),
as the multiplication my has pre-Jordan basis strings {1, y, y2, y3 = x2y2}, {x, xy, xy2}, and
{x2, x2y}. Applying Algorithm 1.4, a Jordan basis for my has the strings {1, y, y2, y3 = x2y2},
{x, xy, xy2}, and {x2 − y, x2y − y2}, as y4, xy3, and (x2 − y)y2 are zero. The algebra B is
a deformation of A, and Py,B = (4, 3, 2) > Py,A = (3, 3, 3) in the dominance partial order,
consistent with Corollary 3.10.

The following example illustrates some of the methods of determining Jordan type for a
non-homogeneous AG algebra. See also [IM2, §2.4].

Example 1.9. (Determining Jordan type, C non-homogeneous.) Let R = k{x, y, z} and
C = R/AnnG, where G = X3Y + Y 2Z. Then C is a non-homogeneous AG algebra, not CI,
defined by AnnG = (xz, yz − x3, z2, xy2, y3), withH(C) = (1, 3, 3, 2, 1) andH(C)∨ = (5, 3, 2).

i. Generic Jordan type of C. Assume char k /∈ {2, 3} and consider a general element ℓ ∈ mC .
We write ℓ = ax+ by + cz + h, with h ∈ m 2

C . Suppose ab 6= 0. Then ℓ4 = 4a3bx3y 6= 0. Also,
ℓ3 = a3x3 + 3a2bx2y + h′ and ℓ2x = a2x3 + 2abx2y + h′′, with h′, h′′ ∈ m 4

C (note that yz = x3

in A, so y2z = x3y ∈ m 4
C). We can easily check that ℓ3 and ℓ2x are linearly independent, so we

have already two strings in a pre-Jordan basis for ℓ, namely {1, ℓ, ℓ2, ℓ3, ℓ4} and {x, ℓx, ℓ2x}.
According to Lemma 3.9 the Jordan type of ℓ in C is at most (5, 3, 2), and we already have
two string of lengths 5 and 3, so we will check if we can get a new string of length 2. Note
that m 3

C = 〈ℓ3, ℓ2x, ℓ4〉, so if there is a further string of length two, there must be an order-one
element α ∈ mC \ m 2

C such that ℓα /∈ 〈ℓ2, ℓ3, ℓ4, ℓx, ℓ2x〉. Using ℓ and x to cancel terms in α
if necessary, we can assume that α = z + g, with g ∈ m 2

C . Now ℓα = bx3 + ℓg ∈ m 3
C , meaning

there is no new length-two string. Therefore the Jordan type of ℓ is

Pℓ,C = (5, 3, 1, 1),

and since the set {ax+ by + cz + h ∈ mC : ab 6= 0, h ∈ m 2
C} is an open dense subeset of mC ,

this is the generic Jordan type of C (Definition 1.1). We can consider {z} and {y2} as new
strings to complete the pre-Jordan basis.

ii. Why we cannot attain a last length-two string. That a last two-length string is
not attainable is related to a construction from [IM1, Proposition 1.33]. The module QC(1)
can be explained by the relations between the terms Y 2Z and X3Y in G (we refer to [IM1]
for details on the Q(a) modules, introduced by the second author in [I1]; see also Lemma 3.1
below). Here, QC(1) has two homogeneous terms:

QC(1)1 =
(0 : m 3

C)

m 2
C + (0 : m 2

C)
and QC(1)2 =

m 2
C ∩ (0 : m 2

C)

m 3
C + (0 : mC)

. (1.3)

Note that Y 2 is not a partial of X3Y , but all further partials of Y 2 belong to 〈1, Y 〉, and thus
are also partials of X3Y . So acting on G with z yields z ◦ G = Y 2, and this means that the
class of z is non-zero in QC(1)1 (in fact, it generates this module). However, mRz ◦ G = 〈1, Y 〉,
so if ℓ′ ∈ mR is a lifting ot ℓ, we have ℓ′z ◦ G = bY + d = (bx3 + dx3y) ◦ G, for some d ∈ k,
which explains why ℓz ∈ m 3

C and its class is zero in QC(1)2, so the module QC(1) is acyclic.
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Coincidently, QC(1) = 〈z, y2〉, so its generators are the elements we chose for the last two
strings of the pre-Jordan basis.1

iii. Special Jordan types of C. When ℓ = ax+ by + cz + h, h ∈ m 2
C and ab = 0, we find

lower Jordan types in the dominance order. For instance,

Px,C = (42, 12), Py+z,C = (4, 23), Py,C = (32, 22), Px2,C = (24, 12), Pz,C = (23, 14). (1.4)

The strings for a pre-Jordan basis for z are particularly interesting, and illustrate the issues
of the non-graded case: since yz = x3 a possible choice is {1, z}, {y, x3}, {y2, x3y}, {x}, {x2},
{xy}, {x2y}. Note that in the strings {y, x3} and {y2, x3y} there is a jump in order: the
orders of y and y2 are 1 and 2, but multipliyiong by z makes these orders jump to 3 and 4,
respectively.

iv. Deformation C(t). Consider the family of Artinian Gorenstein algebras
(
C(t)

)
t∈k

,

where C(t) = R/AnnG(t) is defined by the dual generator G(t) = X3Y + Y 2Z + tY Z2. Then
C(0) = C, and for t 6= 0, C(t) is a CI algebra, as AnnG(t) = (xz, ty2 − yz + x3, z2 − tx3). We
have H

(
C(t)

)
= H(C) = (1, 3, 3, 2, 1) for all t. We can check that for t 6= 0 the Jordan type of

ℓ = ax+ by + cz + h, with h ∈ m 2
C(t) and ab 6= 0, is Pℓ,C(t) = (5, 3, 2) = H

(
C(t)

)∨
, admitting

strings {1, ℓ, ℓ2, ℓ3, ℓ4}, {x, ℓx, ℓ2x}, and {z, ℓz}. So the generic Jordan type of C(t), for t 6= 0,
strictly dominates that of C = C(0) which is (5, 3, 1, 1) (simply domination is required by
Lemma 3.9). For x, y + z, y, and x2, we find the same Jordan types in C(t) as in (1.4), but
Pz,C(t) = (32, 14) > Pz,C.

The associated graded algebra is C(t)∗ = R/(xz, ty2 − yz, z2, x4), with R = k[x, y, z], for
t 6= 0, and C(0)∗ = C∗ = R/(xz, yz, z2, xy2, y3, x4). The generic Jordan type of C(t)∗ is the
same as that of C(t) as are the special Jordan types of x and x2, but Py+z,C(t)∗ = (3, 23, 1),
Py,C(t)∗ = (3, 23, 1), for any t ∈ k, and Pz,C(t)∗ = (22, 16), for t 6= 0, Pz,C(0)∗ = (2, 18). All these
are dominated by the respective Jordan types in C(t), as expected from Corollary 3.10.

Note 1.10. The Weyr characteristic., an invariant of the similarity class of a matrix intro-
duced by Eduard Weyr in 1885, for our nilpotent maps mℓ on A is just the conjugate (switch
rows and columns of the Ferrers diagram) of the Jordan partition Pℓ,A ([OCV, §2.4]). See [Sh]
for an excellent introduction; K. O’Meara and J. Watanabe point out that for some problems
the Weyr form may be more useful than the Jordan type [OW]; see also [IMM2, Note p. 371]
for further references.

1.3 Historical note.

Lefschetz properties of the cohomology rings of algebraic varieties had been long studied before
the algebraists adapted it. R. Stanley showed that graded Artinian complete intersection
algebras A = R/(xa1

1 , . . . , xar
r ) satisfy a strong Lefschetz property [St]: he proved this using the

hard Lefschetz theorem for the cohomology of the product P = Pa1−1×· · ·×Par−1 of projective
spaces. This inspired many to explore the Lefschetz properties of Artinian algebras. Results
and open problems at the time concerning Lefschetz properties of graded Artinian algebras
were well set out in the 2013 foundational opus by T. Harima-J. Watanabe et al [H-W] and also
surveyed by J. Migliore and U. Nagel [MiNa]. Other articles on the Lefschetz properties include

1Further examples and discussion of these points are found in [IM2, §2.4, Remark 2.11ff.].
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the T. Harima articles [Ha1, Ha2] in 1995 and 1999, the 2011 B. Harbourne, H. Schenck, and
A. Seceleanu on Gelfand-Tsetlin patterns and the weak Lefschetz property [HScSe], and the
direction of singular hypersurfaces and Lefschetz properties by R. Di Gennaro, G. Ilardi, and J.
Vallès [DIV], a direction continued by many as E. Mezzetti, R.M. Miró-Roig, G. Ottaviani on
Laplace Equations and weak Lefschetz [MeMO] and R.M. Miró-Roig and M. Salat on Togliatti
equations [MR-S].

Despite advocacy since 2012 at the Lefschetz conference organized by Junzo Watanabe
at Tokai University, of the second author for using the finer Jordan type invariant for a pair
(ℓ, A), it was not until [IMM2] that an introduction to the topic was written. This was at
the instigation of Yong-Su Shin, who asked prior to coauthoring [PaSh], where one could find
an introduction to Jordan type! There was none. The authors of [IMM2] attempted to give
a comprehensive introduction, including new results, doing for Jordan type what J. Migliore
and U. Nagel had done earlier in the same journal in “Tour of the strong and weak Lefschetz
Properties” [MiNa]. For some topics, such as modular tensor products, they were able to
exhibit several threads of work by different communities who seemed unaware of each other’s
work on the same subject [IMM2, §3B]. Several other articles by the same group treated Jordan
type for certain free extensions, which are deformations of tensor products [IMM1, Theorem
2.1]; see also [MCIM] which gives a connection of free extensions to invariant theory.

A main advance in the study of Lefschetz properties of Artinian Gorenstein (or AG) alge-
bras was the article of T. Maeno and J. Watanabe, showing that the ranks of multiplication
by powers of a linear form ℓ on the degree components Ai of a graded Gorenstein algebra A
was given by the ranks of certain higher Hessians formed from the Macaulay dual generator
of A, at a point pℓ [MW]. This result was extended and used by many, including R. Gondim
[Go], Gondim and G. Zappalà [GoZ1], and it was generalized in [GoZ2], to the mixed Hessians.
These have been used to prove that some Nagata idealization examples of graded AG algebras
in embedding dimension at least four, are not strong Lefschetz (as [CeGIM]. The Hessian tools
have been used recently by a growing cohort to study Jordan types for pairs (A, ℓ) where A is
a graded AG algebra and ℓ ∈ A1 (see, for example [Al1, AlIK, AlIKY, Y1, Y2] and Section 2.2
below).

Recent articles on Jordan type and Artinian algebras.

We here mention several recent articles and research areas, with emphasis on those that
mention Jordan type. Fixing codimension two, and a Hilbert function H , we can study the
“Jordan cells” V(EP ) of the family GH , comprised of ideals having initial monomial ideal
EP in a direction given by a linear form ℓ, determined by the partition P , which must have
“diagonal lengths” T : see [AlIKY, Theorem 2.8]. The cell V(EP ) is comprised of all graded
Artinian algebras A = k[x, y]/I such that Pℓ,A = P . The dimension of these cells, and some of
their geometric properties were known [Y1, Y2, IY]; the article [AlIKY] determines the generic
number of generators of ideals in each cell [AlIKY, Theorems 3.11, 5.15] using a decomposition
of cells into a product of simpler components. See Question 4.3.

There has been the beginning of tying the Jordan type with the Betti resolution of A, see N.
Abdallah and H. Schenck [AbSc] and N. Abdallah is [Ab], and as well J. Jelisiejew, S. Masuti
and M. Rossi’s [JeMR], where they investigate local complete intersections of codimension
three, also the book-length [KKRSSY] has some Betti vs. Jordan type calculations.
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Not totally unrelated, the preprint [AAIY] studies Jordan types for codimension three
graded Gorenstein algebras of Sperner number at most 5 and all linear forms. This is facilitated
by the D. Buchsbaum-D. Eisenbud Pfaffian structure theorem and related work [BuEi, CoV,
Di] which specifies the Betti resolutions possible given H(A). The results are still complex
with 26 Jordan types for H = (1, 3, 4k, 3, 1) when k ≥ 3 and 47 for H = (1, 3, 54, 3, 1).

In [A-N] the weak Lefschetz property and Jordan types for linear forms of a class of graded
AG algebras, called Perazzo algebras, of codimension five were studied. For Perazzo algebras,
the multiplication map ℓj−2 from degree 1 to degree j − 1 does not have maximal rank, where
j is the socle degree. Thus, the strong Lefschetz property for this family is not satisfied.
In [A-N] all Jordan types for linear forms of Perazzo algebras of codimension five with the
smallest possible Hilbert function were determined.

2 Properties of Jordan type, and of Jordan degree type.

2.1 Lefschetz properties and Jordan type.

Definition 2.1 (Lefschetz properties). Let A be a graded Artinian algebra of highest socle
degree j and let ℓ ∈ A1. We say that the pair (A, ℓ) is a weak Lefschetz (WL) if for each
i ≥ 0 the multiplication map ×ℓ : Ai → Ai+1 has maximal rank. The algebra A satisfies the
weak Lefschetz property (WLP) if it has a WL element. We say that the pair (ℓ, A) is strong
Lefschetz (SL) if for each i, d ≥ 0 the multiplication map ×ℓd : Ai → Ai+d has maximal rank.
The algebra A satisfies the strong Lefschetz property (SLP) if it has a SL element.

The following result part A is a portion of [IMM2, Prop. 2.10]; part B is essentially [IMM2,
Lemma 2.11], shown when H(A) is also symmetric in [H-W, Prop. 3.5]. We say that a Hilbert
function H(A) = (h0, h1, . . . , hj) is unimodal if there is an integer k such that h0 ≤ · · · ≤ hk

and hk ≥ hk+1 ≥ · · · ≥ hj . Recall that the Sperner number Sperner(A) is the maximum value
of H(A).

Lemma 2.2. A. Let A be a graded Artinian algebra (possibly non-standard), and ℓ ∈ A1.
Then the following are equivalent

(i.) The pair (A, ℓ) is strong Lefschetz;

(ii.) The Jordan type PA,ℓ = H(A)∨, the conjugate of the Hilbert function viewed as a parti-
tion.

B. Assume further that H(A) is unimodal. Then the following are equivalent

(i). The pair (A, ℓ) is weak Lefschetz.

(ii). The dimension dimk A/ℓA = Sperner(A).

(iii). The number of parts of the Jordan partition PA,ℓ is Sperner(A), the minimum possible
given H(A) (Corollary 1.7).

Proof. The proof of Lemma 2.2(A) under the hypothesis is a bit subtle see [IMM2, Prop.
2.10]. For Lemma 2.2(B), the proof of B(i) ⇔ B(ii) is straightforward from the definitions; the
proof of B(ii) ⇔ B(iii) follows from decomposing A as a direct sum of strings (Lemma 1.3).

�
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2.2 Higher Hessians and mixed Hessians.

Graded Artinian Gorenstein algebras are determined by a single polynomial in the Macaulay
dual ring, by a result of F.H.S. Macualay [Mac2]. Let A = R/AnnF be an Artinian Gorenstein
algebra with dual generator F ∈ Ej = k[X1, . . . , Xr]j , where AnnF is the ideal generated by
all the forms g ∈ R such that g ◦ F = 0. T. Maeno and J. Watanabe [MW] introduced higher
Hessians associated to the dual generator F and provided a criterion for Artinian Gorenstein
algebras having the SLP.

We first briefly recall the Macaulay duality [Mac3], see [Ei, §21.2], [I2]; the recent emen-
dation by J. O. Kleppe and S. Kleiman gives a geometric view consistent with studying
deformation [KlKl]. We let R = k[x1, . . . , xr] act on E by contraction2 where for u ≥ k,
xk
i ◦ Xu

j = δi,jX
u−k
i (we will call this ∂k/∂Xk

i ◦ Xu
j ) and extending this multilinearly to an

action of h ∈ R on F ∈ E .

h ◦ F = h(∂/∂X1, . . . , ∂/∂Xr) ◦ F, (2.1)

so taking F = X 3
1 X

2
2 +X1X

4
2 we have x1x

2
2 ◦ F = X 2

1 +X 2
2 .

Definition 2.3. [MW, Definition 3.1] Let F be a polynomial in E and A = R/AnnF be its

associated Gorenstein algebra. Let Bk = {α(k)
i }i be an ordered k-basis of Ak. The entries of

the k-th Hessian matrix of F with respect to Bk are

Hessk(F ) = (α(k)
u α(k)

v F )u,v.

Note that when k = 1, Hess1(F ) coincides with the usual Hessian. P. Gordan and M. Noether
proved that the (first) Hessian of every homogeneous form F in at most 4 variables has non-
zero determinant unless F defines a cone [GorNo]. This is no longer the case in polynomial
rings with at least 5 variables: a family of forms that do not define a cone and for which
the Hessian has zero determinant was provided by [GorNo] and [Per], they are called Perazzo
forms.
Up to non-zero constant multiple, det Hessk(F ) is independent of the choice of basis Bk. For
every 0 ≤ k ≤ ⌊ j

2
⌋ and a linear form ℓ = a1x1 + · · · + arxr the rank of ×ℓj−2k : Ak → Aj−k is

equal to the rank of Hesskℓ (F ); i.e. the Hessian matrix evaluated at the point Pℓ = (a1, . . . , ar)
– see Theorem 2.6 below. For now we state,

Theorem 2.4. [MW, Theorem 3.1],[Wat2]. An AG algebra A = R/AnnF with socle degree
j has the SLP if and only if there exists linear form ℓ ∈ R1 such that

detHesskℓ (F ) 6= 0,

for every k = 0, . . . , ⌊ j
2
⌋.

As mentioned above, for Perazzo forms F the determinant of the first order Hessian,
Hess1(F ), is identically zero. So by the above theorem the associated AG algebra of a Perazzo
form fails to have the SLP. The WLP and Jordan types of Perazzo algebras in 5 variables have
been studied in [FMM] and [A-N].

2When char k = 0 or char k > j we may use the usual differentiation action, see [IKa, Appendic A].
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For an AG algebra for which all higher Hessians have non-vanishing determinants, the
above theorem shows that for a general enough linear form ℓ all the multiplication maps
ℓj−2k : Ak → Aj−k have maximal rank. It is natural to ask: if an AG algebra A has at
least one Hessian with vanishing determinant, which multiplication maps have maximal rank
and which ones do not? R. Gondim and G. Zappalà [GoZ2] introduced mixed Hessians that
generalize the higher Hessians.

Definition 2.5. [GoZ2, Definition 2.1] Let A = R/AnnF be the AG algebra associated to

F ∈ Ej. Let Bk = {α(k)
i }i and Bu = {β(u)

i }i be k-basis of Ak and Au respectively. The entries
of the mixed Hessian matrix of order (k, u) for F with respect to Bk and Bu is given by

Hess(k,u)(F ) = (α(k)
u β(u)

v F )u,v.

Notice that this generalizes the definition of higher Hessians and we have Hessk(F ) = Hess(k,k)(F ).

Theorem 2.6. [GoZ2, Theorem 2.4]. Let A be an AG standard graded algebra. Then the
rank of the mixed Hessian matrix of order (k, u) evaluated at the point Pℓ = (a1, . . . , ar) is the
same as the rank of the multiplication map ℓu−k : Ak → Au for ℓ = a1x1 + · · · + arxr.

The method of higher Hessians and mixed Hessians has been used to study the Lefschetz
properties for graded AG algebras in the literature, for instance see [Al1, Go, FMM]. The
ranks of higher and mixed Hessians together at the point Pℓ completely determine the ranks
of multiplication maps by different powers of the linear form ℓ in all degrees, and hence, when
the Hilbert function H(A) is unimodal, the Jordan degree type of (ℓ, A) (Proposition 2.19).
B. Costa and R. Gondim in [CGo] determined the Jordan types for general linear forms of AG
algebras having low codimension and low socle degree in terms of the ranks of the associated
mixed Hessians.

The first and second authors with L. Khatami classified [AlIK] all partitions that can occur
as Jordan types of linear forms for AG algebras in codimension two (these are exactly complete
intersection algebras by [Mac1]) having a fixed Hilbert function. It has been shown that in
codimension two, the Jordan types of linear forms of AG algebras are completely determined
by the rank of higher Hessians. In fact, they are uniquely determined by the sets of higher
Hessians that have vanishing determinants.

Theorem 2.7. [AlIK, Theorem 3.8] Assume that H =
(
1, 2, 3, . . . , dk, . . . , 3, 2, 1

)
, is a Hilbert

function of some complete intersection algebra for d ≥ 2 and k ≥ 2 (k = 1, respectively). Let
P be a partition that can occur as the Jordan type of a linear form and an Artinian complete
intersection algebra having Hilbert function H. Then the following are equivalent.

(i). P = Pℓ,A for a linear form ℓ ∈ R1 and an Artinian complete intersection algebra A =
R/AnnF , and there is an ordered partition n = n1 + · · ·+ nc of an integer n satisfying
0 ≤ n ≤ d (or 0 ≤ n ≤ d−1, respectively) such that detHessn1+···+ni−1

ℓ (F ) 6= 0, for each
1 ≤ i ≤ c, and the remaining Hessians are zero;

(ii). P satisfies
P =

(
pn1
1 , . . . , pnc

c , (d − n)d−n+k−1
)
, (2.2)

where pi = k − 1 + 2d − ni − 2(n1 + · · ·+ ni−1), for 1 ≤ i ≤ c.
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The above theorem shows that given H there are exactly 2d (when k > 1), or 2d−1 (when
k = 1) possible Jordan types for Artinian complete intersection algebras of codimension two
with Hilbert function H . These correspond to the vanishing subsets of higher Hessians,
Hessi(F ) for i = 0, . . . , d − 1.

In codimension two, the ranks of mixed Hessians Hess(k,u)(F ) for every k 6= u are deter-
mined by the ranks of higher Hessians Hessk(F ) for 0 ≤ k ≤ d − 1 [AlIK, Proposition 3.12].
This is no longer true in higher codimensions. The first author in [Al2] introduced rank matri-
ces associated to AG algebras and linear forms which provide same information as the ranks
of mixed Hessians. The first and second authors with N. Abdallah and J. Yameógo in a work
in progress study all partitions that can occur as Jordan types for AG algebras of codimension
three and low Sperner numbers (maximum value of the Hilbert function) [AAIY].

2.3 Jordan degree type.

If A is a graded algebra, quotient of the polynomial ring R, and M is a graded module
over A (possibly non-standard graded), we can consider a refinement of Jordan type, called
Jordan degree type (see [IMM2, Definition 2.28], where several equivalent ways of defining it
are presented and different notations are proposed).

Definition 2.8. Let A be a graded algebra and let M be a finite graded module over A. Let
ℓ ∈ Ak, k ≥ 1 be a homogeneous element. If B is a Jordan basis for the multiplication by ℓ in
M as in (1.1) and all the elements of B are homogeneous then the Jordan degree type of ℓ in
M is the sequence of pairs of integers

Sℓ,M =
(
(p1, ν1), . . . , (ps, νs)

)
,

where νk is the degree of the first bead zk in the string Sk = {zk, ℓzk, . . . , ℓpk−1zk}, and, by
reordering the strings if necessary, we require that if pk = pk+1 for some k then νk ≤ νk+1.

We may write the Jordan degree type in list manner:

Sℓ,A =
∑

p

∑

ν

(p, ν)η(p,ν), (2.3)

where η(p, ν) is the multiplicity of (p, ν), and the sum is over distinct pairs (p, ν).
For convenience we may write the pair (p, ν) as pν , and abbreviate a list of pairs having

consecutive degrees (p, ν), (p, ν + 1), . . . , (p, ν + e) as (p ↑ν+e
ν ) in listing Jordan degree type –

e.g. the list (5, 2), (5, 3), (5, 4) could be written as (5 ↑4
2).

Example 2.9. Consider the family of graded Artinian algebras
(
C(t)∗

)
t∈k

associated to C(t)
from Example 1.9iv. For t 6= 0, the Jordan degree type of any linear form ℓ = ax+ by + cz,
with ab 6= 0, satisfies Sℓ,C∗ =

(
(5, 0), (3, 1), (2, 1)

)
, which is the generic JDT of C(t)∗, and is

the JDT associated with the Hilbert function H = (1, 3, 3, 2, 1) (see Note 2.16). If t = 0,
C∗ = C(0)∗ has generic JDT Sℓ,C∗ =

(
(5, 0), (3, 1), (1 ↑2

1)
)
. A few examples of special Jordan

degree types are Sx,C(t)∗ =
(
(4 ↑1

0), (1 ↑2
1)
)
and Sy,C(t)∗ =

(
(3, 0), (2 ↑3

1), (1, 1)
)
, for any t ∈ k,

and Sz,C(t)∗ =
(
(2 ↑1

0), (1 ↑4
1), (1 ↑3

2)
)
, for t 6= 0, while Sz,C(0)∗ =

(
(2, 1), (1 ↑3

1), (1 ↑4
2), (1 ↑2

1)
)
.
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Jordan degree type also enjoys a semi-continuity property. To be able to state it, we
need to define a Hilbert function associated with a Jordan degree type and a partial order
among Jordan degree types sharing the same Hilbert function. We will adopt here purely
combinatorial definitions, without requiring that a given sequence is the Jordan degree type
of some linear form in a module.

Definition 2.10. Let S =
(
(p1, ν1), . . . , (ps, νs)

)
be a sequence of pairs of non-negative integers

satisfying
p1 ≥ · · · ≥ ps and νk ≤ νk+1 whenever pk = pk+1. (2.4)

Then

(i.) The partition associated to S is P = (p1, . . . , ps).

(ii.) The Hilbert function associated to S is that defined by

H(S)i = #{k : νk ≤ i < νk + pk}.

(iii.) For each i ≥ 0, we define the truncation S≤i as the sequence we obtain from S by
omitting the pairs for which νk > i, then replacing each other pair (pk, νk) in S by the
pair (min{pk, i+ 1 − νk}, νk).

(iv.) We say that two pairs (pk, νk), (pl, νl), can be combined or concatenated if νl = νk + pk.
In this case, the result of the concatenation is the pair (pk + pl, νk).

Remark 2.11. Note that if S is the Jordan degree type of a linear form ℓ in a finite graded
module M over an Artinian algebra A then H(S) = H(M). Moreover, the truncation S≤i is
the Jordan type of ℓ in the module M/mi+1M .

The following definition is adapted from [IMM2, Definition 2.28 (iii) and (vi)].

Definition 2.12 (Concatenation partial order and dominance partial order). Let S and S ′

be two sequences of pairs of non-negative integers satisfying (2.4), with H(S) = H(S ′).

(i.) Concatenation partial order: we say that S ≥c S ′ if S can be obtained from S ′ by a
sequence of concatenations.

(ii.) Dominance order for JDT: we say that S ≥ S ′ if for each i ≥ 0, the partition associated
to S≤i is greater or equal to that associated to S ′

≤i, in the dominance partial order
(Definition 1.5).

In [IMM2, Definition 2.28 (vi)], the dominance partial order is defined only for Jordan degree
types sharing the same partition. Here we have adopted an extension of this order, comparing
sequences which may have different associated partitions.

Remark 2.13. Note that if S ≥c S ′ then S ≥ S ′. To see this, suppose that S is obtained
from S ′ by one concatenation, of the pairs (pk, νk) and (pl, νl). If i < νl then S≤i = S ′

≤i. If
i ≥ νl then the pair (min{pk + pl, i + 1 − νk}, νk) occurs in S≤i, while the pairs (pk, νk) and
(min{pl, i+ 1 − νl}, νl) occur in S ′

≤i, and this is the only difference between S≤i and S ′
≤i. In

any case, we see that the partition associated to S≤i is greater or equal to the one associated
to S ′

≤i. The result follows by transitivity.
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Example 2.14. Let S =
(
(4, 0), (2, 1)

)
and S =

(
(3, 0), (3, 1)

)
. Then S ≥ S ′, but S and S ′

are not comparable under the concatenation partial order. This shows that the dominance
partial order is a proper extension of the concatenation partial order.

Lemma 2.15. [IMM2, Lemma 2.29] Fix ℓ ∈ R1. Let
(
A(w)

)
w∈W be a family of graded

Artinian algebras with constant Hilbert function H
(
A(w)

)
= H, and constant Jordan type

Pℓ,A(w) = Pℓ. Let w0 ∈ W be such that for w ∈ W \ {w0}, also the Jordan degree type is con-
stant, Sℓ,A(w) = Sℓ. Then Sℓ ≥ Sℓ,A(w0) in the dominance partial order of Definition 2.12(ii).

Note 2.16. We may assign a contiguous Jordan type and JDT(H) to a Hilbert function: we
just regardH as a bar graph, and list the rows of the bar graph with their initial degrees [IMM2,
Definition 2.8ii]. In [IMM2, Prop. 2.32] is shown a concatenation inequality JDT(H) ≥c Sℓ,A

for a graded A of Hilbert function H .
However, using our extended Definition 2.12ii. above of dominance of JDT, we have also

that for A graded with H(A) = H ,

JDT (H) ≥ Sℓ,A, (2.5)

in the dominance partial order. This follows from the inequality (H≤i)
∨ ≥ Pℓ,A/mi+1

A
, the Jordan

type of A/mi+1
A , for each i ∈ [0, j], and the equivalence between JDT and the sequential Jordan

type (Lemma 3.7).

Remark 2.17. Note that Lemma 2.15 implies an analogous result for the Jordan type in a
family of graded algebras of fixed Hilbert function. This is generalized in Proposition 3.11 to
families of possibly non-graded algebras.

The Jordan degree type for a graded Artinian algebra is a finer invariant than the
Jordan type [IMM2, Example 3.1]. Taking B = k[x, y, z]/(yz, x2y, xy2, z3, x4, y4) and A =
k[x, y, z]/(y2, x2z, x2y, z3, x6), we have H(A) = H(B) = (1, 3, 5, 4, 2, 1) and Pz,A = Pz,B =
(34, 14); but Sz,A =

(
(3 ↑2

0), 31, (1 ↑5
2)
)
and Sz,B =

(
(3 ↑3

0), (1 ↑3
1), 12

)
.

The first author in [Al3, Example 4.2] provided AG algebras A and B, quotients of R,
having Hilbert function (1, 3, 6, 9, 9, 9, 6, 3, 1) and a linear form ℓ ∈ R1 for which the Jordan
types of pairs (A, ℓ) and (B, ℓ) are equal but their Jordan degree types are different. It is
stated in the same paper that this Hilbert function has the smallest socle degree in codimen-
sion three, for which there is a pair of AG algebras having the same property. However, in
codimension greater than three there are pairs of such AG examples of smaller socle degree
[Al3, Example 4.4].

However, in codimension two, the Jordan degree type of an Artinian graded algebra is
determined by the Jordan type, a result that follows from J. Briançon’s vertical strata in
[Bri].

Lemma 2.18 (Codimension two JDT). [IMM2, Lemma 2.30] When A is a standard graded
algebra of codimension two, and A has Jordan type Pℓ,A = (p1, p2, . . . , ps), p1 ≥ · · · ≥ ps with
respect to an element ℓ ∈ A1 and char k = 0 or char k > j, the socle degree of A, then the
Jordan degree type satisfies

Sℓ,A = ((p1, 0), (p2, 1), . . . , (pk, k − 1), . . . , (ps, s − 1)) .
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2.4 Avatars of Jordan degree type.

The information in the Jordan degree type Sℓ,A is the same as the numerical information in
the central simple modules with respect to ℓ of T. Harima and J. Watanabe [HW1, HW2],
(see [IMM2, Lemma 2.34]). We now show this is equivalent to the information in the ranks of
the maps by powers of ℓ from the graded pieces of A. Recall from Equation (2.3) that η(p, ν)
is the multiplicity of the string (p, ν) in the JDT S.
Proposition 2.19. Let A be a standard graded Artinian algebra of socle degree j. Then the
Jordan degree type Sℓ,A is equivalent to knowing the ranks of each of the multiplication maps
ℓu−k : Ak → Au, for 0 ≤ k < u ≤ j.

In particular, if A is graded Artinian Gorenstein the JDT Sℓ,A is determined by the set of
ranks of all the mixed Hessians, and vice-versa.

Proof. The second statement concerning mixed Hessians follows from the first and Theo-
rem 2.6. Now, given the JDT, we determine the ranks of maps ℓu−k : Ak → Au first by order
of k, then u. For k = 0 the rank of ℓu : A0 → Au is just the number of strings beginning in
degree 0 and ending in degree at least u. For k > 0, we have

rk(ℓu−k : Ak → Au) = #{(p, ν) ∈ Sℓ,A | ν ≤ k, p > u − ν}.

For the converse, it is easy to see that for 0 ≤ ν ≤ j and 1 ≤ p ≤ j + 1 − ν the component
(p, ν) appears η(p, ν) many times in Sℓ,A where

η(p, ν) = rk(ℓp−1 : Aν → Ap+ν−1)

−
[
rk(ℓp : Aν−1 → Ap+ν−1) + rk(ℓp : Aν → Ap+ν) − rk(ℓp+1 : Aν−1 → Ap+ν)

]
.

�
For AG algebras the JDT is symmetric - this was first shown by T. Harima and J. Watanabe

in the context of properties of central simple modules [HW1], then noted by B. Costa and R.
Gondim [CGo, Lemma 4.6]; for a proof see also [IMM2, Proposition 2.38]. This property is
useful in determining the possible JDT given a Hilbert function, and is a strong reason for using
JDT instead of just JT for graded AG algebras in codimension at least three.[A-N, AAIY].

Proposition 2.20. (Symmetry of JDT) Let A be a graded AG algebra and ℓ ∈ A1, and write
in list manner Sℓ,A =

∑
p

∑
ν(p, ν)

η(p,ν) (Equation (2.3)). Then we have for ν ≤ j/2

η(p, ν) = η(p, j + 1 − ν − p). (2.6)

Remark 2.21. (Using dual strings to calculate JDT) The JDT, like the JT for a graded
Artinian algebra may be calculated by considering dual strings in A∨ = Hom(A, k) = R ◦ F .
Here R = k[x, y, z].

If A is standard graded, and ℓ nilpotent, then A∨ has a decomposition as a direct sum

A∨ =
∑

i

k[ℓ] ◦ vi of simple k[ℓ] modules.

We set pi = dimk k[ℓ]◦vi and recall that the Jordan degree type S(A) = {(pi, deg vi)η(pi,deg vi)},
where the pairs (pi, deg vi) are distinct and η(pi, deg vi) is the multiplicity.
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Let A = R/I be a standard graded Artinian k[x]-module, R = k[x1, . . . , xr] and let the
action of x have degree one. Denote by −→s : (p, v) a string-simple k[x]-module (p, v). If −→s ⊂ A,
we may write it as (p, v) = {v, xv, . . . , xp−1v} in degrees (deg v, . . . , deg v + p − 1); we let −→s ∨

denote an abstract dual string (w, x ◦ w, . . . , xp−1 ◦ w), in degrees deg v + p − 1, . . . , deg v in
the k[x] module kDP [X1, . . . , Xr], upon which x acts as a contraction lowering degree.

Lemma 2.22. (Using ℓ-strings in A∨ to find JDT) Using the notation above let the graded
Artinian k[x]-module A satisfy the isomorphism A ∼= ⊕i(

−→s i) where
−→s i are the simple graded

dual k[x]-modules. Then we have that Hom(A, k) ∼= ⊕i
−→s i

∨
, a direct sum of graded simple

k[x]-modules (strings of the same length). Assume S(A) = ⊕i{(pi, ni)
η(pi,ni)}. Then we have

S∨(A) = {(pi, ni + (p1 − 1))η(pi,ni)}. (2.7)

Proof. Writing A as a finite direct sum of simple k[x]-modules, we have Hom(A, k) is the
analogous finite direct sum of their duals. �

Example 2.23. The Artinian algebra A = k[x, y]/(x3, y3, x2y2) has Hilbert function H =
(1, 2, 3, 2, 0) and x-strings {1, x, x2}, {y, yx, yx2}, and {y2, y2x} so A has SJT (30, 31, 22).
Here A = R/I, I = Ann(X2Y,XY 2), whose x-strings are {X2Y,XY, Y }, {X2, X, 1}, and
{XY 2, Y 2} so S∨(A) = (33, 32, 23) which for socle degree 3 corresponds to S(A), by Equation
(2.7).

Example 2.24. [AAIY] Let j ≥ 4, take F = Xj + X2Y j−2 + XZY j−2, let A = R/AnnF .
Then AnnF = I = (z2, x2z, x2y − xyz, yj−1, xj−1 − yj−2z) and the Hilbert function H(A) =
(1, 3, 5j−3, 3, 1).3 We take ℓ = x and claim that Sx,A =

(
(j + 1)0, (3 ↑j−3

1 ), 21,j−2, (1 ↑j−2
2 )

)
.

There are corresponding strings in A∨ with (dual) generators as k[x]-modules, (j + 1)0 corre-
sponds to F . For every 1 ≤ i ≤ j − 3 we have yi ◦ F = X2Y j−i−2 +XZY j−i−2 which explains
(3 ↑j−3

1 ). Now let (yj−2 − xj−2) ◦ F = XZ and z ◦ F = XY j−2 so there are strings of length
two in degrees 1 and j − 2; i.e. 21,j−2 exists in Sx,A. That leaves (1 ↑j−2

2 ) to be explained.
The difference H(A) minus the HF of the Jordan type so far is just (0, 0, 1, 1, . . . , 1j−2). Since
there can be no further strings in A∨ of length 2 (which require an X ·h(Y, Z) dual generator),
the symmetry of JDT forces that (1 ↑j−2

2 ) is the last set of j − 3 strings.

Note that the limit of a family of graded Gorenstein algebras need not be Gorenstein,
and need not have symmetric Jordan degree type, even for simple Hilbert function as H =
(1, 3, 3, 1) ([AEIY, Example 4.16].

Question 2.25. Can we use Lemma 2.15 to show the existence of irreducible components in
the constant Jordan type strata of an algebra A, or in a family of Artinian algebras?

3To verify the Hilbert function H(A) it helps that according to [BuEi, St, Di] (see [IKa, Thm. 5.25]) that a
codimension three Gorenstein ideal of order κ can have at most 2κ+1, generators, the given ideal is in AnnF ,
and the first three generators of I define a length 5 scheme, of Hilbert function (1, 3, 5).
Warning: Dual strings are not usually obtained by just changing variables from x, y, . . . to X,Y, . . .!
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3 Non-graded algebras, and further invariants.

One nice application of Jordan type is to show that certain families of non-graded Artinian
Gorenstein algebras with given Hilbert function have several irreducible components (Section
3.1). Let H be a Gorenstein sequence, i.e. a sequence of integers that is the Hilbert function
of some AG algebra (not necessarily graded). Let Gor(H) be the family of AG algebras whose
Hilbert function is H . Since Jordan type is semi-continuous, if A and B are two algebras in
Gor(H) whose generic Jordan types satisfy PA > PB then A cannot lie on the border of an
irreducible component of Gor(H) whose general element has Jordan type PB. On the other
hand, the symmetric decomposition of the Hilbert function of an AG algebra provides another
semi-continuous invariant, namely Ni,b = dimk

(
mi/

(
mi ∩ (0 : mb)

))
(see [I2, Lemma 4.1A

and Lemma 4.2A]). Combining both invariants, in [IM2] the second and third authors of the
present survey obtain results on the reducibility of certain families of AG algebras, including
the following two, Theorems 3.3 and 3.4 in Section 3.1 showing that there are infinite collections
of such families.

Symmetric decomposition

We recall the symmetric decomposition of the associated graded algebra to an AG algebra,
from [I2, IM1]. Given an AG algebra A, of socle degree j, with associated graded algebra A∗

we define an ideal CA(a) componentwise, by (here ρ is the projection to Ai)

CA(a)i = ρ
(
mi

A ∩ (0 : mj−a−i
A )/(mi+1

A ∩ (0 : mj+1−a−i
A ))

)
.

Lemma 3.1. Let A be an AG algebra over a field k, of socle degree j. The A∗, its associated
graded algebra, has a filtration by ideals

A∗ = CA(0) ⊃ CA(1) ⊂ · · · ⊃ CA(j − 2), such that QA(a) = CA(a)/CA(a+ 1)

is a reflexive k-module satisfying

QA(a)i ∼= QA(a)
∨
j−a−i = Homk(Q(a)j−a−i, k).

Let a Macaulay dual generator of A be FA = Fj + Fj−1 + · · · . Then Q(0) is a socle degree
j graded Artinian algebra, whose Macaulay dual generator is Fj, and Q(a) is determined by
(FA)≥j−a = Fj + · · · + Fj−a.

4

Let HA(a) = H(QA(a)). Then HA(a) is symmetric about (j−a)/2, and the Hilbert function
H(A) satisfies

H(A) =
∑

a

HA(a).

Example 3.2. (i). Let R = k[x, y, z, w] and F = Y 6+X4Z+W 3; then the Artinian Gorenstein
algebra A = R/AnnF satisfies

A = (xy, xw, yz, yw, zw, z2, w3−x4z, w3−x5, w3−y6) and Q(0) = R/(x, z, w, y7) ∼= k[y]/(y7),

4Warning: when a ≥ 1 the relation between Q(a) and (FA)≥j−a is subtle: see [IM1, §1.3].
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The Macaulay dual is

A∨ = R ◦ F = 〈F, {Y i, 0 ∈ [0, 5]}, {X iZ, i ∈ [0, 3]}, {X i, i ∈ [1, 4]},W,W 2〉,

and we can identify Q(1)∨ = 〈X,Z,X2, XZ,X3, X2Z,X4, X3Z〉, Q(2) = 0, Q(3)∨ = 〈W,W 2〉.
The symmetric Hilbert function decomposition D(A) of H(A) = (1, 4, 4, 3, 3, 1, 1) is thus

D(A) =
(
H(0) = (16), H(1) = (0, 2, 2, 2, 2, 0), H(3) = (0, 1, 1, 0)

)

It is not hard to show that this is the unique symmetric decomposition possible for H(A).

(ii). In contrast, there are two symmetric decompositions for H(C) = (1, 3, 3, 2, 1) of Exam-
ple 1.9. For both C and its deformation C(t) of the Example we have

H(0) = (1, 2, 2, 2, 1), H(1) = (0, 1, 1, 0).

But for G+ (X + Y )4 = X3Y + (X + Y )4 + Y 2Z we have H(0) = (1, 2, 3, 2, 1), H(1) = 0 and
H(2) = (0, 1, 0).5

The generic Jordan type for R/Ann
(
G+ (X + Y )4

)
is (5, 3, 1, 1), the same as for G.

Note that in the first dual generator G + (X + Y )4 + Y 2Z in (ii) above Y 2Z is an exotic
summand, since the multiplier Y 2 of the new variable Z is a partial of G+(X +Y )4; but here
this does not hide Z enough to change the Hilbert function. Exotic summands are defined
and discussed in [IM1, §2.2] and [BJMR], we will not treat them here.

Symmetric decompositions of AG algebras, discovered in 1985 ([I1]), have seen increasing
appllications recently, particularly to issues of the scheme or cactus length of forms -a study
begun by Alessandra Bernardi and Kristen Ranestad in their much-cited 2013 [BR], see also
[BJMR]. They have been applied also to classification of Gorenstein local algebras, as [JeMR].

3.1 Families Gor(H) with multiple irreducible components.

As mentioned earlier the following two results depend on a comparison of the dominance
partial order on Jordan types P(ℓ,A) with a contrasting partial order arising from the semicon-
tinuity of certain invariants Ni,b = dimk

(
mi/

(
mi ∩ (0 : mb)

))
of symmetric decompositions.

Families Gor(H) with multiple irreducible components had been previously exhibited using
the semicontinuity of symmetric decompositions and other arguments, such as dimension, as
[I2, Theorem 4.3] for H = (1, 3, 3, 2, 1, 1).

Theorem 3.3. [IM2, Theorem 3.3]. Let k ≥ 2 and consider the Gorenstein sequence
H(k) = (1, 3, 4k, 3, 2, 1). Then Gor

(
H(k)

)
has exactly three irreducible components, each cor-

responding to a symmetric decomposition of the Hilbert function H(k).

Theorem 3.4. [IM2, Theorem 3.6]. Let k ≥ 1 and s ≥ 2, and consider the Gorenstein se-
quence H(k, s) = (1, 3, 4k, 3s, 2, 1). Then Gor

(
H(k)

)
has at least two irreducible components,

each corresponding to a symmetric decomposition of the Hilbert function H(k, s).

5Note, G(t) + (X + Y )4, t 6= 0 has larger HF (1, 3, 4, 2, 1), with decomposition (1, 2, 3, 2, 1) + (0, 1, 1, 0).
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3.2 Sequential Jordan type, Löewy Jordan type, Double sequential

Jordan type.

Jordan type is defined for all Artinian algebras; however Jordan degree type does not have
a natural extension to non-graded algebras: Chris McDaniel showed that it is not even pos-
sible to find a Jordan basis for the multiplication by x on the AG algebra A = k[x, y]/I,
I = (x2 − xy2, y4) that is consistent with the Hilbert function H(A) = (1, 2, 2, 2, 1), so a
Jordan order type for non-graded Artinian algebras generalizing JDT for graded Artinians
is not possible ([IM2, Example 2.15]). We define several refinements of Jordan type intro-
duced in [IMS], that have some desirable deformation properties. They each depend upon a
filtration of an Artinian algebra A by m-adic quotients A/mi. or by Löewy quotients A/(0 : mi)
or by ideals obtained by combining the two.

Definition 3.5 (Sequential, Löewy and Double Jordan type). Let A be an Artinian local
algebra of socle degree j, let m be its maximal ideal, and let ℓ ∈ m.

(i). The Sequential Jordan type (SJT) of (ℓ, A) is given by the sequence

(P,ℓ,A/mi), i ∈ {1, . . . , j}

of Jordan types of successive quotients of A by powers of the maximal ideal.

(ii). The Löewy Sequential Jordan type (LJT) of (ℓ, A) is given by the sequence

(Pℓ,A/(0:mj−k)), k ∈ {1, . . . , j}

of Jordan types of successive quotients of A by the Löewy ideals.

(iii). The Double Sequential Jordan type (DSJT) for a pair (A, ℓ) ∈ m, is given by the table
whose (a, i) entry is the partition

Pℓ,Ba,i
, where Ba,i := A/

(
mi ∩ (0 : mj+1−a−i)

)
, 0 ≤ a ≤ j, 0 ≤ i ≤ j + 1 − a

giving the Jordan type of the quotient of A by intersections of a Löewy ideal with a
power of the maximal ideal.

Example 3.6. Let R = k{x, y, z} and C = R/AnnG, where G = X3Y + Y 2Z, an AG algebra
with socle degree j = 4, as in Example 1.9. Then the double sequential Jordan type of an
element ℓ = ax+ by + cz + h, with h ∈ m 2

C , and ab 6= 0 is

a, i i = 0 1 2 3 4
a = 0 (1) (2, 1, 1) (3, 2, 1, 1) (4, 3, 1, 1)
1 (1) (2, 1) (3, 2, 1) (4, 3, 1, 1)
2 (2, 1) (3, 2, 1) (4, 3, 1, 1)
3 (3, 2, 1) (4, 3, 1, 1)
4 (4, 3, 1, 1) Pℓ,C = (5, 3, 1, 1)

DSJT: Pℓ,Ca,i
, Ca,i := C/

(
m i

C ∩ (0 : m j+1−a−i
C )

)
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Note that for a = 0, since m i
C ⊆ (0 : m j+1−i

C ), the first row in this table gives us the sequential
Jordan type, and for i = 0, since m 0

C = C, the first column shows us the Loewy sequential
Jordan type. Also, if a + i = j + 1, we have m i

C ∩ (0 : m j+1−a−i
C ) = 0, so the Jordan type is

that of the pair (ℓ, C). To save space, we write this Jordan type at the lower right-hand corner
of the table. Here, also the diagonal a+ i = j is constant. This is always the case for an AG
algebra, because (0 : mC) = m j

C .

Lemma 3.7. [IMS, Prop. 2.2] When A is standard graded, both the Sequential Jordan type
and the Löewy Sequential Jordan type are equivalent to the Jordan degree type.

Lemma 3.8. [IMS, Theorem 2] We have that JT ≥ SJT ≥ DSJT and JT ≥ LSJT ≥ DSJT
are true refinements.

We do not know if SJT + LSJT to LSJT is a true refinement. Given their definitions,
and the dominance order (Definition 1.5) for Jordan type, we can define natural dominance
orders for SJT, LSJT, and DSJT when the total lengths of the algebras compared are the
same. For example an SJT S dominates S ′ if for every degree i, the partition S≤i ≥ S ′

≤i in
the dominance order of Definition 1.5. Recall that we take R = k[x1, . . . , xr] with maximal
ideal m = (x1, . . . , xr). We need a preparatory result, adapted from [IMM2, Corollary 2.44],
that will imply the deformation results we wish to show for these invariants.

Lemma 3.9 (Semicontinuity of Jordan type). (i). Let M(τ) for τ ∈ Z be a family of constant
length R-modules over a parameter space Z and let ℓ ∈ mR. Then for a neighborhood U0 ⊂ Z of
τ0, we have that τ ∈ U0 ⇒ Pℓ,M(τ) ≥ Pℓ,M(τ0) in the dominance partial order of Definition 1.5.

(ii). Let M be a finite module over an Artinian algebra A and {ℓ(t), t ∈ X}, X a curve,
be a family of linear forms or of elements of m (according to whether A is graded or local).
Assume that Pℓ,M = P is constant for ℓ ∈ U ⊂ X, an open dense in X; and let ℓ0 ∈ X\U .
Then P ≥ Pℓ0,M in the dominance partial order.

Since an Artinian algebra is a deformation of its associated graded algebra, we have

Corollary 3.10. for any Artinian A, and any ℓ ∈ mA, the Jordan type Pℓ,A of A dominates
the Jordan type Pℓ,A∗ of the associated graded algebra of A.

See Examples 1.8 and 1.9.

Proposition 3.11 (Deformations). [IMS, Prop. 2.12] Let A(τ), τ ∈ Z be a flat (constant
length) family of Artinian algebra quotients of R, let τ0 ∈ Z, and fix ℓ ∈ R.

(i). (SJT) Assume that the Hilbert function H(A(τ)) is constant. Then there is an open
neighborhood U of τ0 in Z such that τ ∈ U implies that the SJT S(ℓ, τ) of the pair
(ℓ, A(τ)) dominates the SJT S(τ0) of (ℓ, A(τ0))

(ii). (LSJT) Assume that the dimensions of the Löewy ideals (0 : m i
A(τ)) are constant along

the family Z. Then there is an open neighborhood U of τ0 such that τ ∈ U implies that
the LSJT for the pair (ℓ, A(τ)) dominates the LSJT for (ℓ, A(τ0).

(iii). (DSJT) Assume that for each pair (i, k) the dimensions of the ideals m i
A(τ) ∩ (0 : m k

A(τ))
are constant along the family Z. Then there is an open neighborhood U of τ0 such that
τ ∈ U implies that the DSJT for the pair (ℓ, A(τ)) dominates the DSJT for (ℓ, A(τ0).
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Proof. The proof is immediate from the semicontinuity of the appropriate invariant on the
given locus. �

Question 3.12. There are many other ways for an Artinian Gorenstein to use the sym-
metric decomposition to make up a Jordan type related invariant. For example, we could
consider the Jordan degree type of each component QA(a) of the symmetric decomposition of
A∗, a ∈ [0, j − 2], where j is the socle degree. These JDT will satisfy appropriate deforma-
tion properties, for example if one fixes the symmetric decomposition of the Hilbert function.
Which of these can we use to study irreducible components of symmetric decomposition strata
D =

(
H(Q(0)), H(Q(1)), . . . , H(Q(j − 2))

)
or of Gor(H), the family of Gorenstein local alge-

bras of a given Hilbert function?

4 Open questions.

Question 4.1. Can we use SJT, LJT, DSJT to help show that certain families of local Artinian
algebras of, say, fixed Hilbert function, have several irreducible components?

Question 4.2. What is the relation between JT and Betti diagrams? See recent articles of
N. Abdallah, and N. Abdallah and H. Schenck [Ab, AbSc].

Question 4.3. Consider Briançon’s vertical cells (Jordan cells) for the family of codimension
two local Artinian algebra of Hilbert function H . Answer analogous questions to those of
[AlIK] involving numbers of generators, and also concerning the symmetric decomposition.

Question 4.4. The following is related to Section 1.1 Problem viii. The Jordan block de-
composition for a (similarity class) of matrices - the Jordan normal form (JNF) has been long
known. But only relatively recently - 2008 - had there been work on which pairs of partitions
can occur of JNF of two commuting n × n matrices.6 This problem reduces to considering
two nilpotent matrices, where JNF is just a partition of n. A partition is called stable if its
parts differ pairwise by at least two. One perhaps surprising fact, shown by T. Košir and P.
Oblak with help from others is that a commuting pair cannot consist of two different stable
partitions: the result has to do with the Hilbert functions of complete intersection quotients of
k[x, y]. The problem of finding the maximum (in dominance order) Jordan type (it is stable)
commuting with a given partition has attracted some interest, in particular a conjecture of
P. Oblak answering this has recently proved by R. Basili. The problems in this area seem
quite difficult, they include study of certain graph associated to a partition; it is as if there
is some hidden structure lurking behind what we know. See [JeS], and the recent survey by
Leila Khatami [Kh] and the references cited there - we have not included references here on
this rich topic.

6Early researchers in this area seemed more interested in the maximum dimension of a vector space of
commuting matrices.
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Hilbert function (1, 3k, 1), (2023) arXiv:math.AC/2302.00287.

[AbSc] N. Abdallah and H. Schenck: Free resolutions and Lefschetz properties of some Artin Gorenstein
rings of codimension four, (2022) arXiv:math.AC/2208.01536.

[Al1] N. Altafi: Hilbert functions of Artinian Gorenstein algebras with the strong Lefschetz property,
Proc. Amer. Math. Soc. 150 (2022), no. 2, 499-513.

[Al2] N. Altafi: Jordan types with small parts for Artinian Gorenstein algebras of codimension three,
Linear Algebra Appl. 646 (2022), 54-83.

[Al3] N. Altafi: A note on Jordan types and Jordan degree types, (2023) arXiv:math.AC/2303.13673.

[AlIK] N. Altafi, A. Iarrobino, and L. Khatami: Complete intersection Jordan types in height two, J.
Algebra 557 (2020), 224–277.

[AlIKY] N. Altafi, A. Iarrobino, L. Khatami, and J. Yaméogo: Number of generators of ideals in Jordan
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[Bri] J. Briançon: Description de HilbnC[x, y], [Preprint, Univ. Nice, 1972], Invent. Math. 41 (1977),
45-89.

[BuEi] D. Buchsbaum and D. Eisenbud: Algebra structures for finite free resolutions, and some structure
theorems for codimension three, Amer. J. Math. 99 (1977), 447–485.

[CaJN] G. Casnati, J. Jelisiejew, and R. Notari: Irreducibility of the Gorenstein loci of Hilbert schemes
via ray families, Algebra Number Theory 9 (2015), no. 7, 1525-1570.

[CeGIM] A. Cerminara, R. Gondim, G. Ilardi, F. Maddaloni: Lefschetz properties for higher order Nagata
idealizations, Adv. in Appl. Math. 106 (2019), 37-56.

[CM] D. Collingwood and W. McGovern: Nilpotent Orbits in Semisimple Lie algebras, Van Nostrand
Reinhold (New York), (1993).

[CoV] A. Conca and G. Valla: Hilbert functions of powers of ideals of low codimension, Math. Zeitschrift
230 (1999), #4, 753–784.

22



[CGo] B. Costa and R. Gondim: The Jordan type of graded Artinian Gorenstein algebras, Adv. in Appl.
Math. 111 (2019), 101941, 27 pp.

[Di] S. J. Diesel: Some irreducibility and dimension theorems for families of height 3 Gorenstein alge-
bras, Pacific J. Math. 172 (1996), 365–397.

[DIV] R. Di Gennaro, G. Ilardi, J. Vallès: Singular hypersurfaces characterizing the Lefschetz properties,
J. Lond. Math. Soc. (2) 89 (2014), no. 1, 194-212.

[Ei] D. Eisenbud: Commutative Algebra, with a view toward Algebraic Geometry, Springer GTM #150,
(1995), Springer-Verlag, New York.
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[IY] A. Iarrobino and J. Yaméogo: The family GT of graded Artinian quotients of k[x, y]of given Hilbert
function, Special issue in honor of Steven L. Kleiman, Commun. Algebra 31 (8) (2003) 3863–3916.

[Je] J. Jelisiejew: Classifying local Artinian Gorenstein algebras, Collect. Math. 68 (2017), no. 1, 101–
127.

[JeMR] J. Jelisiejew, S. Masuti, and M. Rossi: On the Hilbert functions of Artinian local complete inter-
sections of codimension three, (2022) arXiv:math.AC/2202.04021.
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[MeMO] E. Mezzetti, R.M. Miró-Roig, G. Ottaviani: Laplace equations and the weak Lefschetz property,
Canad. J. Math. 65 (2013), no. 3, 634-654.

[MiNa] J. Migliore, U. Nagel: Survey article: a tour of the weak and strong Lefschetz properties, J. Com-
mut. Algebra 5 (2013), no. 3, 329-358.

24
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[Per] U. Perazzo, Sulle varietà cubiche la cui hessiana svanisce identicamente, G. Mat. Battaglini 38
(1900), 337–354.

[Sh] H. Shapiro: The Weyr characteristic, Amer. Math. Monthly106(1999), no.10, 919-929.

[St] R. Stanley: Hilbert functions of graded algebras, Advances in Math. 28 (1978), 58-73.

[Wat1] J. Watanabe: The Dilworth number of Artin Gorenstein rings, Advances in Math. 76 (1989),
194-199.

[Wat2] J. Watanabe: A remark on the Hessian of homogeneous polynomials, in A. Geramita et al: The
curves seminar at Queens, vol. XIII. Queen’s Papers in Pure and Applied Mathematics, vol. 119,
p. 171-178, Queen’s University, Kingston, (2000).

[We] S. Weintraub: Jordan canonical form, theory and practice, Synthesis Lectures on Mathematics and
Statistics, Lecture #6, Morgan and Claypool (2006), republished Springer Nature, Switzerland
(2022) ISBN 978-3-031-01270-9.
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