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1. Introduction

These notes represent background and supplementary material for our course in the
Preparatory School for the conference “Lefschetz Properties in Algebra, Geometry and Com-
binatorics,” which will be held in Kraków in June, 2024.

The Lefschetz properties represent some “expected” behavior of the multiplication on
a graded module over a homogeneous polynomial ring. It is an extremely natural and
basic idea, and as a result it shows up in many fields, in different guises, and it has many
consequences (as is suggested by the title of the conference). But it is also true that in
many situations the actual behavior is different from the expected one. As a result, we will
see situations where we want to prove that the properties hold, but also many in which we
will have to show that the expectations do not materialize. There are three courses in this
school, and in them you will see different manifestations of these basic principles.
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A fundamental piece of information about a graded module that is behind the Lefschetz
properties is its Hilbert function. This is essentially a way of measure “how big” the compo-
nents of the graded module are. It will play an important role in this course, and probably in
all three courses. The Hilbert function is an important invariant for a projective variety or,
more precisely, of a standard graded algebra (or, even more generally, of a finitely generated
graded module). It is an interesting question to determine what the known properties of the
variety or algebra imply about the Hilbert function, and perhaps an even more interesting
question to determine the converse, i.e. what information the Hilbert function can give about
the geometry associated to the variety or algebra.

We have tried to include a fairly large number of exercises. The problem-solving sessions
will focus on the assigned exercises. The solutions are at the end of the notes (after the
references), but we strongly encourage you to spend a lot of time working them out before
looking at the solutions.

We assume familiarity with subvarieties of affine and projective space. The book [CLO]
gives a lot of the necessary background, and we include some exercises involving that mate-
rial.

We will assume that you have some familiarity with the following topics:

• affine and projective spaces
• homogeneous coordinates for projective space
• the projectivization of a vector space
• duality for projective spaces
• affine and projective varieties, hypersurfaces
• monomial ideals
• minimal free resolutions

although we will review some of these notions in these notes. Some of the results that we’ll
talk about depend on the field k that we are using. Unless stated otherwise. assume that k
is algebraically closed and of characteristic zero.

In these notes we will sometimes need to mention and use some facts, even if we avoid
their proofs. For the most part, these facts are placed into “Remarks.” The converse is not
true, though: not all Remarks in these notes mean that their content is a fact that we will
not prove. Sometimes a remark is just a remark.

There are three papers attached to these notes. The first is a joint paper by Migliore and
Uwe Nagel [MN1], which is an expository overview of the Lefschetz properties as they appear
in various fields. The second is a joint paper of Migliore with Tadahito Harima, Uwe Nagel
and Junzo Watanabe [HMNW]. This was one of the first papers to deal with the Lefschetz
properties, and in particular this paper introduced the use of the syzygy bundle to prove
the WLP for codimension 3 complete intersections. In addition, it characterized the Hilbert
functions of algebras with WLP or SLP (same answer!), and described bounds on the Betti
numbers for algebras with WLP. The third paper, [JM], is a nice overview of some of the
open problems in the theory of Lefschetz Properties, written by Martina Juhnke-Kubitzke
and Rosa Maŕıa Miró-Roig.
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2. Background and exercises

This section contains some exercises and remarks to help make sure you have the needed
background. The solutions can be found starting on page 53. Two useful references for this
material are [CLO] and [AM].

2.1. Basics on varieties and rings.

Exercise 1. Prove that in the ring R = k[x1, . . . , xn] there are
(
d+n−1
n−1

)
monomials of degree

d for any d ≥ 1 and n ≥ 1.

Exercise 2. Let R = k[x, y] where k is an infinite field of characteristic ̸= 2. Prove:

(a) ⟨x+ y, x− y⟩ = ⟨x, y⟩.
(b) ⟨x, y⟩ = ⟨x+ xy, y + xy, x2, y2⟩ = ⟨x+ xy, y + xy, x2⟩.
(c) In the last equality of (b), show that the three generators are irredundant (i.e. if you

remove any one of them, the ideal becomes smaller).

Exercise 3. Let V = V(f1, . . . , fs) and W = V(g1, . . . , gt) be varieties in the affine space
kn. Prove that

V ∩W = V(f1, . . . , fs, g1, . . . , gt).

Exercise 4. Prove that any finite union of points in An is an affine variety.

Exercise 5. Let k = R. Let Z be the set of all points in R2 with integer coordinates.

(a) Let f(x, y) be a polynomial vanishing at every point of Z. Prove that f(x, y) must
be the zero polynomial. [Hint: if f(x, y) vanishes at every point of Z, what can you
say about f(x, 0)?]

(b) Conclude that Z is not an affine variety.

Exercise 6. Prove that

X = {(m,m3 + 1) ∈ R2 | m ∈ Z}
is not an affine variety.

Exercise 7. Let k be a field and let V be a subset of k1. Prove the following statement:

V is a subvariety of k1 if and only if V is a finite set of points in k1.

Note that you have to prove both directions.

Exercise 8. Let Fp be the field with p elements, for any prime p.

(a) Consider the polynomial g(x, y) = x2y+ y2x ∈ F2[x, y]. Prove that g(a, b) = 0 for all
(a, b) ∈ F2

2.

(b) Find a nonzero polynomial g(x1, . . . , xn) ∈ F2[x1, . . . , xn] involving all n variables,
such that g(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ Fn

2 .

(c) Repeat (a) and (b), replacing F2 by Fp.

Exercise 9.

(a) Let S be a set in kn. (If it helps, just think about R2.) Show that

S ⊆ V(I(S)).
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(b) Give an example to show that the inclusion in part (a) is not necessarily an equality.
If you want, you can use the following example, as long as you completely justify why
it answers the question!

S1 = ∪{(0, i) | i ∈ Z} = {. . . , (0,−2), (0,−1), (0, 0), (0, 1), (0, 2), . . . } ⊂ R2.

You’ll have to explicitly compute I(S1), and then V(I(S1)).

(c) However, if S happens to be a variety then show that it is true that

S = V(I(S)).

Exercise 10. Show that if V is any affine variety in kn then I(V ) is a radical ideal. This
means that if fm ∈ I(V ) for some m then f ∈ I(V ).

Exercise 11. Let I and J be ideals in k[x1, . . . , xn]. We define

I ∩ J = {f ∈ R | f ∈ I and f ∈ J}.
We define IJ to be the set of polynomials that can be written as finite sums in the following
way:

IJ =

{
m∑

i=1

figi | fi ∈ I, gi ∈ J

}
.

(a) Prove that I ∩ J is an ideal.

(b) Prove that IJ is an ideal.

(c) Show that IJ ⊆ I ∩ J (as ideals).

(d) Give an example to show that IJ is not necessarily equal to I ∩ J . Justify your
answer!

(e) If I and J are ideals in k[x1, . . . , xn], prove that V(IJ) = V(I) ∪V(J). [Hint: this is
closely related to our proof that V(I) ∪ V(J) is again an affine variety.]

(f) If I and J are ideals in k[x1, . . . , xn], prove that V(I ∩ J) = V(I) ∪V(J). Combined
with the previous part, conclude that V(IJ) = V(I ∩ J).

Exercise 12. Let ϕ = [F1, . . . , Fm] : Cn → Cm, where F1, . . . , Fm ∈ C[x1, . . . , xn]. Let
X = V(G1, . . . , Gk) be a subvariety of Cm (so G1, . . . , Gk ∈ C[y1, . . . , ym]). Prove that

ϕ−1(X) = V(G1(F1, . . . , Fm), . . . , Gk(F1, . . . , Fm)).

(Make sure you prove both inclusions.)

2.2. Noetherian rings. A useful source for Noetherian rings is [AM].

Exercise 13. Prove that k[x1, . . . , xn−1][xn] ∼= k[x1, . . . , xn].

Definition 2.1. A ring A is Noetherian if it satisfies any of the following equivalent condi-
tions.

(a) Every non-empty set of ideals in A has a maximal element with respect to inclusion.
(b) Every ascending chain of ideals in A stabilizes.
(c) Every ideal in A is finitely generated.

Condition (b) above is called the Ascending Chain Condition (ACC).
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Remark 2.2. The equivalence of (a), (b) and (c) is proved, for example, in [AM] Chapter 6.
The following statements are also true.

1. If A is Noetherian then so is the polynomial ring A[x]. (This is the famous Hilbert
Basis Theorem.) Using Exercise 13, this implies that

the polynomial ring R = k[x0, . . . , xn] is Noetherian

([AM] Theorem 7.5).
2. If A is Noetherian and ϕ : A → B is an epimorphism then B is Noetherian ([AM]

Proposition 7.1). This implies that

any quotient R/I is also Noetherian.

It follows from all this that whenever we have an ideal I in a polynomial ring R =
k[x1, . . . , xn] over a field k then I is finitely generated. This is very useful!

Exercise 14. Consider the set of polynomials fi ∈ R = k[w, x, y, z] defined by

fi = wi + xi+1 + yi+2 + zi+7

for all i ≥ 1. Prove that there exists an integer N such that for i ≥ N , fi is a linear
combination (with coefficents in R) of f1, . . . , fN−1. (We do not want to know a precise
value of N .)

2.3. More background from [CLO] on affine varieties and ideals.

Exercise 15. In this problem we will work over the field of real numbers, R.
(a) Let I = ⟨f1, . . . , fs⟩ be any ideal in R[x1, . . . , xn]. Let V = V(I) ⊂ Rn be the

corresponding variety. Find a single polynomial f such that V = V(f). Prove your
answer.

(b) Let I = ⟨f1, . . . , fs⟩ be any ideal in R[x1, . . . , xn]. Suppose that V(I) = ∅. Show that
there is at least one element of I that has no zero in Rn. Justify your answer. (Notice
that R is not algebraically closed, so you can’t use the Nullstellensatz.)

Exercise 16. Let V and W be varieties in Cn such that V ∩W = ∅. Prove that there exist
f ∈ I(V ) and g ∈ I(W ) such that f + g = 1.

Exercise 17. Let I ⊂ k[x1, . . . , xn] be an ideal. Let
√
I be its radical. Show that there is a

positive integer p such that for every f ∈
√
I, fp ∈ I. (The thing to stress is that the choice

of p does not depend on what f you choose; rather, p depends only on what
√
I is.) [Hint:√

I is an ideal in a Noetherian ring.]

Exercise 18. Let I and J be ideals in C[x1, . . . , xn] such that

I + J = ⟨1⟩ = C[x1, . . . , xn].

(a) Prove that the varieties V(I) and V(J) are disjoint.

(b) Prove that IJ = I ∩ J .
(c) Part (b) depends very much on the assumption I + J = ⟨1⟩. Give an example of

ideals I and J not satisfying that property, for which it is not true that IJ = I ∩ J .
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Exercise 19. For each of the following, R is the polynomial ring k[x1, . . . , xn] and X is an
algebraic set in An

k , where k is a field. Any extra assumptions about k will be given explicitly.
For each part, give the indicated example or show that no such example exists. When
you give an example, you are allowed to choose a specific field k and a specific value of n if
you want to (e.g. taking k = R and n = 2 may be easier to visualize).

[Hint: for two of these the answer is “no” (so you have to prove that J doesn’t exist), and
the rest are “yes” (so you have to find such an example). All of these should be very short
answers!!]

(a) Does there exist an ideal J ⊂ R such that J = I(X) for some algebraic set X, but J
is not radical?

(b) Does there exist an ideal J ⊂ R such that J = I(X) for some algebraic set X, but J
is not prime?

(c) Does there exist a prime ideal J ⊂ R which is not maximal?

(d) Does there exist an ideal J that is not prime, but I(V(J)) is prime?

(e) Does there exist an ideal J and a polynomial f ∈ R such that f vanishes at every
point of V(J), but f /∈ J?

(f) Assume that k is algebraically closed. Does there exist an ideal J and a polynomial
f ∈ R such that f vanishes at every point of V(J), but no power of f is in J?

Exercise 20. Let I, J be ideals in k[x1, . . . , xn] and suppose that I ⊂
√
J . Show that

Im ⊂ J for some integer m > 0.

2.4. Background from [CLO] on projective varieties and homogeneous ideals. For
convenience in this section our polynomial ring will be R = k[x0, . . . , xn] (i.e. we start with
x0 instead of x1), so that we can talk about varieties in Pn.

Definition 2.3. Given a monomial xm0
0 . . . xmn

n , its degree is m0+ · · ·+mn. Any polynomial
can be written as a linear combination a0M0+ · · ·+aNMN of distinct monomials in a unique
way. For any i, aix

mi
i is called a term. A polynomial is said to be homogeneous if all the

terms have the same degree. Any polynomial f can be written as the sum of homogeneous
polynomials: f = f0 + f1 + · · · + fd in a unique way; the fi are called the homogeneous
components of f . A homogeneous polynomial f of degree d is also called a form of degree d.

Definition 2.4. An ideal I ⊂ k[x0, . . . , xn] is homogeneous if, for each f ∈ I, the homoge-
neous components of f are also in I.

Theorem 2.5. Let I ⊂ k[x0, . . . , xn] be an ideal. The following are equivalent:

(i) I is a homogeneous ideal.
(ii) There exists a set of homogeneous polynomials f1, . . . , fs that generate I.

Exercise 21. Let I and J be homogeneous ideals in k[x0, . . . , xn].

(a) Prove that I + J is homogeneous.

(b) Prove that I ∩ J is homogeneous.
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Exercise 22. Homogeneous polynomials satisfy an important relation known as Euler’s
Theorem. It says the following. For convenience assume that our field is R. Let f ∈
R[x0, . . . , xn] be a homogeneous polynomial of degree d. Then

n∑

i=0

xi
∂f

∂xi
= d · f.

(a) Illustrate Euler’s theorem by cooking up a homogeneous polynomial, f , having three
terms and showing that the theorem is true for your example.

(b) Prove Euler’s theorem by considering f(λx0, . . . , λxn) as a function of λ, and differ-
entiating with respect to λ using the chain rule.

(c) Let R = R[x, y, z] and let f = xyz. In P2
R describe V(f), V(fx, fy, fz), and the

relation between these two varieties. (Here fx, fy, fz are the partials with respect to
x, y, z respectively.) How is Euler’s theorem relevant to this last part?

(d) Let R = R[x, y, z] and let f = xyz(x + y + z). In P2
R describe V(f), V(fx, fy, fz),

and the relation between the two. Again, how is Euler’s theorem relevant to this last
part?

Exercise 23. Recall that for an ideal I ⊂ k[x0, . . . , xn], a set of polynomials f1, . . . , fr are
minimal generators for I if I = ⟨f1, . . . , fr⟩, and if the removal of any of the fi changes the
ideal. We also say that {f1, . . . , fr} form a minimal generating set for I. For example, for
I = ⟨x2, y2, (x+ y)(x− y)⟩ ⊂ k[x, y, z], the generators are not minimal since (x+ y)(x− y) =
x2 − y2, so removing (x+ y)(x− y) does not change the ideal.

(a) Give an example of an ideal I ⊂ C[x, y, z] such that

• I has a minimal generating set consisting of five homogeneous polynomials;

• V(I) = ∅;
• The five generators of I all have different degrees.

(Hint: think about monomial ideals.)

(b) In the statement of the Projective Weak Nullstellensatz ([CLO] Chapter 8, Section 3,
Theorem 8), the authors mention integers mi (in part (iii)) and r (in part (iv)). For
your answer to part (a), what are the values of m1,m2,m3 and r? Be sure to justify
your answer.

(c) Find a counterexample to the following statement:

If I is a homogeneous ideal and J is an ideal such that J ⊂ I then J is
homogeneous.

Exercise 24. Let ϕ be an automorphism of P2. What this means is that there is some
invertible 3× 3 matrix A such that for P = [p1, p2, p3],

ϕ(P ) = A



p1
p2
p3


 .

Let P,Q,R be three points in P2. Show that if P,Q,R are collinear then ϕ(P ), ϕ(Q), ϕ(R)
are collinear. Is the converse true?
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Exercise 25. In this problem, we will be talking about planes, Λ, in Pn. You can assume
that the field in question is R, the real numbers. Remember that, in P2, the only possibility
for Λ is that it is all of P2. In P3, Λ is the vanishing locus of a single homogeneous linear
polynomial L, and we have IΛ = ⟨L⟩. You can freely use these facts.

(a) Describe the homogeneous ideal of a plane in P4 in terms of the minimal generators
of its ideal (no proof required).

(b) Let Λ1 and Λ2 be distinct planes in P3. Prove that Λ1 ∩ Λ2 must be a line.

(c) Give an example of two distinct planes, Λ1 and Λ2, in P4 whose intersection is the
point [1, 1, 1, 1, 1].

(d) In part c), is your answer unique, or are there finitely many possible answers, or are
there infinitely many possible answers? Explain.

Exercise 26. A beautiful fact about projective space is the notion of duality. Let’s limit
ourselves to P2

R, the real projective plane. (We will understand that we are working over R
and not bother writing the subscript R each time.)

Recall that a line ℓ in P2 is the vanishing locus of a homogeneous linear polynomial, i.e.
ℓ = V(ax+ by + cz) for some choice of a, b, c ∈ R not all zero.

(a) Show that ax + by + cz = 0 defines the same line as 3x + 4y + 5z = 0 if and only if
there exists some t ∈ R such that a = 3t, b = 4t and c = 5t. (Of course 3, 4, 5 is just
an example.) [Hint: ⇐ is almost immediate. For ⇒, you can use the fact that in P2,
either two lines meet at a single point or they are the same line. It may help to take
the linear algebra point of view.]

(b) Based on (a), show that the set of lines in P2 itself can be viewed as a projective
plane, which we will denote by (P2)∨.

(c) Let P1, P2, P3 be points of (P2)∨ and let ℓP1 , ℓP2 , ℓP3 be the lines in P2 that they
correspond to. Show that P1, P2, P3 all lie on a line in (P2)∨ if and only if ℓP1 , ℓP2 , ℓP3

all pass through a common point. [Hint: if you look at the equation ax+ by+ cz = 0,
you can think of a, b, c as given and x, y, z as the variables, OR you can think of x, y, z
as given and a, b, c as the variables!]

(d) Using (c), if you take a line in (P2)∨, what does the collection of all the points on
this line correspond to back in P2? Explain your answer carefully.

(e) The following is a set of lines in P2, labelled a to g.
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a

c

e

g d

b

f

Sketch the set of points in (P2)∨ dual to these lines, and label them A to G cor-
responding to the similarly named lines. Make sure that your sketch reflects
when three or more of the points are on a line. [Hint: in addition to the obvious
places where three or more lines meet, the three vertical lines meet at infinity!! Part
(c) is crucial in this problem.]

Remark 2.6. While we have been covering [CLO] we have stuck to the notation I(V ) for
the ideal associated to a variety V (or indeed to any subset V of affine or projective space).
Now, however, we will convert to the more standard notation IV .

3. Cohen-Macaulay Graded Rings

Let R = k[x0, . . . , xn], where k is a field. The following is copied from [AM] page 106.

Definition 3.1. A graded ring is a ring A together with a family ([A]n)n≥0 of subgroups of
the additive group of A, such that A =

⊕
n≥0[A]n and [A]m[A]n ⊆ [A]m+n for all m,n ≥ 0.

The following is the main example for us.

Example 3.2. R = k[x0, . . . , xn] is a graded ring since R =
⊕

t≥0[R]t, where [R]t is the
k-vector space of homogeneous polynomials (i.e. forms) of degree t over k. Recall that

dim[R]t =

(
t+ n

n

)
.

Notice that in particular, R is even a little more: it is a standard graded k-algebra, meaning
that [R]0 = k, the elements of R are generated by the elements of [R]1, and the components
are actually finite dimensional vector spaces over k.

From now on we view R as a graded ring, and focus on homogeneous ideals (cf. [CLO]
Chapter 8, Section 3). For convenience let’s always assume that k is an infinite field. The
following definition is from [H] Exercise II.5.10. That exercise also shows its importance in
the study of subschemes of projective space, although we omit this topic.

Definition 3.3. If I ⊂ R is a homogeneous ideal then its saturation, Isat, is defined by

Isat = {f ∈ R | for each 0 ≤ i ≤ n there is some mi so that xmi
i f ∈ I}.

The ideal I is saturated if I = Isat.
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Exercise 27. Prove that if I is a homogeneous ideal then so is its saturation Isat.

Exercise 28. Find the saturation of each of the following ideals (or explain why it is already
saturated).

(a) ⟨x2, y2, z2⟩ ⊂ k[x, y, z].

(b) ⟨x2, y2, z2⟩ ⊂ k[w, x, y, z].

(c) ⟨x2, xy, xz⟩ ⊂ k[x, y, z].

As noted in Remark 2.6, if V ⊂ Pn is a projective subvariety (or subscheme) then we denote
by IV its homogeneous ideal. (This differs from the notation in [CLO] but the definition is
the same.)

Exercise 29. Show that the ideal IV as defined in [CLO] is a saturated ideal.

Remark 3.4. It’s worth noting that when I is not of the form IV for any subvariety (or
subscheme) V , then I is not necessarily a saturated ideal, and this means that

×L : [R/I]t → [R/I]t+1

is not necessarily injective (Exercise 33 (c)). So the fact that the first map in the exact
sequence (4.1) in Remark 4.11 is injective depends on the fact that IV is a saturated ideal,
i.e. that R/IV has depth ≥ 1 (see Definition 3.7).

Example 3.5. Let R = k[x, y, z] and I = ⟨x2, xy, xz⟩. Then the Hilbert function of R/I
begins with the sequence (1, 3, 3, . . . ) but clearly x ∈ [R/I]1 is in the kernel of multiplication
by any linear form L. Notice also that the vanishing locus of I is not zero-dimensional, as
might have been suggested by the fact that the Hilbert function is equal in degrees 1 and 2,
but instead consists of the line x = 0. In fact, even though the Hilbert function takes the
same value 3 in degrees 1 and 2, the discussion after Remark 4.8 does not apply because this
ideal is not IV for any variety V . The key is that the multiplication ×L in (4.1) is not an
injection (why not?). We will talk more about this soon.

Exercise 30. Find the entire Hilbert function of the algebra given in Example 3.5. Is there
any other degree in which ×L fails to be injective? Find the saturation of this ideal. What
subvariety of P2 corresponds to this saturation?

The following definition can be made more generally for a finitely generated graded R-
module, but for our purposes it is enough to define it for standard graded k-algebras. So
from now on I will be a homogeneous ideal defining a standard graded algebra R/I.

Definition 3.6. An element F ∈ R/I of degree ≥ 1 is a non-zerodivisor (or sometimes
regular element) if, for any G ∈ R/I, the condition FG = 0 forces G = 0. A regular sequence
for R/I is a sequence of homogeneous polynomials F1, . . . , Fr ⊂ m such that

F1 is a non-zerodivisor on R/I,

F2 is a non-zerodivisor on R/⟨I, F1⟩,
...

Fr is a non-zerodivisor on R/⟨I, F1, . . . , Fr−1⟩.
Definition 3.7. The depth of R/I is the integer

depth(R/I) = sup{j | there is some regular sequence in m of length j for R/I}.
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Remark 3.8. It is a fact that if a regular sequence of length m exists for R/I, then a
regular sequence of length m consisting of linear forms can be found. Furthermore, in this
case it suffices to choose m “sufficiently general” linear forms (once m is known). See [BH]
Prop. 1.5.12.

Example 3.9. Let R = k[x0, x1, x2, x3]. Let C be a line in P3, defined by IC = ⟨x2, x3⟩. We
claim that (x1, x0) is a regular sequence for R/IC .
Notice that R/IC ∼= k[x0, x1]. If F ∈ R/IC is such that x1F = 0 in R/IC then clearly

F = 0 so x1 is a non-zerodivisor for R/IC . Now R/⟨IC , x1⟩ ∼= k[x0]. If F ∈ R/⟨IC , x1⟩ is
such that x0F = 0 in R/⟨IC , x1⟩ then F = 0, so x0 is a non-zerodivisor for R/⟨IC , x1⟩ and
we are done. In particular, depth(R/IC) = 2.

Example 3.10. Let C ⊂ P = P3
R be the image of the map

ϕ : P1 → P3

given by [s, t] 7→ [s3, s2t, st2, t3] for s, t ∈ R. This image is called the twisted cubic curve in
P3. It is a fact that its homogeneous ideal is ⟨x0x3−x1x2, x0x2−x21, x1x3−x22⟩. Furthermore,
KdimR/IC = 2 (see below for the definition) and depth(R/IC) = 2. We will accept this as
a fact.

Exercise 31. Let R = k[x0, x1, x2, x3]. Let V be a set of two skew lines in P3, say V =
V(x0, x1) ∪ V(x2, x3). The homogenous ideal is IV = ⟨x0x2, x0x3, x1x2, x1x3⟩ (you can just
accept this as a fact).

(a) Let L = x0+x1+x2+x3. Let G ∈ R be a homogeneous polynomial and let Ḡ ∈ R/IV
be the image of G in R/IV . If LḠ = 0 in R/IV show that Ḡ = 0 in R/IV (i.e. G ∈ IV ).
Conclude that L is a regular element.

(b) Geometrically, L defines a plane in P3. Find the two points of V ∩ V(L).
(c) Since through two distinct points of P3 there passes a unique line, there must be

another linear form L′, not a scalar multiple of L, passing through the two points
you found in (b). Find one such L′.

(d) Show that xiL
′ ∈ ⟨L, IV ⟩ = ⟨L, x0x2, x0x3, x1x2, x1x3⟩ for all 0 ≤ i ≤ 3.

(e) Conclude that R/⟨L, IV ⟩ does not have any non-zerodivisors, so depth(R/IV ) = 1.
(f) Note that the fact that an algebra R/I has depth ≥ 1 means that there exists a

non-zerodivisor. It doesn’t mean that zerodivisors don’t exist. For example, find a
zerodivisor for R/IV .

The next few exercises try to draw some connections between the notion of the saturation
of a homogeneous ideal I and the depth of R/I.

Exercise 32. We have noted that if I is a homogeneous ideal then so is Isat (Exercise 27).
Denote by [I]t the vector space of homogeneous polynomial of degree t in I. Thus we have
decompositions

I =
⊕

t≥1

[I]t and Isat =
⊕

t≥1

[Isat]t.

Prove that for t≫ 0, [I]t = [Isat]t. (Hint: use the Noetherian property.)

Exercise 33. Let m = ⟨x0, . . . , xn⟩, the irrelevant ideal in the graded ring R = k[x0, . . . , xn].
Let I be a homogeneous ideal. Define

I : m = {f ∈ R | fm ∈ I for all m ∈ m}.
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(a) Verify that I : m is a homogeneous ideal in R.
(b) Show that I is saturated if and only if I : m = I.
(c) We define a socle element of R/I to be a non-zero element f ∈ [R/I]t (for some t)

such that f is annihilated by m. This corresponds to an element f ∈ [I : m]t\[I]t. In
particular, f is in the kernel of ×L : [R/I]t → [R/I]t+1 for all L ∈ [R]1. Show that I
is saturated if and only if R/I has no socle.

Exercise 34. Prove that if depth(R/I) ≥ 1 then I is saturated.

Remark 3.11. In the last few exercises we have shown that

I is saturated if and only if I : m = I if and only if R/I has no socle.

We also saw that if depth(R/I) ≥ 1 then I is saturated. In fact the converse is true, and we
have the fact that

I is saturated if and only if depth(R/I) ≥ 1.

To see the last direction, recall that the associated primes of an ideal I are the prime ideals
of the form AnnR(f) for some f ∈ R/I, and consequently that I is not saturated if and only
if m is an associated prime (for one direction, take f to be an element of largest degree in
Isat/I). Now if depth(R/I) = 0 then you can check that m is an associated prime for some
primary component of I (exercise), hence I is not saturated. That is, if I is saturated then
depth(R/I) ≥ 1.

Remark 3.12. The following is a useful fact. Let L be a linear form and assume
depth(R/I) ≥ 1 for some graded algebra R/I. Then for any t, multiplication by L gives
the following exact sequence:

(3.1) 0 →
[
I : L

I

]

t−1

→
[
R

I

]

t−1

×L−→
[
R

I

]

t

→
[

R

⟨I, L⟩

]

t

→ 0

(think about what the kernel of ×L is), which induces a short exact sequence

0 → [R/(I : L)]t−1
×L−→ [R/I]t → R/⟨I, L⟩ → 0.

Now assume that depth(R/I) ≥ 1 and let L be a general linear form. By Remark 3.8 we
know that L is a non-zerodivisor for R/I. This means that the first term in (3.1) is zero,
and we have a short exact sequence

0 → [R/I]t−1
×L−→ [R/I]t → [R/⟨I, L⟩]t → 0.

More generally, in this situation we have

0 → R/I(−1)
×L−→ R/I → R/⟨I, L⟩ → 0

is an exact sequence of graded algebras.

Definition 3.13. Let p be a homogeneous prime ideal in R. The height of p is the supremum
of all integers i such that there exists a chain p0 ⊊ p1 · · · ⊊ pi = p of homogeneous prime
ideals in R. For a homogeneous ideal I, the height of I is the infimum of the heights of prime
ideals in R containing I. This is the codimension of I.
The Krull dimension of R/I is the supremum of the heights of all homogeneous prime

ideals in the ring R/I (not R). Equivalently, we want the longest length of a chain

p0 ⊊ p1 ⊊ · · · ⊊ pr

of prime ideals in R, where I ⊂ p0.
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The geometric version of the definition of the Krull dimension is the following (cf. [H]
page 5):

Definition 3.14. If X is a variety then the dimension of X is the supremum of all integers
i such that there exists a chain Z0 ⊊ Z1 ⊊ · · · ⊊ Zi of non-empty irreducible subvarieties of
X.

Notation 3.15. To avoid confusion we will denote the dimension of a variety X by dimX
and the Krull dimension of a graded algebra R/I by Kdim(R/I).

Example 3.16. (a) As one might intuitively expect, dimPn = n while

Kdim(k[x0, . . . , xn]) = n+ 1.

Indeed, the relevant chains (thinking of an i-dimensional subspace of Pn as Pi) are

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn−1 ⊂ Pn

and

⟨0⟩ ⊂ ⟨x0⟩ ⊂ ⟨x0, x1⟩ ⊂ ⟨x0, x1, x2⟩ ⊂ · · · ⊂ ⟨x0, . . . , xn−1⟩ ⊂ ⟨x0, . . . , xn⟩.
(b) If V(I) is a single point then dimV(I) = 0 while Kdim(R/I) = 1.
(c) In general, let I be a homogeneous ideal. Then the Krull dimension of R/I is one

more than the dimension of V(I).
(d) Say V is a line in P4 defined by the ideal ⟨x0, x1, x2⟩. We know that a line has

dimension 1, so in P4 it has codimension (i.e. height) 4− 1 = 3. We expect the Krull
dimension of R/IV to be 1 + 1 = 2. Let’s look at the above definitions.

⟨0⟩ ⊂ ⟨x0⟩ ⊂ ⟨x0, x1⟩ ⊂ ⟨x0, x1, x2⟩ = IV .

Any other prime ideal containing IV (e.g. ⟨x0, x1, x2, x3⟩) has bigger height. So the
height of IV is 3 as expected.
To get the Krull dimension of R/IV we look for homogeneous prime ideals con-

taining IV . These include ⟨x0, x1, x2⟩, ⟨x0, x1, x2, x3⟩ and ⟨x0, x1, x2, x3, x4⟩. You can
convince yourself that this means that the Krull dimension of R/IV is 2.
To get the dimension of V we look at chains of non-empty irreducible subvarieties.

We get Z0 ⊊ Z1 where Z0 is a single point and Z1 = V . These correspond to the first
two ideals in the previous chain.

Remark 3.17. (a) One can show that

height I +Kdim(R/I) = dimR = n+ 1.

(b) It is always the case that depth(R/I) ≤ Kdim(R/I).

Definition 3.18. The algebra R/I is Cohen-Macaulay if depth(R/I) = Kdim(R/I). If V
is a subvariety of Pn with saturated homogenous ideal IV , and if R/IV is Cohen-Macaulay,
then V is said to be arithmetically Cohen-Macaulay, sometimes denoted ACM.

Example 3.19. Example 3.9 and Example 3.10 show that a line and a twisted cubic are
both ACM curves in P3.

Exercise 35.

(a) R itself is Cohen-Macaulay.
(b) If I = IV where dimV = 0 then R/I is Cohen-Macaulay (i.e. V is ACM). In other

words, a finite set of points in Pn is always ACM.
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(c) The same does not hold for higher dimension. In particular, find a curve C for which
R/IC is not Cohen-Macaulay (i.e. C is not ACM). (Hint: see Exercise 31.)

Remark 3.20. Let V be a subvariety of Pn. Let IV be its saturated homogeneous ideal. If
the number of minimal generators of IV is equal to n− dimV (i.e. equal to the codimension
of V in Pn) then V is called a complete intersection and is automatically arithmetically
Cohen-Macaulay. The minimal generators of IV then form a regular sequence in m.

The following definition gives a very important class of Cohen-Macaulay algebras. We will
not prove the equivalence of the conditions.

Definition 3.21. Let I be a homogenous ideal in R. Then R/I is artinian if any of the
following equivalent conditions holds.

(a) R/I is finite dimensional as a k-vector space.
(b) Kdim(R/I) = 0.
(c) If m is the irrelevant ideal of R/I then mp = 0 in R/I for some (hence all sufficiently

large) p ≥ 1, i.e. (viewing m as the irrelevant ideal of R), mp ⊂ I for some p ≥ 1.
(d) For each 0 ≤ i ≤ n there is some integer pi such that xpii ∈ I.
(e) For sufficiently large d we have [I]d = [R]d.
(f) If k is algebraically closed, a sixth equivalent condition is V(I) = ∅.
(g) R/I satisfies the descending chain condition for ideals.

Remark 3.22. (a) Assume that depth(R/I) ≥ 1 and Kdim(R/I) ≥ 1. Let L be a
general linear form (hence a non-zerodivisor on R/I). Then depth(R/⟨I, L⟩) =
depth(R/I)− 1 and Kdim(R/⟨I, L⟩) = Kdim(R/I)− 1.

(b) Of course if R/I is artinian then it is Cohen-Macaulay since

0 ≤ depth (R/I) ≤ Kdim(R/I) = 0.

Given a Cohen-Macaulay algebra, we construct from it an artinian algebra as follows.

Proposition 3.23. Let R/I be a graded Cohen-Macaulay algebra of depth = Krull dimension
= d. Let L1, . . . , Ld be a regular sequence of linear forms. Then R/⟨I, L1, . . . , Ld⟩ is an
artinian graded algebra. If the Li are sufficiently general, this is called the general artinian
reduction of R/I.

4. Introduction to Hilbert functions

4.1. Graded modules. The notion of an R-module generalizes that of a k-vector space.
The following definition is copied from [AM] page 17, where you can read more about the
subject.

Definition 4.1. Let A be a ring. An A-module is an abelian group M (written additively)
on which A acts linearly. More precisely, it is a pair (M,µ) where M is an abelian group
and µ is a mapping of A×M into M such that, if we write ax for µ(a, x) where a ∈ A and
x ∈M , we have

a(x+ y) = ax+ ay,
(a+ b)x = ax+ bx,

(ab)x = a(bx),
1x = x

for all a, b ∈ A and x, y ∈M .
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Example 4.2. 1. If A = k, a field, then the notions of A-module and k-vector space
coincide.

2. If M = I is an ideal of A then M is an A-module. In particular, A itself is an
A-module.

3. If A = Z then the notions of A-module and abelian group coincide, where we define

nx = x+ · · ·+ x︸ ︷︷ ︸
n times

for n ≥ 1.

The following is copied from [AM] page 106.

Definition 4.3. If A is a graded ring (see Definition 3.1), a graded module is an A-module
M together with a family ([M ]t)t∈Z of subgroups of M such that

M =
⊕

t∈Z
[M ]t and [A]m[M ]t ⊂ [M ]m+t for all m, t ∈ Z.

If f ∈ R is any polynomial, we can always decompose f as a sum of its homogeneous
components

f = f0 + f1 + · · ·+ fd.

By linearity, to understand fm for m ∈ M , it’s enough to understand how homogeneous
polynomials act on homogenenous elements m ∈ M . But again by linearity, it’s enough to
understand how linear forms act, and in fact it’s enough to understand x0m, . . . , xnm.

Example 4.4. Each of the following is a graded R-module.

1. R = k[x0, . . . , xn] is also a graded R-module.

2. The shifted module R(m) is defined by [R(m)]t = [R]m+t.

3. If I is a homogeneous ideal then R/I is a graded R-module. Recall that to stress that
the components [R/I]t are vector spaces, we often refer to R/I as a graded algebra
rather than a graded ring.

4. Let R = k[w, x, y, z] and I = ⟨w, x, y, z2⟩. Then

dim[R/I]t =

{
1 if t = 0, 1;
0 if t ̸= 0, 1.

The behavior of multiplication for R/I by a linear form is inherited from R modulo
⟨w, x, y, z2⟩.

5. Let R = k[w, x, y, z]. Let M be a graded module defined as follows: dim[M ]t = 2
for t = 0, 1 and [M ]t = 0 otherwise. Assume that we have chosen bases for [M ]0 and
[M ]1. Let

A =

[
a 2b
3c 4d

]

where a, b, c, d ∈ k. If L = aw + bx+ cy + dz and

m =

[
m1

m2

]
∈ [M ]0

then we define
Lm = A ·m
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where the latter is the matrix product, viewed as an element of [M ]1. This determines
the module structure of M .

Finally, if M is a graded R-module, we define the annihilator of M to be the ideal

Ann(M) = [0 :M ] = {f ∈ R | fm = 0 for all m ∈M}.
This is in fact a homogeneous ideal (since M is graded).

4.2. Hilbert functions and Hilbert polynomials. Let M be a graded R-module, so we
also have

M =
⊕

t∈Z
[M ]t

where [M ]t is the degree t component of M . We define the Hilbert function of M to be the
function

hM : Z → Z≥0

given by hM(t) = dimk[M ]t. The Hilbert polynomial of M is the polynomial pM(t) defined
by the following result.

Theorem 4.5 (Hilbert-Serre). Let M be a finitely generated graded R-module. Then there
is a unique polynomial pM(t) ∈ Q[t] such that pM(t) = hM(t) for all t ≫ 0. Furthermore,
deg pM(t) = dimZ(Ann(M)), where Z denotes the vanishing locus of a homogeneous ideal.

Proof. See [H] Theorem I.7.5. □

For us the main situation will be when M = R/I is a standard graded k-algebra (see the
definition in Example 3.2), where I is a homogeneous ideal. If I = IV for some subvariety
(or subscheme) V ⊂ Pn then we will sometimes write hV (t) for hR/IV (t), and pV (t) for the
corresponding Hilbert polynomial.

Remark 4.6. We will sometimes be interested in the first difference of the Hilbert function,
which is defined as the function

∆hR/I(t) = hR/I(t)− hR/I(t− 1)

for all t. Inductively we also define ∆2hR/I(t), ∆
3hR/I(t), etc.

Remark 4.7. First let’s see what general facts we can say immediately about the Hilbert
function hR/I(t).

1. hR/I(t) = 0 for t < 0 and hR/I(0) = 1.

2. If I = IV for some subvariety (or subscheme) V ⊂ Pn then deg(pV (t)) = dimV
thanks to Theorem 4.5.

3. If I = IV for some subvariety (or subscheme) V ⊂ Pn then IV is saturated, so
depth (R/IV ) ≥ 1 (Exercise 34). Thus a general linear form is a non-zerodivisor
(Remark 3.8). This gives the injective homomorphism

×L : [R/IV ]t → [R/IV ]t+1.

As a consequence, we have that hV (t) ≤ hV (t + 1) for all t (in particular, for all
t ≥ 0).
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4. Assume that I = IV for some subvariety (or subscheme) V ⊂ Pn of dimension d, so
the Hilbert polynomial of V has the form

pV = adx
d + (terms involving lower powers of x).

Then ad · d! is an invariant of V called its degree.

Exercise 36. Let R = k[x, y] and let I = ⟨x4, x2y3, xy4, y6⟩.
(a) Draw a picture, using the integer points in the first quadrant and shading, to represent

the monomials in I.
(b) What are the monomials not in I? (I want the complete list.)
(c) What is the Hilbert function of R/I?
(d) What is the Hilbert polynomial of R/I?

Remark 4.8.

1. In Remark 3.20 we defined a special kind of variety called a complete intersection. it
turns out that for a complete intersection V , the degree of V is the product of the
degrees of the minimal generators of IV .

2. If V is a finite set of points (0-dimensional), its Hilbert polynomial is a constant
(degree 0 polynomial) that is equal to the number of points of V . See Exercise 4 and
Exercise 41.

A truly amazing fact is that we know all possible Hilbert functions of standard graded
algebras! (The challenge is to derive useful information from this knowledge!) This is
provided by Macaulay’s theorem. We recall this now, without proof.

Definition 4.9. Let m and d be positive integers. The d-binomial expansion of m is the
expression

m =

(
ad
d

)
+

(
ad−1

d− 1

)
+ · · ·+

(
aj
j

)

where ad > ad−1 > · · · > aj ≥ j ≥ 1. We further define

m(d) =

(
ad + 1

d+ 1

)
+

(
ad−1 + 1

d

)
+ · · ·+

(
aj + 1

j + 1

)
.

The blockbuster result we now quote is the following:

Theorem 4.10 (Macaulay [Mac]). Let h = (1, h1, h2, . . . ) be a sequence of positive integers.
Then h is the Hilbert function of some standard graded algebra R/I, where R = k[x1, . . . , xn],

n = h1 and k is a field, if and only if hi+1 ≤ h
(i)
i for all i ≥ 0.

A sequence satisfying this property is called an O-sequence.

Exercise 37. Is the following an O-sequence?

(1, 5, 12, 17, 25, 36)

Remark 4.11. There are two natural directions to go at this point. First, if you know
things about V , what can you say about what the Hilbert function hV looks like? For
example, if V is a finite set of points then we know that hV is eventually a polynomial of
degree 0, i.e. a constant. More interesting in some sense is the second direction: if you know
something unusual about hV , what does that tell you about V ? There are several ways
of obtaining geometric information about a variety from knowledge of its Hilbert function.
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See for instance [D], [BGM], [CM]. We omit details. But let’s start with more elementary
observations.

To illustrate how hV (t) can give information about a variety V , suppose we know that for
some t0 we have hV (t0) = hV (t0 + 1) (i.e. for some t0 we have equality in item 3 of Remark
4.7). We claim that this forces V to be zero-dimensional.

Indeed, consider the exact sequence (see Remark 3.12)

(4.1) 0 → [R/IV ]t
×L−→ [R/IV ]t+1 → [R/⟨IV , L⟩]t+1 → 0

for any t (the injectivity comes because IV is saturated – see Exercise 29). It follows that
∆hV (t) is the Hilbert function of R/⟨IV , L⟩, which is a standard graded algebra (it is gen-
erated in degree 0 only – see Example 3.2). Thus if hV (t0) = hV (t0 + 1), this means that
∆hV (t0 +1) = 0, so the component of R/⟨IV , L⟩ in degree t0 +1 is zero. Hence R/⟨IV , L⟩ is
zero in all degrees ≥ t0 + 1, so the Hilbert polynomial of R/⟨IV , L⟩ is the zero polynomial.
This means that hV (t) = hV (t + 1) for all t ≥ t0, so pV (t) is a constant polynomial. Then
by Theorem 4.5, V is zero-dimensional.

Remark 4.12. Remark 4.11 says, in particular, that the stated assumption about the Hilbert
function forces V to be a finite set of points and pV to be a constant polynomial. We now
give an interpretation of this constant. So assume that V is a finite set of points. We claim
that the number of points of V is the value hV (t) for all t≫ 0. (In fact for all t ≥ t0 where
t0 is as in Remark 4.11.)

Our proof will be by induction on the number of points. If |V | = 1, we can write IV =
⟨x1, . . . , xn⟩ so R/IV ∼= k[x0], and the value of the Hilbert function is 1 in all degrees ≥ 0.
Now let V ′ be a set of d points, P a single point distinct from any of the points of V ′, and
V = V ′ ∪ P . Of course we have [IV ]t ⊆ [IV ′ ]t for all t. We have the exact sequence

0 → [IV ′ ]t/[IV ]t → [R/IV ]t → [R/IV ′ ]t → 0

for t ≫ 0. By induction, the third vector space in this sequence has dimension d, so it is
enough to check that for t ≫ 0 the first has dimension 1. In fact, we’ll show that for any t
it has dimension either 0 or 1, with the latter value for t≫ 0.

If we set N =
(
t+n
n

)
, we have seen that dim[R]t = N , so a typical element of [R]t has the

form

F = a1x
t
0 + · · ·+ aNx

t
n.

Letting Q = [q0, . . . , qn] be any point of V , we see that F vanishes at Q if and only if

a1q
t
0 + · · ·+ aNq

t
N = 0.

This is a homogeneous linear equation in the variables a1, . . . , aN . So in our situation, F
vanishing at the points of V ′ (i.e. F ∈ [IV ′ ]t) means we have a homogeneous linear system of
d equations. Furthermore, F also vanishing at P (i.e. F ∈ [IV ]t) adds one more homogeneous
linear equation to the system. So either the new equation is a linear combination of the d
previous equations (in which case dim[IV ′ ]t/[IV ]t = 0) or else it imposes one new condition
(meaning dim[IV ′ ]t/[IV ]t = 1). If t≫ 0, it is not hard to construct a hypersurface of degree
t (e.g. a union of hyperplanes) vanishing on V ′ but not on P , so not all solutions of the first
d equations also solve the (d+ 1)-st equation, and the quotient is 1-dimensional.
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5. The connection to minimal free resolutions

In this section we define several kinds of algebras (including a second view of Cohen-
Macaulay algebras) in terms of the minimal free resolution

0 → Fr → Fr−1 → · · · → F1 → R → R/I → 0,

whereR = k[x1, . . . , xn] is the coordinate ring for Pn−1. The projective dimension proj dimR/I
is the integer r in this minimal free resolution.

1. Cohen-Macaulay algebras. The following conditions are equivalent.

(a) R/I is Cohen-Macaulay with depth = Krull dimension = d. (Recall that if I
defines a variety V in Pn−1 then dimV = d− 1.)

(b) The projective dimension r in the minimal free resolution satisfies r = n− d. In
the special case where I = IV for some projective variety V , we have

r = n− d = (n− 1) + 1− (dimV + 1) = codimension of V in Pn−1.

Again, if I = IV for a projective variety V then we say V is arithmetically
Cohen-Macaulay (ACM) if R/IV is Cohen-Macaulay.

Assume R/I has Krull dimension d (and temporarily we do not assume that R/I
is Cohen-Macaulay). The canonical module of R/I is

KR/I = Extn−d
R (R/I,R)(−n).

When R/I is Cohen-Macaulay, the minimal free resolution of KR/I is the dual of the
minimal free resolution of R/I.

2. Gorenstein algebras. R/I is Gorenstein if it is Cohen-Macaulay (i.e. r = n − d)
and the rank of Fr is 1. If I = IV for a projective variety V then we say that V is
arithmetically Gorenstein (AG).

3. Complete Intersections. R/I is a complete intersection if the rank of F1 (which is
equal to the number of minimal generators of I) is equal to the codimension of V(I)
in Pn.

The minimal free resolution of a complete intersection is given by the Koszul resolu-
tion, which is the following. Let I = (F1, . . . , Fr) be a regular sequence (i.e. the ideal
of a complete intersection), with di = degFi. Then we have the following minimal
free resolution for R/I:

0 → Fr → Fr−1 → · · · → F1 → R → R/I → 0
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where

F1 =
r⊕

i=1

R(−di)

F2 =
2∧
F1 =

⊕

1≤i1<i2≤r

R(−di1 − di2)

F3 =
3∧
F1 =

⊕

1≤i1<i2<i3≤r

R(−di1 − di2 − di3)

...

Fr =
r∧
F1 = R(−d1 − · · · − dr)

In particular, a complete intersection is Gorenstein, and (hence) Cohen-Macaulay.
If V ⊂ Pn is a projective variety with homogenous ideal IV satisfying the above
condition then we also say that V itself is a complete intersection.

4. Level algebras. R/I is level if it is Cohen-Macaulay (i.e. the projective dimension
r = n− d) and the direct summands of Fr all have the same twist: Fr =

⊕
R(−m)

for a fixed m.

We also mention theAuslander-Buchsbaum formula. In the setting of standard graded
algebras R/I, where R = k[x0, . . . , xn], we have

proj dim R/I + depth R/I = n+ 1.

For example, if I is the homogeneous ideal of an ACM curve in P3 then the minimal free
resolution of R/I has the form

0 → F2 → F1 → R → R/I → 0

so the projective dimension is 2. On the other hand, being ACM we have that the depth is
equal to the Krull dimension, and being a curve means that the Krull dimension is 2. Thus
the depth is 2, and we have

2 + 2 = 3 + 1 = 4

while if I is the homogeneous ideal of a non-ACM curve in P3, the projective dimension
increases by 1 and the depth drops by 1, so we have

3 + 1 = 3 + 1 = 4.

(The Auslander-Buchsbaum formula actually applies to more general situations, but we
won’t go into that here.)

Exercise 38. Show that if R = k[x, y], where k is a field, and if R/I is artinian and
Gorenstein then in fact R/I is a complete intersection. We will see examples to show that
this is no longer true in three or more variables.

Remark 5.1. If R/I is Gorenstein, it is isomorphic to a twist of its canonical module. This
implies:

The Hilbert function of an artinian Gorenstein algebra is symmetric.
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It also means that if you dualize the minimal free resolution, up to twist the result that you
get is the same as the original resolution! In particular, the ranks of the free modules in the
resolution are symmetric. For example, if R/I is a complete intersection of forms of degree
5 in 6 variables then the minimal free resolution (from the Koszul resolution) is

0 → R(−30) → R(−25)6 → R(−20)15 → R(−15)20 → R(−10)15 → R(−5)6 → R → R/I → 0

so you can see, looking left to right and looking right to left, the symmetry of the ranks.
A consequence of this (with a little calculation) is that up to twist, R/I is self-dual.

In particular, the h-vector of R/I is also symmetric. We will see that the h-vector is not
necessarily unimodal, though.

The fact thatR/I is self-dual (up to twist) is very useful in the study of Lefschetz properties
for Gorenstein artinian algebras, as we will see.

6. Examples of Cohen-Macaulayness

Exercise 39. Play with a computer algebra program. For example, verify that five random
points in P3 (or n + 2 random points in Pn) are arithmetically Gorenstein. In particular,
verify that not all Gorenstein algebras are complete intersections.

Exercise 40. Check that a set of two skew lines in P3 is not ACM, although either line by
itself is ACM.

Exercise 41. Prove that the Hilbert function of a set of d points in Pn is strictly increasing
until it reaches the value d, at which time it becomes constant. Thus the Hilbert polynomial
of a finite set of points is the constant polynomial equal to the number of points in the set.

Example 6.1. Here is an interesting variety that turns out to always be ACM. We refer to
[GHM] for details. Let A be a hyperplane arrangement in Pn, i.e. it is a union of, say, r
hyperplanes in Pn. Fix an integer c with 2 ≤ c ≤ n and assume r ≥ c. We make the special
assumption that any c + 1 of the hyperplanes meet in codimension c + 1. (If c = n, this
means that no c + 1 of the hyperplanes have a common point.) For example, if c = 2 and
n = 3 we have a union of r planes in P3 and we are assuming that no three share a line.

Notice that the special assumption also means that for c ≤ n, any c of the hyperplanes
meet in a linear variety of codimension c, and that two different choices of c of the hyperplanes
give different codimension c linear varieties.

Now let V be the union of the codimension c linear varieties obtained in this way. Notice
that deg V =

(
r
c

)
. It turns out that V is always ACM. The main tool to prove this is a

construction from liaison theory called basic double linkage, which is beyond the scope of
these notes. See [Mi2] for details.

Three directions that have been taken in the literature to extend this example are the
following. First, one can move from hyperplane arrangements to hypersurface arrangements.
Second, one can relax the assumption that no c+ 1 of the hyperplanes meet in codimension
c. And third, in the case that c = 2, we can relate this to Jacobian ideals. In all three
situations, the Cohen-Macaulay question is of great interest and partial results have been
obtained.

Example 6.2. Let C and C ′ be ACM curves in P3 such that X = C ∪ C ′ is a complete
intersection, say of a surface of degree a and a surface of degree b. Assume that C and
C ′ meet in a finite set of points, Y . We will sketch the proof that Y is AG. We use some
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machinery that is not assumed for this course, and it is not important if you do not follow
the details of the argument. The point is to give an example of a nice connection between
ACM varieties of some codimension (related in a strong way) and a resulting AG variety of
codimension one greater.

Since C and C ′ are ACM of codimension 2, their minimal free resolutions have the form

0 → F2 → F1 → IC → 0

and

0 → G2 → G1 → IC′ → 0.

There is a standard exact sequence

0 → IC ∩ IC′ → IC ⊕ IC′ → IC + IC′ → 0.

Now, IC ∩ IC′ = IX and IY is the saturation of IC + IC′ .
There is a process called sheafification that converts graded modules to sheaves, and it

respects short exact sequences. We get, for any integer t, the exact sequence

0 → IX(t) → IC(t)⊕ IC′(t) → IY (t) → 0.

Taking cohomology we would get long exact sequence at this point, but since X is ACM it
turns out that h1(IX(t)) = 0 for all t, so in fact (taking a direct sum over all t) we have a
short exact sequence of saturated homogeneous ideals

0 → IX → IC ⊕ IC′ → IY → 0.

We know the minimal free resolution for IX from the Koszul resolution, and we wrote the
minimal free resolutions for IC and IC′ above, so we have

0 0
↓ ↓

R(−a− b) F2 ⊕G2

↓ ↓
R(−a)⊕R(−b) F1 ⊕G1

↓ ↓
0 → IX → IC ⊕ IC′ → IY → 0

↓ ↓
0 0

There are induced horizontal maps, and applying the construction of the mapping cone, one
obtains the free resolution

0 → R(−a− b) → R(−a)⊕R(−b)⊕ F2 ⊕G2 → F1 ⊕G1 → IY → 0.

This resolution is not minimal, but the fact that at the end we have only rank 1 (namely
R(−a− b) and the fact that Y has codimension 3 means that Y is not only ACM but in fact
also AG.
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7. Artinian reductions and h-vectors

We now explore the relation between the Hilbert function of a graded Cohen-Macaulay
algebra and that of any artinian reduction. See Proposition 3.23.

Proposition 7.1. Let R = k[x0, . . . , xn] and let I be a homogeneous ideal of R.

(a) Assume that I is saturated and that L is a general linear form. Then the Hilbert
function of R/⟨I, L⟩ is ∆hR/I .

(b) Let A = R/I be a Cohen-Macaulay algebra of Krull dimension d. Let L1, . . . , Ld

be a regular sequence of linear forms for A and let B = A/(L1, . . . , Ld)A be the
corresponding artinian reduction. Then the Hilbert function of B is

hB(t) = ∆dhA(t).

It takes the value zero for all t≫ 0.

Proof. The assumptions of (a) imply that L is a non-zerodivisor for R/I (Exercise 34 and
Remark 3.8). Then as in (4.1), we have the exact sequence

0 → [R/I]t
×L−→ [R/I]t+1 → [R/⟨I, L⟩]t+1 → 0

from which the result follows by exactness. This proves (a).
For (b), since R/I is Cohen-Macaulay and L1, . . . , Ld is a regular sequence for R/I, we

have for any 1 ≤ i ≤ d a short exact sequence
(7.1)

0 → [R/⟨I, L1, . . . , Li−1⟩]t−1
×Li−→ [R/⟨I, L1, . . . , Li−1⟩]t → [R/⟨I, L1, . . . , Li−1, Li⟩]t → 0

(where the case i = 1 refers to the homomorphism [R/I]t
×L1−→ [R/I]t+1). Then the result

follows by induction on d and again by exactness of this sequence. The fact that it is
eventually zero comes from the fact that artinian algebras are finite dimensional vector
spaces over k. □
Definition 7.2. Let A = R/I be a Cohen-Macaulay algebra of Krull dimension d, let
L1, . . . , Ld be a regular sequence of linear forms for A and let B = A/(L1, . . . , Ld)A be the
corresponding artinian reduction as in Proposition 7.1. Ignoring zero values, the Hilbert
function hB(t) = ∆dhA(t) is called the h-vector of V .

Example 7.3.

1. Let V be a set of 12 general points in the plane. Then the Hilbert function of V is

hV = (1, 3, 6, 10, 12, 12, . . . )

so the h-vector is (1, 2, 3, 4, 2).

2. Let V be the twisted cubic curve in P3. Then the Hilbert function of V is

hV = (1, 4, 7, 10, . . . ).

We know that V is ACM (Example 3.19) with d = Kdim(R/IV ) = 2. Thus by
Proposition 7.1 we get

∆hV = (1, 3, 3, 3, . . . )

and the h-vector is ∆2hV = (1, 2).
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3. Let V be the complete intersection in P4 of a quadric hypersurface and a cubic
hypersurface. This illustrates Remark 3.20 and Remark 4.8. Then the saturated
homogeneous ideal of V has two minimal generators, one of degree 2 and one of
degree 3. These two polynomials form a regular sequence (since the codimension is
equal to the number of generators). It can be shown that the Hilbert polynomial of
V is pV = 3t2 + 2 so the degree is 3 · 2! = 6 = 2 · 3 (the latter being the product of
the degrees of the minimal generators). In fact the Hilbert function is

hV = (1, 5, 14, 29, 50, 77, . . . )

so

∆hV = (1, 4, 9, 15, 21, 27, . . . ), ∆2hV = (1, 3, 5, 6, 6, 6, . . . ), ∆3hV = (1, 2, 2, 1)

and this latter is the h-vector.

4. Let C be a line in P3. Let’s find its Hilbert function hC in a more geometric way.

(a) Certainly dim[IC ]0 = 0 so

hC(0) = dim[R]0 − dim[IC ]0 = 1− 0 = 1.

(b) There are two independent linear forms containing C (since a line is the inter-
section of two planes in P3). So dim[IC ]1 = 2 and

hC(1) = dim[R]1 − dim[IC ]1 = 4− 2 = 2.

(c) Let t ≥ 2. Choose any t+1 points, P1, . . . , Pt+1 of C. Verify the following facts.

(i) If F is a homogeneous polynomial of degree t vanishing at P1, . . . , Pt+1

then F vanishes on all of C.

(ii) There exists F homogeneous of degree t vanishing on any t of the points
P1, . . . , Pt+1 but not vanishing on all of C. (Think of unions of planes.)

It follows from these two facts that C imposes t + 1 independent conditions on
forms of degree t. Thus

hC(t) = dim[R]t − dim[IC ]t = dim[R]t − (dim[R]t − (t+ 1)) = t+ 1.

So the Hilbert function of C is (1, 2, 3, 4, . . . ).

Exercise 42. (a) Prove that five points in P2 fail to impose independent conditions on
plane cubics (i.e. forms of degree 3 in C[x0, x1, x2]) if and only if they all lie on a line.

(b) If V is a set of seven points lying on an irreducible conic in P2, prove that its Hilbert
function is the sequence (1, 3, 5, 7, 7, 7, . . . ). (Hint: you can use without proof the
fact that it’s impossible to have three collinear points on an irreducible conic.)

(c) Describe what a set of points would look like if its Hilbert function is

(1, 3, 5, 6, 7, 7, 7, . . . ).

(Hint: I would start by seeing what the “5” tells you; you can use the result of (b)
even if you didn’t solve it.)
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Exercise 43. Let C be a set of two skew lines in P3, which we have seen is not ACM
(Exercise 31). Without loss of generality assume that R = k[w, x, y, z] and C = V(w, x) ∪
V(y, z). It happens to be true that IC = ⟨wy,wz, xy, xz⟩, and you can use this fact without
proof.

(a) Find the Hilbert function of R/IC .

(b) The Krull dimension of R/IC is 2. What is ∆2hC?

Remark 7.4. Note that if R/I is CM then its Hilbert function can be computed from that
of the general artinian reduction by “integrating.” For instance, in Example 7.3 (3) above,
starting from the h-vector we could work backwards to obtain

(1, 2, 2, 1)
(1, 1 + 2, 1 + 2 + 2, 1 + 2 + 2 + 1, 1 + 2 + 2 + 1 + 0, . . . ) = (1, 3, 5, 6, 6, . . . )
(1, 4, 9, 15, 21, 27, . . . )
(1, 5, 14, 29, 50, 77, . . . )

In fact, if V is ACM then its degree can be gotten simply by adding the entries of the
h-vector.

Exercise 44. If V is a finite set of points with h-vector (1, a1, a2, . . . , ad), show that the
number of points of V is 1 + a1 + · · ·+ ad. (Hint: see Remarks 4.11 and 7.4.)

Exercise 45. All of these calculations depend on the assumption that V is arithmetically
Cohen-Macaulay, i.e. that R/IV is a Cohen-Macaulay ring. Why?

Exercise 46. Suppose that V is an ACM surface (i.e. 2-dimensional) in P6 with h-vector
(1, 4, 7, 8, 2). Find the degree of V and find the Hilbert function of V (as a sequence, not
necessarily in closed form).

Exercise 47. Let R = k[w, x, y, z] and suppose I ⊂ R is a homogeneous ideal with Hilbert
function

hR/I(t) = (1, 4, 3, 4, 5, . . . ).

Prove that I is not saturated, and describe geometrically the saturation Isat of I, and find
its Hilbert function. (Hint: See Example 7.3 (4).)

8. Lefschetz Properties

In studying the depth of R/I we saw that it involves the injectivity of the multiplication
×L, where L is a linear form. (See Remark 3.12.) Notice that the next best thing to
injectivity is surjectivity, and for some algebras R/I it can happen that for a general linear
form L, the multiplication ×L : [R/I]t → [R/I]t+1 is not always injective (i.e. the depth of
R/I is zero), but ×L is either injective or surjective for each t (in fact it is injective up to a
certain degree and then surjective for each degree after that). This certainly is not true for
all algebras, as we will see, and our focus will be on figuring out for which algebras R/I this
desirable property actually does hold.

Definition 8.1. A graded algebra R/I has the Weak Lefschetz Property (WLP) if, for a
general linear form L, the homomorphism defined by the multiplication ×L : [R/I]t−1 →
[R/I]t has maximal rank for all t. It has the Strong Lefschetz Property (SLP) if ×Ld :
[R/I]t−d → [R/I]t has maximal rank for all t and all d.
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Good general references for the Lefschetz properties are [MN1] and [HMMNWW]. The
former is attached to these notes.

Remark 8.2. We have defined the WLP and SLP for standard graded algebras R/I, but
indeed the exact same definitions apply if we replace R/I by any finite length graded R-
module M . We will stick with the more restricted definition since that is the most studied
situation, but see also [Mi1], [FFP], [Mar1], [Mar2] and [Mar3].

The following are some specific kinds of algebras R/I that have been the focus of research
by different authors. You will see many more in the parallel courses by Pedro Macias Marques
and Alexandra Seceleanu. The references that I’ve given for each topic are far from complete,
and should just get you started if you pursue any of these directions. We will only talk about
a couple of these, and not in a comprehensive way.

1. Complete intersections
Some references: [HMNW], [MN2], [I], [AR], [BMMN1], [BMMN2];

2. Gorenstein algebras
Some references: [Ik], [B], [BMMNZ2], [G], [GZ], [AAISY];

3. Ideals generated by powers of linear forms
Some references: [SS], [MMN2], [HSS], [MM], [BL], [MN3], [MT], [HMNT],

[POLITUS];
4. Monomial ideals and ideals coming from combinatorics in different ways.

Some references: [BMMNZ1], [MMN1], [AB], [AL], [CN], [CJMN].

Remark 8.3. It is important to notice that as L ranges over [R]1, the rank of ×L is lower
semicontinuous, meaning that there is an open set where it achieves the greatest rank among
all such L, and special L could have lower ranks. Thus to prove that R/I has WLP or SLP, it
is enough to find one linear form giving maximal rank. (For example, think of a 3×3 matrix
of linear forms. For most choices of values to plug in for the variables, the determinant
will be non-zero, so you get rank 3, but for special entries the determinant is 0 so the rank
drops.) A linear form L for which the multiplication has maximal rank in all degrees is called
a Lefschetz element for R/I.

Recall that the Hilbert function of an artinian graded algebra can be represented by a
finite sequence of positive integers. If R/I is a graded artinian algebra then there is a last
non-zero component, say [R/I]p. Hence there is no hope that ×L : [R/I]t → [R/I]t+1 is
injective for all t, since in particular [R/I]p → [R/I]p+1 is not injective. But there is hope
that the WLP might hold. It is interesting to study what properties prevent WLP from
holding and what properties guarantee it.

Lemma 8.4. Let R/I be an artinian graded algebra and let L be a linear form. If ×L :
[R/I]t−1 → [R/I]t is surjective then ×L : [R/I]t−1+r → [R/I]t+r is surjective for all r ≥ 0.

Proof. Consider the exact sequence from Remark 3.12:

0 →
[
I : L

I

]

t−1

→
[
R

I

]

t−1

×L−→
[
R

I

]

t

→
[

R

⟨I, L⟩

]

t

→ 0.

In particular we have the exact sequence

[R/I]t−1
×L−→ [R/I]t → [R/⟨I, L⟩]t → 0
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and the last vector space in this sequence is zero if and only if ×L is surjective in that degree.
But R/⟨I, L⟩ is a standard graded algebra, so once it is zero in one degree, it is zero forever
after. □
Exercise 48. Prove that if the Artinian algebra R/I has the WLP then the Hilbert func-
tion of R/I is unimodal. In fact, show that it is strictly increasing for a while, then non-
increasing (but not necessarily strictly decreasing), but eventually zero. See the attached
paper [HMNW] for a complete characterization of the shape of the Hilbert function of an al-
gebra with the WLP (in fact the same description holds for SLP!). For example, the Hilbert
function cannot be (1, 4, 7, 6, 7, 3) even though one might hope that ×L could be injective
at first, then surjective, then injective again, then surjective.

Exercise 49. An important tool for studying Lefschetz properties for monomial algebras is
the fact that R/I has the WLP (or SLP) if and only if the linear form given by the sum of
the variables is a Lefschetz element. This was first proved in [MMN1], and we’ll also talk
about it in class. Write the proof carefully.

Exercise 50. Let I = ⟨x2, y2, z2⟩ ⊂ R = k[x, y, z]. For this exercise see also Examples 8.6
and 8.7.

(a) Prove that the Hilbert function of R/I is (1, 3, 3, 1) (writing only the non-zero values).

(b) Let L = x+y+z. Show that ×L is injective from degree 0 to degree 1 and surjective
from degree 2 to degree 3.

(c) Show that ×L is bijective from degree 1 to degree 2 if and only if char(k) ̸= 2.
Combining (b) and (c), conclude that R/I has the WLP if and only if char(k) ̸= 2.

(d) If char(k) = 2, find an element in [R/I]1 which is in the kernel of ×(x+ y + z) from
degree 1 to degree 2.

Remark 8.5. 1. In the example given in Exercise 50, I is not saturated, but still it
behaves in a much better way than the ideal in Example 3.5. This is because I is
what is called a complete intersection (even though it is artinian as well).

2. Exercise 50 illustrates the fact that the characteristic sometimes plays an interesting
role in the study of the Weak Lefschetz property, as do monomial ideals and as do
complete intersections. Maybe one of the most important open questions about the
WLP is whether all artinian complete intersections in ≥ 4 variables have the WLP,
in characteristic zero. It is known to be true for monomial complete intersections,
but not known for arbitrary complete intersections.

Exercise 51. This example appeared first in [BK] Example 3.1. Let R = k[x, y, z] and
I = ⟨x3, y3, z3, xyz⟩.

(a) Prove that R/I is artinian.

(b) Find the Hilbert function of R/I.

(c) Show that R/I fails the WLP in any characteristic. (Hint: focus on the multiplication
from degree 2 to degree 3. It is a fact, which you can use, that for studying WLP for
a monomial ideal, it is enough to consider ×L for L = x+ y + z.)

The paper [MMN1] extends this, exploring the WLP more generally for monomial ideals
in n + 1 variables having n + 2 minimal generators and containing powers of each of the
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variables (i.e. almost complete intersections). The ideal in Exercise 51 is a specific example
of the case n = 2. The main results of [MMN1] are for n = 2. This paper is attached in the
last part of these notes.

Example 8.6. Let I = ⟨x2, y3⟩ ⊂ k[x, y], where k is any field. The Hilbert function of R/I
is

dim[R/I]t =





1 if t = 0;
2 if t = 1;
2 if t = 2;
1 if t = 3;
0 if t ≥ 4.

Since I is a monomial ideal, we can use Exercise 49 to study the WLP for R/I. So let
L = x+ y. We claim that ×L : [R/I]t−1 → [R/I]t is

• injective for t ≤ 1
• an isomorphism for t = 2
• surjective for t ≥ 2.

Let us check what happens in the middle, i.e. from degree 1 to degree 2. Let f = ax+ by ∈
[R]1 = [R/I]1. Then

Lf = (x+ y)(ax+ by) = (a+ b)xy + by2

(using the fact that x2 = 0 in R/I). In order for Lf to be zero in R/I, then, we need a = −b
and b = 0. Thus a = b = 0 and so ×L is an isomorphism in this degree as desired.

We will see later that by duality (see section 11 below), the calculation we just made in
fact proves the full WLP in this example.

Example 8.7. Let I = ⟨x3, y3, z3⟩ ⊂ Z3[x, y, z]. We leave it to you to check that the
Hilbert function of R/I is the sequence (1, 3, 6, 7, 6, 3, 1). Let L = ax+ by+ cz be any linear
form (even though we know that it is enough to study L = x + y + z). We claim that
×L : [R/I]2 → [R/I]3 has a nonzero kernel, so R/I fails WLP. Indeed, working for now in
R itself we have

L · L2 = L3 = (ax+ by + cz)3 = a3x3 + b3y3 + c3z3 ∈ [I]3

so ×L does indeed have a nonzero kernel. This example stresses the important role that the
field can play.

9. The Non-Lefschetz locus

The name “non-Lefschetz locus” was introduced in [BMMN1], and indeed the most thor-
ough treatment can be found there. See also [Mar1], [Mar2] and [Mar3] for more recent work
on this topic.

Definition 9.1. Let R/I be a standard graded k-algebra, where k is a field. The non-
Lefschetz locus of R/I is the set LR/I of linear forms of R that are not Lefschetz elements
(i.e. such that the corresponding multiplication does not have maximal rank).

Remark 9.2. 1. Since multiplication by a nonzero scalar does not affect the rank of
×L, we view LR/I as a subset of Pn−1 rather than of [R]1, where n is the number of
variables.
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2. LR/I actually has a scheme structure, which we will not worry about here. But see
[Mi1] and [BMMN1] (especially the latter) for details.

3. It is often convenient to restrict to the multiplication ×L from a fixed degree to the
next in R/I. In very nice situations (e.g. when R/I is Gorenstein), it is enough to
find this locus in one specific degree in order to know it for all of R/I. Again see
[BMMN1].

4. Notice that LR/I could be empty and it could also be all of Pn−1. In fact, by definition
R/I fails WLP exactly when LR/I = Pn−1.

5. In this section we have worked in the context of a graded k-algebra R/I. However,
the definitions of WLP, of Lefschetz elements and of non-Lefschetz locus work for any
graded R-module.

The notion of studying the linear forms that fail to give maximal rank for multiplication on
graded modules is really a question about determinantal varieties, and as such is a classical
idea. Next we give an example where we compute a non-Lefschetz locus, and we give an
application to liaison theory due to Joe Harris.

Example 9.3. This example gives an interesting application of the non-Lefschetz locus to
liaison theory, originally due to Joe Harris.

Let I = ⟨x, y, z, w2⟩ ⊂ C[x, y, z, w]. It’s easy to check that

dim[R/I]t =

{
1 if t = 0, 1;
0 if t ̸= 0, 1.

First let us find the non-Lefschetz locus for R/I. Let L = ax + by + cz + dw ∈ [R]1. We
want to know for which a, b, c, d is it true that ×L fails to have maximal rank from degree 0
to degree 1. In this case, failure of maximal rank is equivalent to ×L being the zero map.

Take as a basis for [R/I]0 the element 1, and as a basis for [R/I]1 the element w. Clearly
(ax+by+cz+dw)(1) = 0 in R/I if and only if d = 0. Thinking of [R]1 as an affine space, the
non-Lefschetz locus is the hyperplane defined by d = 0. Projectivizing this, we get that the
non-Lefschetz locus LR/I ⊂ P3 is the plane defined by V(d) (note that the variables defining
this projective space are a, b, c, d).

This example originally arose in a very different setting, which we now describe (and was
Harris’ original motivation for his suggestion).

For curves in P3 (and in fact much more generally, but here we restrict the setting) there
is an equivalence relation called liaison. Two curves are directly linked (essentially) if their
union is a complete intersection. The notion of direct linkage generates an equivalence
relation called liaison. (Direct linkage satisfies the symmetric property but not the reflexive
or transitive properties.) There is a graded module called the Hartshorne-Rao module

M(C) =
⊕

t∈Z
H1(IC(t))

that is an invariant of the liaison class of C up to shifts and duals. Harris noticed that
the non-Lefschetz locus (using the modern name) is an isomorphism invariant, so it has
information for us about the liaison class. (See [Mi2] for details.)

Now let C be the disjoint union of a line λ and a conic Y in P3. λ meets the plane of Y
in a point, P . It turns out that M(C) is isomorphic to R/(Iλ + IY ). When P = [0, 0, 0, 1],
we get M(C) is precisely the ring R/I of this example. Otherwise it differs by a change of
variables. Omitting a lot of details, including a very powerful theorem of Rao from [Rao],
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one shows that if C ′ is another curve consisting of the disjoint union of a line and a conic
then C is linked (in a finite number of steps) to C ′ if and only if C and C ′ share the same
distinguished point P .

10. Hilbert functions of Gorenstein algebras

The study of Hilbert functions of artinian Gorenstein algebras is far from complete, but
there are many fascinating results that are known. In this section we will describe some of
this work, especially as it relates to the question of WLP and/or SLP.

We first remind the reader of the important fact that the Hilbert function of an artinian
Gorenstein algebra is symmetric (see Remark 5.1). We will see that there is only one obvious
condition on a symmetric Hilbert function that forces the WLP to hold, but there is much
more in the direction of Hilbert functions that force WLP not to hold for Gorenstein algebras.
And there is a lot that has been discovered in the non-WLP setting.

10.1. Hilbert functions of Gorenstein algebras with the WLP. As we have said,
we have a complete understanding of the possible Hilbert functions of artinian Gorenstein
algebras with the WLP. We will describe this in this subsection.

Definition 10.1. Let

h = (1, h1, h2, h3, . . . , he−3, he−2, he−1, he = 1)

be a symmetric vector of positive integers.
Consider the first difference sequence given by

gi = hi − hi−1 for 1 ≤ i ≤
⌊e
2

⌋

(see Remark 4.6). Then we say that h is an SI-sequence if both h and g are O-sequences
(see Definition 4.10).

The term “SI-sequence” is named after Stanley and Iarrobino. The following exercise and
theorem together give a complete classification of the Hilbert functions of artinian Gorenstein
algebras with the WLP.

Exercise 52. Let R/I be an artinian graded Gorenstein algebra and let h be its Hilbert
function. If R/I has the WLP then prove that h is an SI-sequence. [Hint: See Remark 3.12
and Proposition 11.1 below.]

We will see that the converse of the statement in Exercise 52 is not true (see the de-
scription of Ikeda’s example below): if R/I is Gorenstein and the Hilbert function of R/I
is an SI-sequence, it almost never forces R/I to have the WLP. See Remark 10.4, though.
However, a partial converse does hold and it completes the classification of Hilbert functions
of Gorenstein algebras with the WLP.

Theorem 10.2 ([Harima]). If h is an SI-sequence (for any number of variables h1) then there
exists a standard graded artinian Gorenstein algebra R/I with Hilbert function h, having the
WLP.

Now we briefly consider a special kind of Gorenstein algebra, and we will see that it is
forced to have the WLP.
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Definition 10.3. A compressed Gorenstein algebra is one for which the Hilbert function is
as big as possible. Thanks to symmetry, this means that the Hilbert function is of the form(

1, 3, 6, . . . ,

(
d− 1

2

)
,

(
d

2

)
,

(
d− 1

2

)
, . . . , 6, 3, 1

)

in the case of even socle degree (i.e. the last non-zero entry is in even degree) and of the
form (

1, 3, 6, . . . ,

(
d− 1

2

)
,

(
d

2

)
,

(
d

2

)
,

(
d− 1

2

)
, . . . , 6, 3, 1

)

in the case of odd socle degree.

Exercise 53. Verify that the Hilbert function of a compressed Gorenstein algebra is an
SI-sequence.

Remark 10.4. In general, the Hilbert function of an algebra R/I (not necessarily Goren-
stein) does not force it to have the WLP, nor to fail to have the WLP. However, there is a
class of algebras for which the Hilbert function does force the WLP, and this was described
in [MZ2]. We will omit details here.

For Gorenstein algebras of arbitrary codimension, though, there is one type of Hilbert
function that clearly forces the WLP, and one trait of the Hilbert function that forces WLP
to fail. We describe them now. (We do not in any way claim that either of these is the only
example with the claimed property.)

First, if h is a compressed artinian Gorenstein algebra of even socle degree e and R/I has
Hilbert function h then clearly R/I has the WLP. Indeed, up to and including degree e

2
, I is

zero so R/I coincides with R and multiplication by any linear form is injective. But we have
reached the middle of the h-vector, so by duality all other maps are surjective, and WLP
holds. Notice that if R/I has odd socle degree then even if it is compressed, the middle map
can fail to be an isomorphism. This happens, for instance, in Ikeda’s example [Ik] described
below.

Second, we saw in Exercise 48 that if R/I (not necessarily Gorenstein) has the WLP then
its Hilbert function is unimodal. Thus any artinian algebra whose Hilbert function is not
unimodal must fail WLP.

But we now have an even stronger condition for Gorenstein algebras. In Exercise 52 we
saw that an artinian Gorenstein algebra whose Hilbert function is not an SI sequence has no
hope of having the WLP, even if it is unimodal. Artinian Gorenstein algebras whose Hilbert
functions are unimodal but not SI have been studied in [MZ3]. This extends the observation
in Remark 10.4 about non-unimodal Hilbert functions forcing the WLP to fail.

Exercise 54. Find a sequence that is

• symmetric;
• an O-sequence;
• unimodal;

but is not an SI-sequence. (You do not have to find an explicit algebra with these properties,
only a sequence. But see [MZ3] for results on such algebras.)

We remark here that since your solution to this problem is at least an O-sequence,
Macaulay’s theorem (Theorem 4.10) guarantees that there is a standard graded artinian
algebra with this Hilbert function; what’s new here is that this algebra can never be Goren-
stein.
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10.2. Hilbert functions of Gorenstein algebras not necessarily with the WLP. If
our artinian Gorenstein algebra R/I does not necessarily have the WLP, a great deal of very
interesting research has been done to study the possible Hilbert functions, even though we are
far from a complete classification as we had when WLP is assumed. In this subsection we will
sketch some of what is known. We will divide our discussion according to the codimension.

10.2.1. Two variables. We will see shortly that in this setting everything has the SLP (at
least in characteristic zero). However, for our purposes we recall from Exercise 38 that any
artinian Gorenstein algebra over k[x, y] is in fact a complete intersection. Thus the relevant
fact is encapsulated by the following exercise.

Exercise 55. (a) Show that the Hilbert function of any complete intersection k[x, y]/I
has the form

(1, 2, 3, 4, . . . ,m− 1,m,m, . . . ,m,m− 1, . . . , 4, 3, 2, 1)

where the number of m’s in the middle is arbitrary. With this notation, the ideal I is
of the form I = (f, g), where f has degree m and the degree of g is the degree where
the second m− 1 occurs in the Hilbert function. If f and g both have degree m then
there is only one m in the Hilbert function.

(b) Confirm that such a sequence is an SI-sequence.

10.2.2. Three variables. We saw in the last section that in any number of variables, the
SI-sequences are precisely the Hilbert functions of artinian Gorenstein algebras with the
WLP.

On the other hand, we have noted that in three variables it is an open question whether
all codimension 3 artinian Gorenstein algebras have the WLP. It may be surprising, then,
to know the following fact, originally due to Richard Stanley (see also Zanello [Z]), that
could be interpreted as suggesting that it might be true that all codimension 3 artinian
Gorenstein algebras have the WLP. (But before you get too excited about this possiblity,
see the situation in codimension 4.)

Theorem 10.5 ([St2]). If R/I is a codimension 3 artinian Gorenstein algebra then it’s
Hilbert function is an SI-sequence.

10.2.3. Four variables. The first thing to note is that in this situation it is known that WLP
does not necessarily hold! (This explains why Question 11.4 below is only in codimension
3.) The first example is due to Ikeda ([Ik] Example 4.4). Her example has Hilbert function
(1, 4, 10, 10, 4, 1). Notice that this is unimodal and even compressed, so it gives the first
example that although WLP implies unimodal (and in fact SI), the converse is not true.

In fact, there is suggestive evidence that the Hilbert function of a codimension 4 artinian
Gorenstein algebra is always an SI sequence. Indeed, apart from the fact that there is no
known counter-example, it was shown in [MNZ2] that any artinian Gorenstein algebra with
Hilbert function

(1, 4, h2, h3, h4, . . . , he−3, he−2, 4, 1)

and h4 ≤ 33 has Hilbert function that is an SI sequence (which of course is even stronger than
simply being unimodal). This was extended by Seo and Srinivasan [SeSr] to the case h4 = 34.
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So one can pose the question whether the Hilbert functions of all artinian Gorenstein algebras
of codimension 4 are SI sequences, and we conjecture that the answer is “yes:”

Conjecture 10.6. Let R/I be a codimension 4 artinian Gorenstein algebra with Hilbert
function

h = (1, 4, h2, h3, h4, . . . , h4, h3, h2, 4, 1).

Then h is an SI-sequence.

If this turns out to be correct, it makes a very nice conjectural bridge from the codi-
mension 3 case to the codimension 4 case to the codimension ≥ 5 case, since conjecturally
in codimension 3 all Gorenstein algebras have the WLP and SI Hilbert functions, while in
codimension 4 they definitely do not all have the WLP but nevertheless (conjecturally) all
have SI Hilbert functions, and in codimension ≥ 5 we will see that the Hilbert functions are
not even necessarily unimodal.

10.2.4. ≥ 5 variables. Recall from Exercise 48 that if the Hilbert function of an artinian
Gorenstein algebra R/I is not unimodal (or even if it is unimodal but not SI) then R/I
cannot have the WLP. Still, it is of great interest to try to understand these Hilbert functions
for their own sake.

A lot of papers have been written on the general theme of “how non-unimodal can a
Gorenstein sequence be?” Of course once it is non-unimodal then WLP does not hold, but
still it is an interesting question to try to determine the extent to which non-unimodality is
possible. So many papers have appeared on this topic that we will not make any effort here
to try to list them all, and will just point to a few highlights.

The first non-unimodal Gorenstein sequence was found by Richard Stanley in 1978 [St2].
It is the sequence (1, 13, 12, 13, 1). It was shown in [MZ1] that among Gorenstein algebras
with socle degree 4 (meaning that the end of the Hilbert function is in degree 4), this has
the smallest value of h1, i.e. 13 is the smallest codimension that occurs among non-unimodal
Gorenstein Hilbert functions of socle degree 4.

The first challenge, then, was to restrict to Gorenstein algebras of socle degree 4. Knowing
that 13 is the smallest possible h1, the natural question is to ask how big h1 − h2 can be.
Not surprisingly, this depends on how big h1 is. Quite a few papers have been written on
this topic, but we will just mention that Stanley conjectured the following. For given value
h1 = r, let f(r) be the smallest possible value for h2. Then

lim
r→∞

f(r)

r2/3
= 62/3.

This conjecture was proven in [MNZ3]. Other asymptotic results (including for higher socle
degree) have been proven (e.g. [MNZ4], [BGIZ]).

If one does not care about socle degree 4, it is known that non-unimodal Gorenstein
examples exist for all codimensions ≥ 5. (Again, codimension 4 is open.) The first example
in codimension 5 was given by D. Bernstein and A. Iarrobino in [BI]. In fact, it is known
that a Gorenstein sequence can even have as many “valleys” as you like – this was shown
by M. Boij [B]. Finally, we recall that in [MZ3] it was shown by J. Migliore and F. Zanello
that artinian Gorenstein algebras exist whose Hilbert function is unimodal but is not SI, so
also these algebras must fail WLP.
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11. Proving WLP for artinian Gorenstein algebras, including complete
intersections

Now let’s return to the WLP question. We begin our discussion with some additional facts
about artinian Gorenstein algebras, and connections between their Hilbert functions and the
WLP question. Recall that we have already seen that if R/I is artinian Gorenstein then
its Hilbert function is an SI-sequence, and all SI-sequences are represented by some artinian
Gorenstein algebra, even if it is not true that SI alone implies that R/I has the WLP (as
evidenced by Ikeda’s example [Ik]).

The reader may have noticed that the definition of WLP, and of non-Lefschetz locus,
involves a consideration of all of the maps between components of R/I, or of M in the more
general setting of graded modules – see Remark 9.2 (5). In the case of graded modules, we
have no choice (in general) but to look at all pairs of consecutive components. However, for
k-algebras R/I it often happens that we can prove shortcuts and work around this issue. The
first instance of this is Lemma 8.4, where we saw that for any artinian R/I (not necessarily
Gorenstein), once ×L is surjective in one spot, it is automatically surjective from that point
on.

The best of all worlds is the case of Gorenstein algebras (including complete intersec-
tions). The important starting point to studying WLP for artinian Gorenstein algebras is
the following. Recall that for an artinian algebra R/I, the socle degree is the degree of the
last non-zero component of R/I. Also, for a real number t, ⌈t⌉ is the “round-up” of t (e.g.
⌈5
3
⌉ = 2), and analogously for the round-down ⌊t⌋ (e.g. ⌊5

3
⌋ = 1).

Proposition 11.1. Let R/I be Gorenstein of socle degree e and let L be a general linear
form. The following are equivalent.

1. R/I has WLP.
2. ×L : [R/I]t−1 → [R/I]t is injective for all t ≤ ⌈ e

2
⌉.

3. ×L : [R/I]t−1 → [R/I]t is surjective for all t ≥ ⌈ e+1
2
⌉.

4. ×L : [R/I]⌈ e
2
⌉−1 → [R/I]⌈ e

2
⌉ is injective.

5. ×L : [R/I]⌈ e+1
2

⌉−1 → [R/I]⌈ e+1
2

⌉ is surjective

Remark 11.2. The point of this proposition is to realize that for artinian Gorenstein alge-
bras, injectivity on the left half is equivalent to surjectivity on the right half, and furthermore
there is one spot whose injectivity implies the full WLP, and one spot where the surjectivity
implies the full WLP. Furthermore, when e is odd, the spots coincide and we can look for
either injectivity or surjectivity, whichever may be easier.

Proof of Proposition 11.1. The heart of the matter is Remark 5.1. In general, when R/I
is artinian, its k-dual is isomorphic to a twist of the canonical module, so when R/I is
Gorenstein as well, up to twist R/I is self-dual.
Since R/I has socle degree e, by self-duality, in particular we have dimk[R/I]e = 1. Then

if we make a suitable choice of bases for all the homogeneous components of R/I, a matrix
representing ×L from degree t − 1 to degree t is the transpose of the matrix for ×L from
degree e− t to degree e− t+ 1.

The numerical conditions in items 2. and 3. represent the degrees “closest to the middle”
where we expect injectivity (respectively surjectivity). For example, for the Hilbert function
(1, 3, 3, 1) we have e = 3 and both ⌈ e

2
⌉ and ⌈ e+1

2
⌉ represent t = 2, so both refer to the map

from degree 1 to degree 2. On the other hand, when the Hilbert function is (1, 3, 6, 3, 1) we
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have e = 4, so the bound ⌈ e
2
⌉ in condition 2. represents the map from degree 1 to degree 2

(the last place where we expect injectivity, while the bound ⌈ e+1
2
⌉ in condition 3. represents

the map from degree 2 to degree 3 (the first place where we expect surjectivity).
It’s clear that condition 1. implies all of the other conditions, and that 2. and 3. together

imply 1. It’s also clear that condition 2. implies condition 4. and condition 3. implies con-
dition 5. The fact that 2. and 3. are equivalent comes from the self-duality and the above
observation about the matrices. (The rank of a matrix is unaffected by taking the transpose.)

The fact that 4. and 5. are equivalent also comes from self-duality, noticing that in one
situation (e odd) we are talking about the same map and getting that it is an isomorphism
(injectivity is equivalent to surjectivity).

The implication 5. implies 3. comes from Lemma 8.4. This completes the proof. (Note
that we never directly prove that 4. implies 2., but rather invoke self-duality to get it for
free.) □

Two of the most important open questions about the WLP are the following.

Question 11.3. In characteristic zero, does every artinian complete intersection, in any
number of variables, have the WLP? Same question for SLP.

Question 11.4. In characteristic zero, does every artinian Gorenstein algebra in three vari-
ables have the WLP? Same question for SLP.

In the case of Question 11.3, the conjecture that the answer is “yes” first appeared in
[RRR]). In the case of Question 11.4, it was mentioned in [Ik] that “(i)t is conjectured” to
be true in codimension 3, without an explicit reference; it was also explicitly conjectured in
[BMMNZ2] in codimension 3. The most complete results in codimension 3 about Question
11.4 can be found in the latter paper. We will describe the situation more carefully below.
But we begin with the complete intersection situation.

11.1. The WLP for complete intersections. We will first focus on Question 11.3. Our
main goal in this subsection is to describe what is known about this question.

Let R = k[x1, . . . , xn], where (as usual) k has characteristic zero, and let I = ⟨F1, . . . , Fn⟩
be a complete intersection. Let di = degFi for 1 ≤ i ≤ n. We start with a by-now classical
result for a special choice of the Fi. In our opinion, this theorem launched the entire field
of Lefschetz theory that this school is about, since it leads to questions about complete
intersections, Gorenstein algebras, monomial ideals, level algebras, and more.

Theorem 11.5 ([St1], [W], [RRR]). Let I = ⟨xd11 , . . . , xdnn ⟩. Then R/I has the SLP.

For the next result, note that the space parametrizing complete intersections of fixed
generator degrees is irreducible, so a “general complete intersection” makes sense. (It is
understood in using the term “general” that the generator degrees are fixed.)

Corollary 11.6. A general complete intersection in any number of variables has the SLP.

The idea is that since the parameter space is irreducible, by semicontinuity it is enough
to find one example where SLP holds in order to say that it holds for the general complete
intersection, and the prior result provides that example.

Beyond this result, what we know is quite sparse. It is convenient to describe the re-
sults according to the number of variables. We remind the reader that we are assuming
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characteristic zero, and we will not keep restating that. Also, following convention, by “ar-
tinian Gorenstein algebra R/I of codimension n” we mean that the polynomial ring R has
n variables.

11.1.1. Two variables. In this case everything has SLP:

Theorem 11.7 ([HMNW] Proposition 4.4 attached to these notes). If n = 2 then for any
homogeneous ideal J , R/J has the SLP. In particular, of course, all complete intersections
have the WLP.

11.1.2. Three variables.

Theorem 11.8 ([HMNW] Theorem 2.3 and Corollary 2.4 attached to these notes). If n = 3
then every complete intersection has the WLP.

Proof. Here is the idea of the proof from [HMNW] (see the attached paper). Let I =
(F1, F2, F3) be a complete intersection, and assume that di = degFi. For convenience assume
d1 ≤ d2 ≤ d3.

When d3 ≥ d1 + d2 − 3, a simpler proof was already known from work of Watanabe [W2]
that R/I has the WLP. So we can assume without loss of generality that d3 < d1 + d2 − 3.
Start with the minimal free resolution of the complete intersection ideal I = (F1, F2, F3).

Then we have the Koszul resolution

0 → R(−d1 − d2 − d3) →
⊕

1≤i<j≤3

R(−di − dj)
ϕ→
⊕

i=13

R(−di)
[F1,F2,F3]

) R → R/I → 0.

Consider the commutative diagram of graded modules obtained from the Koszul resolution
and considering multiplication by a general linear form L:

0 0
↓ ↓

0 → E(−1) → F1(−1)
[F1,F2,F3]

) R(−1) → (R/I)(−1) → 0

↓M ↓ ×L ↓ ×L

0 → E → F1
[F1,F2,F3]

) R → R/I → 0
↓ ↓
F̄1 R̄
↓ ↓
0 0

where:

• F1 =
⊕3

i=1R(−di);
• E is the kernel of the homomorphism given by [F1, F2, F3]. (This is the syzygy module
– it is also the image of ϕ in the Koszul resolution above. The cokernel of ϕ is the
ideal I.)

• the bars F̄1 and R̄ denote the restriction of these free modules to R/(L) ∼= k[x, y];
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• M is the matrix



L 0 0
0 L 0
0 0 L


;

Notice that the first vertical exact sequence in the commutative diagram is the direct sum
of three copies of the exact sequence

0 → R(−1)
×L−→ R → R̄ → 0

twisted by −d1,−d2,−d3 respectively.
We then sheafify. It turns out that the sheafification of E is a locally free sheaf (because

R/I is artinian). Let λ be the line in P2 defined by L. We get the commutative diagram of
sheaves

0 0 0
↓ ↓ ↓

0 → E(−1) → F1(−1)
[F1,F2,F3]

) OP2(−1) → 0
↓ ↓ ↓

0 → E → F1
[F1,F2,F3]

) OP2 → 0
↓ ↓ ↓

0 → E|λ → F1
[F̄1,F̄2,F̄3]

) Oλ → 0
↓ ↓ ↓
0 0 0.

Notice that
⊕

t∈ZH
1(E(t)) ∼= R/I.

Now the whole proof hinges on applying the Grauert-Mülich theorem to E . (This is a
theorem that talks about the splitting type of the restriction of a vector bundle to a general
line.) Our assumption that d3 < d1 + d2 − 3 forces E to be semistable, which means that we
can apply Grauert-Mülich.

Consider the restriction E|λ. A theorem of Grothendieck says that this restriction splits
as a direct sum Oλ(a) ⊕ Oλ(b). Grauert-Mülich then says that |a − b| ≤ 1. Using the
commutative diagram of sheaves above, cohomology, and the Snake Lemma, we get (after
some details for which we refer you to the attached paper) that

×L : [R/I]t−1 → [R/I]t

has to be surjective, because for each t either h0(E|λ(t) = 0 or h1(E|λ(t) = 0. □

Unfortunately, this method does not extend very much. Indeed, very little is known about
SLP for codimension 3 complete intersections, although Marangone [Mar3] has some results
for multiplication by forms of degree 2. Similarly, not so much is known about WLP in more
variables, as we will see now.

11.1.3. Four variables. In four variables even less is known. As before, we start with complete
intersections.

Theorem 11.9 ([BMMN2] Proposition 7.5). Let A = R/I where I = ⟨F1, F2, F3, F4⟩ and
degFi = di. Set d1 + d2 + d3 + d4 = 3λ+ r, 0 ≤ r ≤ 2. Let L be a general linear form. Then
the multiplication maps ×L : [A]t−1 → [A]t are injective for all t < λ.
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Now we specialize to the equigenerated case, i.e. we assume that d1 = · · · = d4 = d for
some positive integer d. We’ll start with the codimension 4 version of a result of Alzati and
Re (proved earlier by Ilardi in the special case of Jacobian ideals) – note that there is a more
general version of their theorem that we will mention in the next subsection.

Theorem 11.10 ([AR] Corollary 4). Let A = R/I = R/⟨F1, F2, F3, F4⟩, where degFi = d
for all i. Let L be a general linear form. Then ×L : [A]t−1 → [A]t is injective for all t ≤ d.

Improving this we have a simple corollary of Theorem 11.9:

Corollary 11.11. Let A = R/I where I = ⟨F1, F2, F3, F4⟩ and degFi = d for some integer
d. Let L be a general linear form. Then the multiplication maps ×L : [A]t−1 → [A]t are
injective for all t < 4d−2

3
.

And improving this even further we have another result from [BMMN2] that assumes right
from the beginning that the ideal is equigenerated, but as a result gives a stronger conclusion.

Theorem 11.12 ([BMMN2] Theorem 4.9). Let A = R/I = R/⟨F1, F2, F3, F4⟩, where
degFi = d for all i. Let L be a general linear form. Then ×L : [A]t−1 → [A]t is injec-
tive for all t < ⌊3d+1

2
⌋.

The proofs of Theorem 11.9 and Theorem 11.12 are completely different. The first uses an
analysis of rank three vector bundles, while the second studies the geometry of a certain
union of two smooth complete intersection curves in P3.

Remark 11.13. We recall (Proposition 11.1) that to prove WLP it is enough to prove
injectivity for t = 2d−2, so Theorem 11.12 covers roughly half the distance between Theorem
11.10 and the optimal result that is still open.

11.1.4. Five or more variables. Naturally even less is known in the case of five or more
variables. We remind the reader of Theorem 11.5 and its corollary for general complete
intersections of fixed generator degree.

One result that we do have is the full version of Theorem 11.10:

Theorem 11.14 ([AR] Corollary 4). Let A = R/I = R/⟨F1, . . . , Fn⟩, where degFi = d for
all i. Let L be a general linear form. Then ×L : [A]t−1 → [A]t is injective for all t ≤ d.

As with the case of four variables, this result was also shown by Ilardi in the special case
where I is a Jacobian ideal. In particular, Alzati and Re proved:

Corollary 11.15. When n = 5, a complete intersection of quadrics has the WLP.

11.2. The WLP for codimension 3 artinian Gorenstein algebras. As we have seen,
it is known that in codimension 2 all artinian algebras (not only Gorenstein) have the WLP
(even the SLP), while in codimension ≥ 4 there exist artinian Gorenstein algebras failing
the WLP. However, note again that the full WLP for Gorenstein algebras with n = 3 is still
open. Thus this case merits its own subsection.

Remark 11.16. Let us repeat an observation made before. We defined SI sequences above
in arbitrary codimension, in Remark 10.1. We saw that SI sequences are exactly the possible
Hilbert functions of artinian Gorenstein algebras with WLP, in any codimension. On the
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other hand, without invoking WLP, it is known that in codimension 3 the SI sequences
are exactly the Hilbert functions of artinian Gorenstein algebras [St2], [Z]. These two facts
strongly suggest that all codimension 3 Gorenstein algebras will have WLP, but the question
is still open. Furthermore, we saw that the case of codimension 4 provides a cautionary note
because conjecturally all such Hilbert functions are SI-sequences, but we know that not all
such algebras have the WLP.

The paper [BMMNZ2] reduced the WLP problem to one involving compress artinian
Gorenstein algebras:

Theorem 11.17 ([BMMNZ2] Corollary 2.5). If all codimension 3 artinian compressed alge-
bras of odd socle degree have the WLP then all codimension 3 artinian Gorenstein algebras
have the WLP.

At first sight this seems to make the job much easier, since rather than study all codi-
mension 3 artinian Gorenstein algebras, it is enough to consider only the compressed ones.
However, in the same paper [BMMNZ2], a great deal of work (involving some very pretty
geometry!) went into proving just the case (1, 3, 6, 6, 3, 1). (I’ve always been intrigued by this
problem, and maybe for this reason, when my car reached 136,631 miles in 2011, I stopped
the car to take a picture of the odometer:

Luckily I was not driving on the highway at the time, as you can see from the speedometer!)
More generally, [BMMNZ2] showed the following, which removes the assumption on the
characteristic.

Theorem 11.18 ([BMMNZ2] Theorem 3.8). Any artinian Gorenstein algebra R/I with
Hilbert function (1, 3, 6, 6, 3, 1) has the WLP, unless the characteristic of k is 3 and the ideal
is I = (x2y, x2z, y3, z3, x4 + y2z2) after a change of variables.

Putting several things together (and avoiding details here) the same paper showed the
following:

Corollary 11.19 ([BMMNZ2] Corollary 3.12 and Corollary 3.13). Assume characteristic
zero. Then

1. All codimension 3 artinian Gorenstein algebras of socle degree at most 6 have the
WLP.

2. All codimension 3 artinian Gorenstein algebras of socle degree at most 5 have the
SLP.
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12. Beyond the WLP in unexpected directions

12.1. Vanishing conditions on a linear system. Let P be a point in Pn and m a positive
integer. A point of multiplicity m supported at P , denoted by mP , is the geometrical object
defined by the ideal ImP = (IP )

m. In particular for m = 1 the point P is said to be reduced.
More generally, given a set of distinct points X = {P1, . . . , Ps} ⊆ Pn and positive integers

m1, . . . ,ms, the set of points supported at X with multiplicity m1, . . . ,ms is the union of
the points, denoted by Z = m1P1 + · · ·+msPs, that is defined by the ideal

IZ = (IP1)
m1 ∩ · · · ∩ (IPs)

ms .

We say that mP , a point of multiplicity m, imposes r independent conditions on the forms
of degree t of an ideal I ⊆ C[Pn] if

dimC[I ∩ (IP )
m]t = dimC[I]t − r.

More generally, we say that a subscheme Z ⊂ Pn imposes r independent conditions on the
forms of degree t of an ideal I ⊂ C[Pn] if

dimC[I ∩ IZ ]t = dimC[I]t − r.

We will primarily be interested in the case when Z is a finite set of points and when Z = mP
for a point of multiplicity m. When Z is a finite set of points and r = |Z|, we sometimes
simply say that Z imposes independent conditions on [I]t. In Example 7.3 we used this idea
to compute the number of independent conditions imposed by a line C ⊆ P3 on the forms
of degree t.

Exercise 56. Prove that in order to show that a finite set of points Z imposes independent
conditions on [R]t, it is enough to show that for each P ∈ Z there is a form of degree t
vanishing on Z\{P} but not vanishing at P .

Exercise 57. Let P ∈ Pn be a point. Compute the number of independent conditions that
mP imposes on forms of degree t in C[x0, x1, . . . , xn]. In particular show that this number is
at most

(
m+n−1

n

)
. Hint: it is not restrictive to take P = [1, 0, . . . , 0].

The binomial coefficient
(
n+m−1

n

)
, calculated in Exercise 57, represents the maximum num-

ber of independent conditions that a point P of multiplicity m can impose on any linear
system of forms of degree d. Sometimes, as the same example shows, this number of inde-
pendent conditions cannot be achieved just for numerical reasons. This happens when the
dimension of the linear system is not large enough.

The next two exercises show that different points might impose a different number of
conditions on a linear system.

Exercise 58. Let X be the following set of 8 points in P2

X =





[−1, 1, 1] [0, 1, 1]
[1, 0, 1] [0, 0, 1] [−1, 0, 1]
[1,−1, 1] [0,−1, 1] [−1,−1, 1]





(a) In the affine space given by x2 ̸= 0, these points correspond to

{(−1, 1), (0, 1), (1, 0), (0, 0), (−1, 0), (1,−1), (0,−1), (−1,−1)}.
Sketch this set of points, noting the collinearities.

(b) Compute the Hilbert function of X.
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Exercise 59. Let X be the following set of 8 points in P2

X =





[−1, 1, 1] [0, 1, 1]
[1, 0, 1] [0, 0, 1] [−1, 0, 1]
[1,−1, 1] [0,−1, 1] [1,−1, 1]





Compute the number of conditions imposed by P = [1, 1, 1] on [IX ]3. How many conditions
does the point P ′ = [1, 0, 0] impose on [IX ]3?

Remark 12.1. From Exercise 59, in particular we have that both X and X ∪ {P} impose
the same number (8) of independent conditions on forms of degree 3 in C[P2]. It is a special
case of the so called Cayley-Bacharach Theorem.

Theorem 12.2 (Cayley-Bacharach Theorem). Let C and C ′ be two cubic curves in P2 such
that X = C ∩ C ′ is a set of nine distinct points. Let Y ⊆ X be a set of eight points. Then
any cubic curve vanishing at Y also vanishes at X. That is, any cubic through eight of the
nine points must vanish also at the ninth point.

The core of the proof is to show that we always have HY = (1, 3, 6, 8, . . .). Indeed, in such
case we easily have [IX ]3 = [IY ]3.

12.2. Unexpected curves and hypersurfaces. Exercise 59 underscores that, given a set
of points X, special points can fail to impose a condition on forms of a certain degree
vanishing at X. However, if [IX ]t ̸= (0) then a general point always imposes a condition on
[IX ]t. (The latter sentence means that the set of points that do not impose a condition on
[IX ]t is a proper closed set of Pn. Of course any point of X lies in this closed set.)

Exercise 60. Let X be a set of points in Pn. Let t be such that dimC[IX ]t > 0. Show that
there exists a point P ∈ Pn such that P imposes a condition on [IX ]t.

Thus, it is natural to ask how many conditions a general point P of multiplicity m imposes
on [IX ]t ̸= (0). Recall that, from Exercise 57, the maximum number of conditions imposed
by mP on [IX ]t is

(
m+n−1

n

)
.

Given a set of points X ⊆ Pn and two positive integers d,m, the virtual dimension of the
linear system of the forms of degree d vanishing at X and at a general point of multiplicity
m is

v-dim(X, d,m) = dimC[IX ]d −
(
m+ n− 1

n

)
.

Hence, the virtual dimension could be a negative integer for small values of d, and in these
cases it certainly does not represent the dimension of any linear system. To avoid this issue
we introduce the expected dimension of the linear system of the forms of degree d vanishing
at X and at a general point of multiplicity m; it is

e-dim(X, d,m) = max{0, v-dim(X, d,m)}.
Finally we have the actual dimension of the linear system of the forms of degree d vanishing

at X and at a general point of multiplicity m, that is

a-dim(X, d,m) = dimC[IX ∩ ImP ]d.

The numbers e-dim(X, d,m) and a-dim(X, d,m) are equal when mP imposes the maxi-
mum number of possible conditions. In general, from the definition we have a-dim(X, d,m) ≥
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e-dim(X, d,m). However, the actual dimension is not necessarily equal to the expected di-
mension. Examples in P2 are easier using non-reduced points.

Exercise 61. Let P1 = [0, 0, 1], P2 = [0, 1, 0], P3 = [1, 0, 0] ∈ P2. Consider the set X =
2P1 + P2 + P3 and let P be a general point. Compute e-dim(X, 4, 4) and a-dim(X, 4, 4).

Remark 12.3. It is not possible to reproduce in P2 the situation in Exercise 61 by using
sets of reduced points. Indeed, Any set of reduced points X in P2 has a-dim(X, d, d) =
e-dim(X, d, d). This is a consequence of Bezout’s Theorem. Indeed, a curve of degree d
vanishing at X and at a general point P with multiplicity d must contain as a component
the union of the lines spanned by P and each of the points in X.

Then, if d ≤ |X| − 1 we have a-dim(X, d, d) = 0; otherwise

a-dim(X, d, d) = dim[IdP ]d − |X| = d+ 1− |X|
and

e-dim(X) = dim[IX ]d −
(
d+ 1

2

)
=

(
d+ 2

2

)
− |X| −

(
d+ 1

2

)
= d+ 1− |X|.

Definition 12.4. Let X ⊆ Pn be a (reduced) finite set of points. We say that X admits an
unexpected hypersurface (unexpected curve if n = 2) of degree d with a general point P of
multiplicity m if

a-dim(X, d,m) > e-dim(X, d,m).

The study of linear systems not having expected dimension is a classical topic in mathe-
matics. However, the problem of determining unexpected curves and hypersurfaces as in the
terms of Definition 12.4 was introduced in [CHMN] and [HMNT] and opened a new area of
research; see [HMN] for a recent survey on the state of the art.

It is clear that for any finite set X, if d < m then a-dim(X, d,m) = 0, hence X admits
no unexpected hypersurfaces with respect these parameters. An interesting instance of
Definition 12.4 is the case d = m. A reduced hypersurface of degree d with a point of
multiplicity d must be a cone with vertex at that point, so in this case we say that X admits
an unexpected cone of multiplicity d with vertex at a general point.
Remark 12.3 shows that no sets of reduced points admit unexpected cones on P2; however

examples exist in higher dimensional spaces.

Example 12.5. Let R = C[x, y, z, w] Consider the following set of 9 points in P3.

X =
[1, 0, 0, 0] [0, 1, 0, 0] [1, 1, 0, 0],
[0, 0, 1, 0] [0, 0, 0, 1] [0, 0, 1, 1],
[1, 0, 1, 0] [0, 1, 0, 1] [1, 1, 1, 1].

Such a set X is called a (3, 3)-grid; it is the intersection of 3 lines in one ruling of the smooth
quadric surface defined by the form xw− yz, with a set of 3 lines in the other ruling. These
lines are defined by L = {(z, w), (x, y), (x− z, y−w)} and H = {(y, w), (x, z)(x− y, z−w)}.

The Hilbert function of X is

HX = (1, 4, 9, 9, . . .).

Then, dim[IX ]3 = 20− 9 = 11 and a general point of multiplicity 3 imposes on [IX ]3 at most(
5
2

)
= 10 independent conditions. Hence

e-dim(X, 3, 3) = 1.
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However, if P is a general point, the surfaces consisting of the union of the planes spanned
by the lines in L and P , and the union of the planes spanned by the lines of M with P , give
two different cones of multiplicity 3 with vertex at the general point, hence

a-dim(X, 3, 3) ≥ 2.

Thus, X admits an unexpected cone of degree 3.

12.3. Geproci sets. The set X in Example 12.5 is called a grid. We give below the general
definition.

Definition 12.6. For a, b non negative integers, a set of ab points X ⊆ P3 is called an (a, b)-
grid if there are two sets L = {ℓ1, . . . , ℓa} and L′ = {ℓ′1, . . . , ℓ′b}, each containing pairwise
skew lines, such that X is the set of the intersection points of the curves ∪L and ∪L′. For
grids we usually adopt the convention that a ≤ b.

Exercise 62. Show that if a ≤ 2 and b ≥ 4 then an (a, b)-grid necessarily lies on a smooth
quadric surface, but the defining grid lines do not. On the other hand, for a ≥ 3 it does.
Hint: you can use the fact that a set of three skew lines in P3 lies on a unique smooth quadric
surface.

The relation between grids and unexpected cones is studied in detail in [CM2]. In partic-
ular it is shown in [CM2, Theorem 3.5.] that any (a, b)-grid X with b ≥ a ≥ 2 and b ≥ 3
has an unexpected cone of degree a. Furthermore, if a, b ≥ 3 then X also has an unexpected
cone of degree b.

Remark 12.7. An interesting fact about grids is their particular behaviour under general
projections. If X is an (a, b)-grid then the ab points of X lie on two space curves, namely
γ = ℓ1 ∪ . . . ∪ ℓa and γ′ = ℓ′1 ∪ . . . ∪ ℓ′b which have no common components. Considering a
general point P and a plane H ∼= P2, we note that πP (X), the projection of X from P to H,
is a complete intersection in H of type (a, b). Indeed, since P is general, πP (γ) and πP (γ

′)
are two curves of degree a and b meeting transversally in πP (X).

The above property is formalized in the next definition.

Definition 12.8. Let X be a finite set of points in Pn. We say that X is a geproci set if the
general projection of X to Pn−1 is a complete intersection.

It is clear that when X is a degenerate complete intersection in Pn then X is trivially a
geproci set. A systematic study of geproci sets can be found in [POLITUS]. In particular,
no example of a non-degenerate geproci set is known in Pn for n ≥ 4. So, it makes sense to
restate and refine the definition of geproci sets for the 3-dimensional case.

Definition 12.9. Let X be a finite set of points in P3. We say that X is an (a, b)-geproci
set if the general projection of X to P2 is a complete intersection of two curves of degree a
and b. Again, we use the convention a ≤ b.

Remark 12.10. Remark 12.7 says that if X is a grid then it is the intersection in P3 of
a curve of degree a and a curve of degree b, which immediately explains why it is geproci.
Another interesting fact [CM] is that this is the only possible example of a curve of degree
a and a curve of degree b in P3 meeting in ab points and having non-degenerate union (as
long as 2 ≤ a ≤ b). So non-grid geproci sets are much more subtle to study: the general
projection π(X) is the intersection of a curve of degree a and a curve of degree b, but X
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itself is not. This is sharpened in [POLITUS2], where it is shown that if X is (a, b)-geproci
and lies on a curve of degree a or a curve of degree b then it must actually be a grid.

Remark 12.11. The semicontinuity theorem ensures that if X is an (a, b)-geproci set, then
the projection from every point (not necessarily general) in P3 of X is contained in a curve
of degree a.

Any (a, b)-grid is an (a, b)-geproci set. It was shown in [CM, Theorem 5.12.] that the
only non degenerate (3, 3)-geproci sets are (3, 3)-grids. (The same is true for nondegenerate
(2, b)-geproci sets.)

Exercise 63. Let X be a set of six points in linear general position (no three points on a line
and no four on a plane). Prove that X is not a (2, 3)-geproci set. Hint: Use Semicontinuity
theorem and project from a special point.

Exercise 64. Let X be a non degenerate (2, b)-geproci set, b ≥ 3. Show that X is a
(2, b)-grid. Hint: Use Exercise 63.

The first non degenerate and non-grid example is a (3, 4)-geproci set that is the projec-
tivization of the root system D4 (see [HMNT]); we illustrate it in the next example.

Example 12.12. Let

XD4 :

[1, 1, 0, 0] [1, 0, 1, 0] [0, 1,−1, 0]
[0, 1, 1, 0] [0, 0, 1, 1] [0, 1, 0,−1]
[1, 0,−1, 0] [1, 0, 0,−1] [0, 0, 1,−1]
[1,−1, 0, 0] [1, 0, 0, 1] [0, 1, 0, 1]

Denote by Pij the elements in the first three rows in the above array and by Q1, Q2, Q3 the
points in the last row. Let π be a general projection to a hyperplane. In order to show that
XD4 is a (3, 4)-geproci set we need to prove that π(XD4) is complete intersection of a cubic
curve and a quartic curve. However, note that the points in each row in the above table are
collinear and so are their general projections. Thus a quartic curve containing all the points
of the configuration is the union of the projection of these lines.

We note that the following sets

G1 =





P11 P12 P13

P21 P22 P23

P31 P32 P33



 G2 =





Q1 P31 P13

P21 P22 P23

P12 Q2 P33



 G3 =





P11 P12 P13

P21 P33 Q3

P31 Q2 P22





are grids (indeed, observe that XD4 is closed under the involution maps φ([x, y, z, w]) =
[−x, y, z, w] and ψ([x, y, z, w]) = [x, y, z,−w] and we have G2 = φ(G1), G3 = ψ(G1)).

Hence π(G1), π(G2), π(G3) define pencils of cubic curves in P2. Moreover, by the Cayley-
Bacharach Theorem, any eight points of G1 are enough to define the same pencil of cubics
as all of G1 does.
We claim that π(G1) ∪ {π(Q1)}, π(G2) ∪ {π(P11)}, π(G3) ∪ {π(P23)} determine the same

cubic curve, which vanishes in all the twelve points of π(XD4). The set π(G1) ∪ {π(Q1)}
determine a unique cubic curve since any point not in π(G1) imposes one condition on this
pencil. Now consider G2. Its projection also defines a pencil, and it contains 7 points of G1

together with Q1 and Q2. Thus the cubic passing through π(G2)∪ π(P11) must be the same
cubic passing through π(G1) ∪ π(Q1) (and then also Q2). In other words,

π(G1 \ {P32}) ∪ {π(Q1)} = π(G2 \ {Q2}) ∪ {π(P11)}
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and by Cayley-Bacharach P33 and Q2 also are in the same such cubic. (Repeating the same
argument with G3 we see that this cubic also contains Q3.)

As an application of Bezout’s Theorem, note that such a cubic curve has no linear compo-
nents, and that it has no components in common with the quartic curve mentioned above.
This is because if the cubic contains a line L, then L contains at most three points of π(XD4)
so there would be at least 9 points on a conic. But there are too many sets of three collinear
points.

In [POLITUS, Theorem 4.10], the authors show that XD4 is, up to projectivities, the only
non-trivial non-grid (3, b)-geproci set. However, for any values of 4 ≤ a ≤ b there is a non-
degenerate and non-grid (a, b)-geproci set – see [POLITUS, Theorem 4.2]. Many questions
about geproci sets are still open; see Chapter 8 of the mentioned paper for a list of open
questions.

12.4. Weddle locus. As seen in Exercise 63, given a finite set Z ⊆ P3 and a degree d, it is
often true that there is not even one degree d cone which contains Z when the vertex is a
general point. In such cases there still can be a nonempty locus of points occurring as the
vertex of a degree d cone containing Z. Studying such vertex loci is of interest in its own
right, but will also be related to the Lefschetz properties.

Example 12.13. Let us begin by illustrating an issue that we will have to deal with when
we make our definitions.

Let Z1 be a set of 6 points in P3 in linear general position, and let Z2 be a set of 6 points
consisting of 3 points on one line, λ1, and 3 points on a different line, λ2, disjoint from the
first one. Both Z1 and Z2 have h-vector (1, 3, 2) and thus impose independent conditions on
quadrics. Both also lie on a 4-dimensional (vector space dimension) family of quadrics.

We will see shortly that a general projection of Z1 is a set of 6 points in P2 not lying on
a conic, while clearly a general projection of Z2 does lie on a conic (namely a union of two
lines).

In this section we will be interested in keeping track of special projections. We will see
that there is a quartic surface in P3, the Weddle surface, consisting of the locus of points
from which the projection takes Z1 to 6 points on a conic. But what are we to make of Z2?
There are two points of view.

First, we could say that since the general projection lies on a unique conic, the thing to
look for is the locus of points from which the projection lies on a pencil of conics. This would
be λ1 ∪λ2, since three points get collapsed to one. But a different point of view is that since
we expect 6 points in the plane to lie on no conic, all projections are special. This latter
point of view meshes better with the Lefschetz connection that we will come to soon so it
is what we will use for our definition below, but note that for instance [POLITUS] took the
former point of view. (For Z1 there is no such distinction.)

Let Z = {P1, . . . , Pr} ⊂ Pn be a set of distinct points. Let H ∼= Pn−1 be a general
hyperplane. Let P be a point not in Z and let πP : Pn\{P} → H be the projection from
P . Let d be a positive integer. The homogeneous component [IZ ∩ IdP ]d in degree d is the
C-vector space span of all forms of degree d that vanish on Z and vanish to order d (or more)
at P . You should convince yourself that

dim[IZ ∩ IdP ]d = dim[IπP (Z)]d
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(where the first ideal is in C[x0, . . . , xn] and the second is in C[X0, . . . , xn−1]) and that the
elements of [IZ ∩ IdP ]d are cones with vertex at P .
Let

δ(Z, d) = max

{(
d+ n− 1

n− 1

)
− |Z|, 0

}
.

Note that δ(Z, d) is the minimum possible value of dim[Iπp(A)]d. Achieving it means that the
r points of πp(Z) impose independent conditions on forms of degree d in H for as long as
numerically possible. In our setting, almost always this minimum will be the first of the two
possibilities.

Definition 12.14. The d-Weddle locus of Z is the closure of the set of points P ∈ Pn \ Z
(if any) for which dimk[IZ ∩ I(P )d]d does not achieve its minimum:

dim[IZ ∩ IdP ]d = dim[IπP (Z)]d > δ(Z, d).

Thus

Wd(Z) = {P ∈ Pn | dim[IπP (Z)]d > δ(Z, d)}.
Example 12.15. Let us return to the situation of Example 12.13. If Z1 ⊂ P3 is a set of
6 points in linear general position (see Exercise 63) then the general projection of Z1 does
not lie on a conic. Note that δ(Z1, 2) = 6− 6 = 0. So, the 2-Weddle locus, which is known
as Weddle surface, is the closure of the locus of points P ̸∈ Z1 in P3 that are the vertices
of quadric cones in P3 containing Z1. Equivalently, the Weddle surface is the closure of the
locus of points P ̸∈ Z1 from which Z1 projects to a set πP (Z1) ⊂ P2 contained in a conic.
We will justify shortly the use of the word “surface” here, and see that W2(Z1) is a surface
of degree 4.

What happens with Z2? We still have δ(Z2, 2) = 0, but now for any P ∈ P3 we have

dim[IZ2 ∩ I2P ]2 = dim[IπP (Z2)]2 > 0

so the Weddle locus W2(Z2) = P3.

As we indicated above, it is classically known that the Weddle surface has degree 4. There
are several ways to construct the equations of the d-Weddle locus of a set of reduced points
Z; in these notes we describe an approach based on Macaulay duality. This will give us the
fact that for six points in linear general position the 2-Weddle locus is a surface of degree 4,
and it will also finally give us our connection with the Lefschetz properties, and specifically
with a certain non-Lefschetz locus (see section 9 for the definition).

12.5. Macaulay duality. Consider the polynomial rings

R = C[x0, . . . , xn] = C[Pn] and R∗ = C[∂x0 , . . . , ∂xn ] = C[(Pn)∗],

where formally we think of the differential operators ∂xi
as independent indeterminates.

Macaulay duality comes from regarding R∗ as acting on R. Given a point P = [p0 : . . . :
pn] ∈ Pn, the dual of P , denoted by P ∗ is the hyperplane in (Pn)∗ defined by the linear form
LP =

∑
pi∂xi

∈ [R∗]1. The form LP is the annihilator of [IP ]1, i.e., as vector spaces [IP ]1 is
isomorphic to [R∗/(LP )]1.
(For example, when n = 3 let P = [0, 0, 0, 1], IP = (x0, x1, x2), LP = ∂x3 . We have that

[IP ]1 is annihilated by LP and dim[C[∂x0 , ∂x1 , ∂x2 , ∂x3 ]/LP ]1 = dim[IP ]1.)
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More generally for integers 0 ≤ k ≤ t, the annihilator of [IkP ]t under this action is
[(LP

t−k+1)]t, hence we have the following isomorphism of vector spaces

[IkP ]t
∼= [R∗/(LP

t−k+1)]t,

which can be applied to [IZ ∩ IdP ]d, Z = {P1, . . . , Pr} to get

[IZ ∩ IdP ]d = [IP1 ∩ · · · ∩ IPr ∩ IdP ]d ∼= [R∗/(Ld
P1
, . . . , Ld

Pr
, LP )]d.

Considering the following exact sequence

(12.1)

[
R∗

(Ld
P1
, . . . , Ld

Pr
)

]

d−1

×LP−−→
[

R∗

(Ld
P1
, . . . , Ld

Pr
)

]

d

→
[

R∗

(Ld
P1
, . . . , Ld

Pr
, LP )

]

d

→ 0

where ×LP denotes the map given by multiplication by LP . We get

coker(×LP ) ∼= [IZ ∩ IdP ]d.
But we saw above that

[IZ ∩ IdP ]d ∼= [IπP (Z)]d.

So looking for the set of points P for which the projection lies on unexpectedly many hy-
persurfaces (in H) of degree d is equivalent to looking for the set of points P for which ×LP

has unexpectedly small rank! We conclude:

The d-Weddle locus for a set of points Z ⊂ Pn is equal to the non-Lefschetz
locus for the algebra R∗/(Ld

P1
, . . . , Ld

Pr
) from degree d − 1 to degree d. Note

that this locus may be all of Pn.

We will return to this connection shortly.
Now we want to give a scheme structure to the d-Weddle locus. Denote by Ad(Z) the

matrix associated to ×LP (after a choice of basis). Then the d-Weddle locus of Z is the
closure of the locus of points P such that rank(Ad(Z)) is lower than expected. So, the ideal
of the maximal minors of Ad(Z) gives an ideal which defines the d-Weddle locus of Z, with
eventually either some embedded components or non reduced components.

Definition 12.16. The d-Weddle scheme of Z is the scheme defined by saturation of the
ideal of the maximal nonzero minors of Ad(Z).

Example 12.17. We again return to the situation of Example 12.13. Consider Z1. Notice
that n = 3, d = 2 and

(12.2) dim

[
R∗

(L2
P1
, . . . , L2

P6
)

]

1

= 4 and dim

[
R∗

(L2
P1
, . . . , L2

P6
)

]

2

= 10− 6 = 4.

(For the last calculation, linear general position forces the h-vector of Z1 to be (1, 3, 2) so the
six points impose independent conditions on forms of degree 2 in P3.) Then the Macaulay
duality matrix defining the 2-Weddle locus is a 4 × 4 matrix A2 of linear forms. Since the
general projection does not lie on a conic, we see that the determinant of A2 is not zero so
it defines a quartic surface as claimed.

For Z2, the dimensions obtained in (12.2) are the same as for Z1. However, now the
cokernel is at least 1-dimensional for all P , so the determinant of A2 must be zero. Hence
the 2-Weddle locus is all of P3.
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Let us examine this using coordinates. Now Z2 consists again of six points but in a
(2, 3)-grid:

Z =

{
[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [1 : 1 : 0 : 0],
[0 : 0 : 1 : 0], [0 : 0 : 0 : 1], [0 : 0 : 1 : 1]

}
.

The Macaulay duality matrix defining the 2-Weddle locus of Z is

Γ2(Z) =




z 0 x 0
w 0 0 x
0 z y 0
0 w 0 y




which has determinant equal to zero (this is consistent with the fact that Z is geproci and
its general projection lies on a conic, so the 2-Weddle locus is all of P3).
Let us examine this further, recalling the other perspective mentioned in Example 12.13.

The ideal of submaximal minors of A2(Z2) is

I = (xzw, xw2, yzw, yw2, xz2, xzw, yz2, yzw, xyz, xyw, y2z, y2w, x2z, x2w, xyz, xyw)

whose primary decomposition is

(y, x) ∩ (w, z) ∩ (w2, z2, y2, x2, yzw, xzw, xyw, xyz).

The ideal I is not saturated. The saturation of such ideal defines the two lines containing Z.
So the projection of Z is contained in a pencil of conics only if we project from the points
of these two lines, as predicted.

Example 12.18. Let Z3 = Y ∪ {Q} ⊂ P3 be a set of six points such that Y consists of five
general points in a plane H, and Q is a general point in P3.

Let Q be the quadric cone with vertex Q over the conic C in H defined by the five points.
Notice that a general projection of Z3 does not lie on a conic, since that conic would have
to be the projection of C but there is no reason for Q to be mapped to this conic. So the
2-Weddle scheme is not all of P3.

On the other hand, one checks that the dimensions from (12.2) continue to hold here (in
fact the h-vector of Z3 is (1, 3, 2) again). So A2 continues to be a 4×4 matrix of linear forms
with nonzero determinant.

From the geometry of the situation we note that the 2-Weddle scheme is a proper sub-
scheme of P3 supported on H and Q. Indeed, it has only two components, the quadric Q
and the plane H. In fact, the projection from any point not on either Q or H sends Z to
six points not on a conic.

Putting all this together, the 2-Weddle scheme is a quartic surface determined by the
determinant of a 4 × 4 matrix of linear forms, but this quartic is not reduced and it must
have a double structure on H.

12.6. Connection to WLP. We conclude these notes by returning to the connection be-
tween Weddle loci and the non-Lefschetz locus in slightly more detail, and also about the
Weak Lefschetz Property itself.

Let A = R∗/I be an artinian graded algebra with the WLP. Recall from Section 9 that
the non-Lefschetz locus of A is

LA = {P ∈ Pn | LP is not a Lefschetz element} ⊆ Pn.
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The set LA has a natural stratification given by the sets

LA,d = {P ∈ Pn | × LP : [A]d−1 → [A]d does not have maximal rank}.
By Macaulay duality, given a set of reduced points Z = {P1, . . . , Pr} ⊆ Pn such that

A = R∗/(Ld
P1
, . . . , Ld

Pr
) is a Weak Lefschetz Algebra, we have noted that the dimension of

the last vector space in the exact sequence (12.1) is equal to dim[IP1 ∩ · · · ∩ IPr ∩ IdP ]d, so
this is larger than expected if and only if the rank of Ad(Z) is smaller than expected. Then
LA,d is precisely the d-Weddle locus of Z.

For the quotient algebra R∗/(Ld
P1
, . . . , Ld

Pr
), notice that

[
R∗

(Ld
P1

,...,Ld
Pr

)

]

d−1

= [R∗]d−1. From

the exact sequence (12.1), we also see that in correspondence to a set of reduced points
Z = {P1, . . . , Pr}, the failure of the Weak Lefschetz Property from degree d− 1 to degree d
is equivalent to having a-dim(Z, d, d) > e-dim(Z, d, d), i.e. to the existence of an unexpected
cone of degree d for Z.

Therefore, from [CM, Theorem 3.5] (which ensures that (a, b)-grids have unexpected cones
in degree a, and also in degree b provided a, b ≥ 3) we have the following result.

Proposition 12.19. Let Z be an (a, b)-grid with b ≥ a ≥ 2 and b ≥ 3, and let L1, . . . , Lab be
the dual linear forms. Then R/(La

1, . . . , L
a
ab) fails the Weak Lefschetz Property from degree

a − 1 to degree a, and if b ≥ a ≥ 3 then R/(Lb
1, . . . , L

b
ab) fails the Weak Lefschetz Property

from degree b− 1 to degree b.

Furthermore, from [POLITUS, Chapter 7], (a, b)-geproci sets of points admit unexpected
cones of degree a and almost always also of degree b. Thus any such result about geproci
sets of points gives an example of failure of the Weak Lefschetz Property.
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13. Solutions to exercises

Exercise 1.
We want to count monomials. Imagine a set of d + n − 1 objects, places side by side.

Among these, choose n − 1 of them, so there remain d unchosen objects. These remaining
d unchosen objects will represent variables. To the left of the first marker, the number of
objects represents the power of x1 in the monomial. Between the first and the second, the
number of objects represents the power of x2. And so on. Each monomial corresponds to a
unique choice of markers, and each choice of markers corresponds to a unique monomial.

For example, suppose n = 4 and d = 5. We want to choose 3 markers from a set of 8
objects. Below, we have 8 objects, of which the bullets • represent the choice of 3 and the
× represent unchosen objects.

× • • × × × × •
To the left of the first marker is one object ×, so the monomial contains x11. Between the
first and the second are no ×, so there is no power of x2. then we have four ×, so we have
x43. Finally, there is no power of x4. So this choice corresponds to x1x

4
3. □

Exercise 2.

(a) It’s clear that x+ y ∈ ⟨x, y⟩ and x− y ∈ ⟨x, y⟩ so we have ⟨x+ y, x− y⟩ ⊂ ⟨x, y⟩. For
the reverse inclusion, we have x = 1

2
[(x+ y) + (x− y)] and y = 1

2
[(x+ y)− (x− y)].

(b) For the first equality, one inclusion is clear, namely ⊇. So we want to show that

x, y ∈ ⟨x+ xy, y + xy, x2, y2⟩.
In fact,

x = (1− y)(x+ xy) + (x)(y2)

and
y = (1− x)(y + xy) + (y)(x2).

For the other equality, we’ll instead show that

⟨x, y⟩ = ⟨x+ xy, y + xy, x2⟩.
Again ⊇ is clear, so we’ll show that both x and y are in the ideal on the right. First,

x = (x+ xy)− x(y + xy) + y(x2).

So we can (and will) freely use the fact that x is in this ideal. Then

y = (y + xy)− y(x).

(c) First we show that
⟨x, y⟩ ≠ ⟨x+ xy, y + xy⟩.

It’s enough to show that x /∈ ⟨x+ xy, y + xy⟩. Notice that

x− y = (x+ xy)− (y + xy)

so it’s enough to show that

⟨x− y, x+ xy⟩ ≠ ⟨x, y⟩.
Note that x+ xy = x(1 + y). Suppose

A(x− y) +Bx(1 + y) = x.
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Set y = x. Then we have

B(x, x)x(1 + x) = x.

This is impossible by degree considerations.
Now let’s show that

⟨x+ xy, x2⟩ ≠ ⟨x, y⟩.
Suppose

Ax(1 + y) +Bx2 = x.

Then

A(1 + y) +Bx = 1.

Now set x = 0. We get A(0, y)(1 + y) = 1, which again is impossible for degree
reasons.

Finally, let’s show that

⟨y + xy, x2⟩ ≠ ⟨x, y⟩.
Suppose we have A(y + xy) +Bx2 = x. Set y = 0. We get

B(x, 0)x2 = x,

which is impossible. □

Exercise 3.
We prove both inclusions. Let P ∈ V ∩W . Since P ∈ V , fi(P ) = 0 for all 1 ≤ i ≤ s.

Since P ∈ W , gj(P ) = 0 for all 1 ≤ j ≤ t. Thus P ∈ V(f1, . . . , fs, g1, . . . , gt).
Now assume P ∈ V(f1, . . . , fs, g1, . . . , gt). In particular, P ∈ V(f1, . . . , fs) = V and

P ∈ V(g1, . . . , gt) = W , so P ∈ V ∩W . □

Exercise 4.
We first prove that a single point in An is an affine variety. Indeed, if P = (a1, a2, . . . , an) ∈

An then

P = V(x1 − a1, x2 − a2, . . . , xn − an).

Now let V = {P1, P2, . . . , Pm}. By what we have just seen, each Pi is, by itself, an affine
variety. So we proceed by induction on the number of points, having just proven the case of
one point. Assume that the statement is true for m− 1 points, i.e. any subset of all but one
point of V . So for example, let

X = {P1, . . . , Pm−1}
and note that V = X ∪ Pm. By induction, X is an affine variety. As noted, Pm is also an
affine variety. So by Lemma 2 of [CLO], V = X ∪ Pm is also an affine variety. □

Exercise 5.

(a) In particular we have f(n, 0) = 0 for all n ∈ Z. But g(x) = f(x, 0) is a polynomial,
and the first sentence means that g(x) has infinitely many zeros. So g(x) is the zero
polynomial.

This means that plugging in y = 0 into f(x, y) gives the zero polynomial, so f(x, y)
contains no terms that are pure powers of x. In a similar way we can show that f(x, y)
contains no terms that are pure powers of y.
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Now consider f(x, 1). Since each term of f(x, y) contains both powers of x and of
y, f(x, 1) converts each term of f(x, y) into a term involving only x. Now the fact
that f(x, 1) has infinitely many zeros means that it, too, is the zero polynomial, so
all its terms are zero. This means that all terms of f(x, y) are zero, so f is the zero
polynomial.

(b) From (a), if f ∈ I(Z) then f is the zero polynomial. If Z were an affine variety then
we would have Z = V(f1, . . . , fs) for some polynomials f1, . . . , fs that (by definition)
vanish on Z. But any polynomial vanishing on Z is the zero polynomial, so the
smallest variety containing Z is R2. In particular, Z is not an affine variety. □

Exercise 6.
Consider the following statement:

If f(x, y) is a polynomial that vanishes at each point of X
then f vanishes on the whole curve x3 − y + 1 = 0.

(∗)

We claim that proving (∗) will guarantee that X is not an affine variety.

Indeed, let C be the curve V(x3− y+1) ⊂ R2. Notice that C contains points that are not
on X, for example the point (π, π3 + 1). Suppose it were true that X were an affine variety,
so X = V(f1, . . . , fs) for some polynomials f1, . . . , fs ∈ R[x, y]. That means that

the common vanishing locus of f1, . . . , fs is precisely X. (∗∗)
If every polynomial f that vanishes at all points of X also vanishes on all of C, then this is
true of f1, . . . , fs, so (∗∗) can’t be true – the common vanishing locus contains a lot of other
points, such as (π, π3 + 1). So this contradiction shows that X is not an affine variety.

So we just have to prove (∗). Again by contradiction. Suppose f ∈ R[x, y] vanishes at
every point of X (i.e. X ⊂ V(f)).

Consider the intersection of V(f) and V(x3 − y + 1). By Lemma 2, this intersection is an
affine variety:

V(f) ∩ V(x3 − y + 1) = V(f, x3 − y + 1).

Notice that X ⊂ V(f)∩V(x3 − y+1). This intersection is the set of points (a, b) ∈ R2 such
that

f(a, b) = 0 and a3 − b+ 1 = 0.

The second of these equations says that for a point in this intersection, b = a3 +1. The first
of the equations then says that any of these intersection points satisfies

f(a, a3 + 1) = 0.

The fact that X ⊂ V(f)∩V(x3− y+1) means that the above equation is satisfied whenever
a ∈ Z.

But f(t, t3 + 1) is a polynomial in one variable, t. The fact that it vanishes whenever t
is an integer says that it has infinitely many roots or else is the zero polynomial. But a
non-zero polynomial in one variable has finitely many roots. Thus f(t, t3 + 1) is the zero
polynomial. This means that f vanishes at any point (x, y) such that y = x3 + 1, i.e. it
vanishes on the whole curve V(x3 − y + 1). □
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Exercise 7.
Assume that V is a subvariety of k1. Then V is the vanishing locus of a set of polynomials

in k[x]. Now, one single polynomial f ∈ k[x] has at most finitely many roots, so even V(f) is
a finite set of points. Adding additional polynomials can only make the common vanishing
locus smaller, so we are done.

Conversely, assume that V is a finite set of ℓ points. Since V ⊂ k1, each point of V can
be viewed as an element ai ∈ k, 1 ≤ i ≤ ℓ, so V = {a1, . . . , aℓ}. Thus

V = V((x− a1)(x− a2) · · · (x− aℓ))

is a subvariety of k1. □

Exercise 8.

(a) Since F2 = {0, 1}, notice that if either a or b is 0 we are done. The only other case
is a = b = 1, and this reduces to 1− 1 = 0.

(b) One solution is x21 . . . x
2
n − x1 . . . xn. As before, if any ai = 0 we are done, and the

only other possibility is ai = 1 for all i, in which case we have 1− 1 = 0.

(c) Fermat’s theorem says that ap = a for all a ∈ Fp, so as before one solution is
xp1 . . . x

p
n − x1 . . . xn. □

Exercise 9.

(a) Let P ∈ S. Let f ∈ I(S). By definition, f(P ) = 0. This is true for every f ∈ I(S).
Hence by definition, P ∈ V(I(S)).

(b) Let S1 be the indicated set. We want to compute I(S1). Let f ∈ I(S1). So f(0,m) = 0
for all m ∈ Z. Note that f has some degree, say d. Write f in the form

f(x, y) = a0 + [a1,0x+ a0,1y] + [a2,0x
2 + a1,1xy + a0,2y

2] + · · ·+ [ad,0x
d + ad−1,1x

d−1y + · · ·+ a0,dy
d]

(the subscripts just tell you what monomial they correspond to). We are interested
in plugging in the points (0,m) for all m. Let’s do it in two steps, first plugging in
x = 0. We get that

f(0, y) = a0 + a0,1y + a0,2y
2 + · · ·+ a0,dy

d

is a polynomial in one variable that has infinitely many roots. Since R is an infinite
field, this must be the zero polynomial, i.e.

a0 = a0,1 = · · · = a0,d = 0.

But with these coefficients being 0, it means that f is divisible by x. Thus I(S1) ⊂ ⟨x⟩.
On the other hand, clearly any element of ⟨x⟩ vanishes at every point of S1, so we
have the reverse inclusion, and

I(S1) = ⟨x⟩.
But then

V(I(S1)) = V(⟨x⟩) = {(a, b) ∈ R2 | a = 0},
that is, V(I(S1)) is the y-axis, which properly contains S1.
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(c) We showed in (a) that S ⊂ V(I(S)), so we just have to prove the reverse inclusion.
Since S is a variety, we are assuming that there are polynomials f1, . . . , fs such that
S = V(f1, . . . , fs). But then we also have S = V(⟨f1, . . . , fs⟩). By definition, each
fi vanishes at every point of S, so ⟨f1, . . . , fs⟩ ⊆ I(S). By the inclusion-reversing
property, we conclude

S = V(f1, . . . , fs) = V(⟨f1, . . . , fs⟩) ⊇ V(I(S)),
which is what we wanted to prove. □

Exercise 10.
Let f ∈ k[x1, . . . , xn] be a polynomial such that fm ∈ I(V ). This means that fm(P ) =

f(P )m = 0 for all P ∈ V . But f(P ) is an element of the field k, and if a power of a field
element is zero then that element is itself zero (because a field is, in particular, an integral
domain). Thus f(P ) = 0 for all P ∈ V , so f ∈ I(V ). □

Exercise 11.

(a) We use the fact that both I and J are ideals. Since 0 ∈ I and 0 ∈ J , we have
0 ∈ I ∩ J . If f, g ∈ I ∩ J then f and g are both in I and both in J , so f + g ∈ I ∩ J .
If f ∈ I ∩ J and h ∈ R then hf ∈ I and hf ∈ J so hf ∈ I ∩ J .

(b) 0 ∈ I and 0 ∈ J so 0 = 0 · 0 ∈ IJ . Assume f =
∑m

i=1 figi for some fi ∈ I, gi ∈ J and

g =
∑m′

i=1 f
′
ig

′
i for some f ′

i ∈ I, g′i ∈ J . Then

f + g =
m∑

i=1

figj +
m′∑

i=1

f ′
ig

′
j ∈ IJ.

Finally, if f =
∑m

i=1 figi for some fi ∈ I, gi ∈ J and h ∈ R then

hf = h ·
m∑

i=1

figi =
m∑

i=1

(hfi)gi ∈ IJ

since hfi ∈ I (because I is an ideal).

(c) It’s enough to prove that each generator of IJ is in I ∩ J (why?). If I = ⟨f1, . . . , fs⟩
and J = ⟨g1, . . . , gt⟩ then the generators of IJ have the form figj for 1 ≤ i ≤ s and
1 ≤ j ≤ t. But then figj ∈ I (since fi ∈ I) and also figj ∈ J (since gj ∈ J) so
figi ∈ I ∩ J .

(d) For example take I = ⟨x⟩ and J = ⟨x⟩. Then I ∩ J is clearly equal to ⟨x⟩, while
IJ = ⟨x2⟩. We have already seen that these two ideals are not equal.

(e) Let’s prove the two inclusions.
⊆:
Let P ∈ V(IJ). We want to show that P ∈ V(I) ∪ V(J). If P ∈ V(I) then we’re

done, so assume P /∈ V(I); we want to show that then P ∈ V(J). Since P /∈ V(I),
there is some f ∈ I such that f(P ) ̸= 0. But fg ∈ IJ for all g ∈ J ; hence (fg)(P ) = 0
for all g ∈ J . Thus P ∈ V(J) as desired.
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⊇:
Let P ∈ V(I)∪V(J). So either P ∈ V(I) or P ∈ V(J) (or both). Assume without

loss of generality that P ∈ V(I). Then f(P ) = 0 for all f ∈ I. Let g ∈ IJ , so

g =
m∑

i=1

figi | fi ∈ I and gi ∈ J.

Then we get g(P ) =
∑m

i=1 fi(P )gi(P ) = 0. Hence g(P ) = 0 for all g ∈ IJ , and so
P ∈ V(IJ).

(f) Again we prove the two inclusions.
⊆:
Let P ∈ V(I ∩ J), so h(P ) = 0 for all h ∈ I ∩ J . Suppose that P /∈ V(I). We

want to show P ∈ V(J), i.e. we want to show that g(P ) = 0 for all g ∈ J . Since
P /∈ V(I), there is some f ∈ I such that f(P ) ̸= 0. Then for any g ∈ J , we know
that fg ∈ I ∩ J so (fg)(P ) = 0. Sincef(P ) ̸= 0, this forces g(P ) = 0 for all g ∈ J ,
so P ∈ V(J) as desired.
⊇:
Let P ∈ V(I) ∪ V(J), so either P ∈ V(I) or P ∈ V(J) or both. Let f ∈ I ∩ J .

Since f is in both I and J , we must have f(P ) = 0. So P ∈ V(I ∩ J). □

Exercise 12.
⊆:
Let P = (a1, . . . , an) ∈ ϕ−1(X), so ϕ(P ) ∈ X. This means

(F1(a1, . . . , an), . . . , Fm(a1, . . . , an)) ∈ X.

But X = V(G1, . . . , Gk), so for any i with 1 ≤ i ≤ k we have

Gi(F1(a1, . . . , an), . . . , Fm(a1, . . . , an)) = 0.

That is, the polynomial Gi(F1, . . . , Fm) vanishes at P for 1 ≤ i ≤ k, so

P ∈ V(G1(F1, . . . , Fm), . . . , Gk(F1, . . . , Fm))

as desired.

⊇:
Let

P = (a1, . . . , an) ∈ V(G1(F1, . . . , Fm), . . . , Gk(F1, . . . , Fm)).

This means (F1(P ), . . . , Fm(P )) ∈ V(G1, . . . , Gk) = X ⊂ Cm. But (F1(P ), . . . , Fm(P )) =
ϕ(P ), so ϕ(P ) ∈ X, i.e. P ∈ ϕ−1(X) as desired. □

Exercise 13.
First we find a function ϕ : k[x1, . . . , xn−1][xn] → k[x1, . . . , xn]. If f ∈ k[x1, . . . , xn−1][xn],

notice that

f = g0(x1, . . . , xn−1) + g1(x1, . . . , xn−1)xn + · · ·+ gd(x1, . . . , xn−1)x
d
n

for some non-negative integer d. So f can be viewed naturally as an element of k[x1, . . . , xn]
just by multiplying out all the terms. Define ϕ(f) = f in this way.
Now note that ϕ is a ring homomorphism. Indeed, ϕ(f + g) = ϕ(f) + ϕ(g) = f + g and

ϕ(fg) = ϕ(f)ϕ(g) = fg are both immediate from the definition.
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Next notice that ϕ is injective: again from the definition, f ∈ kerϕ if and only if ϕ(f) = 0
if and only if f = 0.

Finally notice that ϕ is surjective: by separating out the xn’s, any polynomial in k[x1, . . . , xn]
can be expressed as a polynomial in k[x1, . . . , xn−1][xn]. □

Exercise 14.
Consider the chain of ideals

⟨f1⟩ ⊆ ⟨f1, f2⟩ ⊆ ⟨f1, f2, f3⟩ ⊆ · · ·
Since k[w, x, y, z] is Noetherian, this chain stabilizes. That is, there is some N so that

⟨f1, . . . , fN⟩ = ⟨f1, . . . , fN , fN+1, . . . , fj⟩
for any j ≥ N + 1. So in particular, each fj can be written as a linear combination of
f1, . . . , fN . □

Exercise 15.

(a) We claim that f = f 2
1 + · · · + f 2

s does the trick. First show V ⊆ V(f). If P ∈ V
then fi(P ) = 0 for all 1 ≤ i ≤ s, so f 2

i (P ) = 0 for all 1 ≤ i ≤ s and hence the sum
f(P ) = 0 as well.

Conversely, we’ll show that V ⊇ V(f). Let P ∈ V(f), so
f(P ) = (f 2

1 + · · ·+ f 2
s )(P ) = f 2

1 (P ) + · · ·+ f 2
s (P ) = 0.

But we are working over the real numbers, so each term of f 2
1 (P ) + · · · + f 2

s (P ) is
non-negative. Thus it can only equal zero if f1(P ) = · · · = fs(P ) = 0, i.e. if P ∈ V .

(b) Let f = f 2
1 + · · · + f 2

s , which is certainly in I = ⟨f1, . . . , fs⟩. From part a) we know
that

∅ = V(I) = V(⟨f1, . . . , fs⟩) = V(f),
so f has no zeros in Rn. □

Exercise 16.
Let J = I(V ) + I(W ). We first claim that V(J) = ∅. If P ∈ V(J) then in particular every

element of I(V ) vanishes at P and every element of I(W ) vanishes at P . Thus P ∈ V and
P ∈ W , i.e. P ∈ V ∩W . This is impossible since V ∩W = ∅.

But now C is algebraically closed, so the Weak Nullstellensatz holds. This means

J = I(V ) + I(W ) = ⟨1⟩,
so the desired result holds. □

Exercise 17.
Since k[x1, . . . , xn] is Noetherian,

√
I is finitely generated. Say

√
I = ⟨f1, . . . , fs⟩.

In particular, each fi is in
√
I. Define m1, . . . ,ms so that fmi

i ∈ I for each i. Let p =
m1 + · · ·+ms.

Let f ∈
√
I, so we can write f = g1f1 + · · ·+ gsfs, where gi ∈ k[x1, . . . , xn]. Then

fp = (g1f1 + · · ·+ gsfs)
p.
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Each term in the expansion of fp is of the form

Bf i1
1 f

i2
2 · · · f is

s

where B is some (ugly) polynomial and i1+ i2+ · · ·+ is = p = m1+ · · ·+ms. As in class, we
claim that for at least one subscript k we have ik ≥ mk. This is a sort of pigeon-hole principle
– if ik is always less than mk, it is impossible for i1 + i2 + · · ·+ is = p = m1 + · · ·+ms. But
if ik ≥ mk then f ik

k ∈ I. So every such term in the expansion of fp is in I, hence fp ∈ I. □

Exercise 18.

(a) We have seen that
V(I) ∩ V(J) = V(I + J).

Hence under our conditions, V(I) ∩ V(J) = ∅, i.e. V(I) and V(J) are disjoint.

(b) It is always true that IJ ⊆ I∩J so we only have to prove the reverse inclusion. From
our assumption we have that for some f ∈ I and g ∈ J , 1 = f + g. Let h ∈ I ∩ J .
We want to show that h ∈ IJ . Multiplying both sides of the equation 1 = f + g by
h gives h = fh + gh. The fact that f ∈ I and h ∈ J means that fh ∈ IJ . The fact
that h ∈ I and g ∈ J means that gh ∈ IJ . Thus h ∈ IJ .

(c) It is enough to take I = J = ⟨x⟩. □

Exercise 19.

(a) No! Suppose fm ∈ I(X), so fm vanishes at every point of X. Then clearly f vanishes
at every point of X. Hence f ∈ I(X), so J = I(X) is radical.

(b) Yes! I(X) being prime means that X is irreducible, so let’s take the simplest non-
irreducible example: two points. Let X = {(0, 0), (1, 0)} ⊂ R2, and take J = I(X).
I’m happy with this as your final answer. But if you also tell me that J = ⟨y, x(x−1)⟩,
that’s good too. Notice that x · (x − 1) ∈ J but neither x nor x − 1 is in J , so J is
not prime.

(c) Yes! Let R = k[x, y] and let J = ⟨x⟩. J is prime, but it is not maximal since
J ⊂ ⟨x, y⟩, which is also prime.

(d) Yes! Take J = ⟨x2⟩ ⊂ R[x, y]. Then V(J) is the y-axis in R2, which is irreducible.
Then I(V(J)) = ⟨x⟩, which is prime. But J itself is not prime, since x · x ∈ J but
x /∈ J .

(e) Yes! Take J = ⟨x2⟩ ⊂ R[x, y]. Then V(J) is the y-axis in R2. The polynomial f = x
has the desired property.

(f) No! This is the main point of the Strong Nullstellensatz. If f ∈ I(V(J)) then fm ∈ J
for some m ≥ 1. □

Exercise 20.
By the Hilbert Basis Theorem, I has a finite generating set: I = ⟨f1, . . . , fr⟩. Since

I ⊂
√
J , each fi ∈

√
J . Thus for each i there is a positive integer mi such that fmi

i ∈ J .
Now we look at different powers of I,

Im = ⟨f1, . . . , fr⟩ · ⟨f1, . . . , fr⟩ · · · · · ⟨f1, . . . , fr⟩︸ ︷︷ ︸
m times

.
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This is generated by the polynomials obtained by taking m of the fi (possibly repeating)
and multiplying them. We want to show that if we choose m big enough, then every such
generator is in J .
If you were to take m = (m1−1)+(m2−1)+ · · ·+(mr−1) = (

∑
mi)−r, then it wouldn’t

quite work because you’d get

fm1−1
1 · fm2−1

2 · · · · · fmr−1
r

as one of the generators, which is not necessarily in J . However, let m be anything bigger
than this, e.g. m = (

∑
mi)− r + 1. Then every generator of Im is of the form

fa1
1 · fa2

2 · · · · · far
r

with
∑
ai = m, and this forces at least one of the ai to be bigger than or equal to the

corresponding mi; thus every generator of Im is in J . Hence Im ⊂ J . □

Exercise 21.

(a) Since I and J are homogeneous ideals, we can find generators for each that are
homogeneous. Say I = ⟨f1, . . . , fs⟩ and J = ⟨g1, . . . , gt⟩. Then

I + J = ⟨f1, . . . , fs, g1, . . . , gt⟩
is generated by homogeneous polynomials, hence is a homogeneous ideal. □

(b) We’ll use the other condition for an ideal to be homogeneous. Let f ∈ I ∩ J . Write
f as a sum of homogeneous polynomials, f = fd + fd−1 + · · · + f1 + f0. Since f ∈ I
and I is homogeneous, each fi ∈ I. Similarly for J . Thus each fi ∈ I ∩ J , so I ∩ J is
homogeneous. □

Exercise 22.

(a) Let f(x, y, z) = x3yz + 4x2yz2 + 5xyz3. Notice that d = 5. Then

∂f

∂x
= 3x2yz + 8xyz2 + 5yz3

∂f

∂y
= x3z + 4x2z2 + 5xz3

∂f

∂z
= x3y + 8x2yz + 15xyz2

Then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z

= x(3x2yz + 8xyz2 + 5yz3) + y(x3z + 4x2z2 + 5xz3) + z(x3y + 8x2yz + 15xyz2)

= (3x3yz + 8x2yz2 + 5xyz3) + (x3yz + 4x2yz2 + 5xyz3) + (x3yz + 8x2yz2 + 15xyz3)

= 5(x3yz + 4x2yz2 + 5xyz3).
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(b) We know that

(13.1) f(λx0, . . . , λxn) = λdf(x0, . . . , xn).

Then differentiate on both sides with respect to λ.

(13.2)
∂

∂λ
f(λx0, . . . , λxn) = dλd−1f(x0, . . . , xn).

Let’s look at the left-hand side. For 0 ≤ i ≤ n let ui = λxi.

(13.3)

∂

∂λ
f(λx0, . . . , λxn) =

n∑

i=0

(
∂f

∂ui

)(
∂ui
∂λ

)

=
n∑

i=0

(
∂f

∂xi

∣∣∣∣
xi=ui

)
· xi

=
n∑

i=0

λd−1xi
∂f

∂xi

where we have used the fact that ∂f
∂xi

is homogeneous of degree d − 1 and applied

(13.1) to the partials. Now substitute the result of (13.3) into (13.2) and divide by
λd−1 (which is non-zero) to obtain the result.

(c) First note that

fx =
∂f

∂x
= yz, fy =

∂f

∂y
= xz, fz =

∂f

∂z
= xy.

Now, V(f) = V(xyz) is the union of the three lines defined by x = 0, y = 0 and
z = 0. On the other hand, V(fx, fy, fz) is the locus defined by

yz = 0
xz = 0
xy = 0.

A quick calculation reveals

V(fx, fy, fz) = V(x, y) ∪ V(x, z) ∪ V(y, z).

This is precisely the union of the three points of pairwise intersection of the three lines
in V(xyz), that is, the points {[1, 0, 0], [0, 1, 0], [0, 0, 1]}. In particular, V(fx, fy, fz) is
a subset of V(xyz). And indeed, since Euler’s theorem gives, in this case, that

x · fx + y · fy + z · fz = 3 · f,

if P ∈ V(fx, fy, fz) then fx, fy, fz all vanish at P , so Euler’s theorem implies that f
vanishes at P , so in particular P ∈ V(f).
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(d) First note that f = x2yz + xy2z + xyz2, so

fx = ∂f
∂x

= 2xyz + y2z + yz2 = yz(2x+ y + z)

fy =
∂f
∂y

= x2z + 2xyz + xz2 = xz(x+ 2y + z)

fz =
∂f
∂z

= x2y + xy2 + 2xyz = xy(x+ y + 2z).

Now, V(f) = V(xyz(x+ y+ z)) is the union of the four lines defined by x = 0, y = 0,
z = 0 and x+ y + z = 0. On the other hand, V(fx, fy, fz) is the locus defined by

yz(2x+ y + z) = 0
xz(x+ 2y + z) = 0
xy(x+ y + 2z) = 0.

Since each of these is a product of three linear forms, each equation is satisfied exactly
when one (or more) of the factors is zero. Then for a point to be in the solution set
V(fx, fy, fz) we need one of the following lines to hold:

x = 0 ⇒ yz(y + z) = 0 ⇒ y = 0 OR z = 0 OR y = −z

y = 0 ⇒ xz(x+ z) = 0 ⇒ x = 0 OR z = 0 OR x = −z

z = 0 ⇒ xy(x+ y) = 0 ⇒ x = 0 OR y = 0 OR x = −y

So the solutions are (after eliminating repetitions)

{[0, 0, 1], [0, 1, 0], [0, 1,−1], [1, 0, 0], [1, 0,−1], [1,−1, 0].}
These points are the pairwise intersections of the four lines. (Note

(
4
2

)
= 6.) In

particular, V(fx, fy, fz) is a subset of V(xyz(x + y + z)). And indeed, since Euler’s
theorem gives, in this case, that

x · fx + y · fy + z · fz = 4 · f,
if P ∈ V(fx, fy, fz) then fx, fy, fz all vanish at P , so Euler’s theorem implies that f
vanishes at P , so in particular P ∈ V(f). □

FYI: The vanishing locus in P2 of a polynomial f that is a product of homogeneous linear
polynomials, where none is a scalar multiple of another, is called a line arrangement and is
an object of interest in current research. The vanishing locus of the partial derivatives, and
the ideal that the partial derivatives generate, is an important part of that.

Exercise 23.

(a) I = ⟨x4, y5, z6, x2y2z3, x3yz4⟩.
(b) m1 = 4 since x4 ∈ I. m2 = 5 since y5 ∈ I. m3 = 6 since z6 ∈ I. Thanks to the proof

in class, we can take r = 4 + 5 + 6 = 15. But in fact r = 13 works. □
(c) I = ⟨x2, y4⟩ and J = ⟨x2 + y4⟩.



64 JUAN C. MIGLIORE AND GIUSEPPE FAVACCHIO

Exercise 24.
Let

P = [p1, p2, p3], Q = [q1, q2, q3], R = [r1, r2, r3].

The fact that P,Q,R are collinear means that there is some linear form

ax+ by + cz = [a b c ]



x
y
z




that vanishes on all three points. (We’re slightly abusing notation by identifying a 1 × 1
matrix with its entry.) That is, we have the matrix products

[a b c]



p1
p2
p3


 = 0, [a b c]



q1
q2
q3


 = 0, [a b c]



r1
r2
r3


 = 0.

Then

(13.4) [a b c]A−1A



p1
p2
p3


 = 0

as well (and similarly for Q,R). Now, [a b c]A−1 is a new 1 × 3 matrix of scalars, and as
such it defines a new linear form

[a b c]A−1



x
y
z


 .

On the other hand,

(13.5) A



p1
p2
p3


 = ϕ(P ).

Since (13.4) and (13.5) hold for Q and R as well, the equation (13.4) means that this new
linear form vanishes on ϕ(P ), ϕ(Q), ϕ(R) and so they are collinear.

The converse clearly holds since ϕ is invertible. □

Exercise 25.

(a) IΛ = ⟨L1, L2⟩, where L1, L2 are homogeneous linear polynomials in five variables.

(b) We want to find the common vanishing locus of two homogeneous linear polynomials,
say L1 = a0x0 + a1x1 + a2x2 + a3x3 and L2 = b0x0 + b1x1 + b2x2 + b3x3. So we have
a system of linear equations

a0x0 + a1x1 + a2x2 + a3x3 = 0
b0x0 + b1x1 + b2x2 + b3x3 = 0.

Consider the coefficient matrix

A =

[
a0 a1 a2 a3
b0 b1 b2 b3

]
.

The fact that the planes are distinct means that L1 is not a scalar multiple of L2,
so the rows of A are independent. Thus the dimension of the solution space of this
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system of equations is 4−2 = 2 (where 4 is the number of variables and 2 is the number
of equations). But a vector space of dimension two corresponds to a projective line,
so we are done.

(c) Λ1 could be defined by ⟨x1−x0, x3−x2⟩ and Λ2 could be defined by ⟨x2−x0, x4−x3⟩.
So Λ1 ∩ Λ2 is the solution space of the system of equations

x1 − x0 = 0
x3 − x2 = 0
x2 − x0 = 0
x4 − x3 = 0

This means that if you fix any value for x4, say x4 = λ, then

λ = x4 = x3 = x2 = x0 = x1,

so the solution is exactly the point [1, 1, 1, 1, 1].

(d) There are infinitely many possible answers. For a linear form L = a0x0 + a1x1 +
a2x2 + a3x3 + x4x4 to vanish at the point [1, 1, 1, 1, 1], we need

a0 + a1 + a2 + a3 + a4 = 0

(plug the value 1 into each xi). There is a four-dimensional linear space of such
solutions. To get a plane we need to choose two independent ones (by a)), and there
are infinitely many ways we could do that twice (to get two planes). □

Exercise 26.

(a) ⇐:
If we know in advance that a = 3t, b = 4t and c = 5t then

ax+ by + cz = 0 ⇔ (3t)x+ (4t)y + (5t)z = 0 ⇔ 3x+ 4y + 5z = 0

so they define the same line.

⇒:
Consider the lines V(ax + by + cz) and V(3x + 4y + 5z) in P2. Either they meet

in a single point or they are the same line. To find out which, we solve a system of
homogeneous linear equations

3x + 4y + 5z = 0
ax + by + cz = 0.

Each equation represents a plane through the origin in R3. The lines in P2 meet in a
single point if and only if the solution space of these two equations is a 1-dimensional
subspace of R3 (i.e. a line through the origin in R3, i.e. a point of P2). Looking at
the coefficient matrix [

3 4 5
a b c

]

we know that the solution space is 1-dimensional if and only if the rank of this matrix
is 2, if and only if neither row is a multiple of the other. So the lines are the same in
P2 if and only if the solution space is 2-dimensional, if and only if a = 3t, b = 4t and
c = 5t for some non-zero t as claimed.
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(b) We have

(P2)∨ = { Lines in P2 } = { V(ax+ by + cz) } = { [a, b, c] }
where the latter is the set of triples of real numbers, not all zero, up to scalar multiples,
i.e. the latter is a projective plane.

(P2)∨ is called the dual projective plane. So what we have so far is that a point
P = [a, b, c] in (P2)∨ corresponds to the line ℓP = V(ax+ by+ cz) in P2. You can use
this for the next two parts even if you didn’t get a) and/or b). Furthermore, even if
you don’t get c) you can use the statement of c) to do d) and e).

(c) Say Pi = [ai, bi, ci] for i = 1, 2, 3. Then the Pi all lie on a line in (P2)∨ if and only
if there are some constants p, q, r ∈ R such that [a1, b1, c1], [a2, b2, c2] and [a3, b3, c3]
are all solutions to the equation

pa+ qb+ rc = 0

in the variables a, b, c. That is, we have

a1p + b1q + c1r = 0
a2p + b2q + c2r = 0
a3p + b3q + c3r = 0

But this means that [p, q, r] is a common solution of the equations

a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0

i.e. [p, q, r] is common to the lines V(a1x + b1y + c1z),V(a2x + b2y + c2z),V(a3x +
b3y + c3z), i.e. to the lines ℓP1 , ℓP2 , ℓP3 as desired.

(d) The points on this line are all on the same line (obviously), so the corresponding lines
in P2 all pass through the same common point, by c). This collection of lines through
a common point is called a pencil of lines.

(e) We start with the configuration

a

c

e

g d

b

f
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In sketching the dual set of points, we have to make sure that A,C,E,G are collinear,
B,C,D are collinear, B,F,G are collinear and D,E, F are collinear. Here is one
possible sketch. The blue lines are just to emphasize which points are collinear.

• • • •

•

•

•

A C E G

B

D

F

□

Exercise 27.
Let

f ∈ Isat = {f ∈ R | for each 0 ≤ i ≤ n there is some mi so that xmi
i f ∈ I}.

Write f as a sum of its homogeneous parts:

f = f0 + f1 + f2 + · · ·+ fd.

We want to show that for each j, fj ∈ Isat. That is, having chosen fj, we want to show that
for each i we have xmi

i fj ∈ I for suitable mi. Since f ∈ Isat, we know that for each i we have
xmi
i f ∈ I. But

xmi
i f = xmi

i f0 + xmi
i f1 + · · ·+ xmi

i fd

is the decomposition of xmi
i f into its homogeneous parts. Since I is homogeneous, we have

xmi
i fj ∈ I for each j, as desired. □

Exercise 28.

(a) For d ≥ 4, notice that every monomial is in ⟨x2, y2, z2⟩, i.e. [⟨x2, y2, z2⟩]j = [R]j
for all j ≥ 4. (Soon we will give this property a name: it is an artinian ideal.) So
1 ∈ ⟨x2, y2, z2⟩sat, i.e. the saturation is all of k[x, y, z].

(b) Let I = ⟨x2, y2, z2⟩. Now it is no longer true that [I]j = [⟨x2, y2, z2⟩]j = [R]j for any
j ≥ 0. (For example, wj is never in I.) In fact, we claim that I is already saturated!
(See what a difference an extra variable can make? Compare with (a).)

We know that I ⊂ Isat is always true, so we want to prove the reverse inclusion.
Let f ∈ Isat, so there exist m0,m1,m2,m3 such that fwm0 ∈ I, fxm1 ∈ I, fym2 ∈
I, fzm3 ∈ I. Ignoring the last three, consider the condition fwm0 ∈ I. We have

(13.6) fwm0 = Ax2 +By2 + Cz2.

By unique factorization, wm0 has to divide Ax2+By2+Cz2. We can’t quite conclude
that wm0 divides each of A, B and C since for instance we might have A = −y2 and
B = x2, in which case we only conclude that wm0 divides C. So assume that no single
term in the right-hand side of (13.6) is zero (i.e. A ̸= 0, B ̸= 0, C ̸= 0), that no two
terms sum to zero, and in fact that if we expand all products, we have removed any
terms that cancel out. This means that wm0 divides every term on the right. Since
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wm0 clearly has no factor in common with x2, y2 or z2, this means that it divides A,
B and C. Then dividing both sides by wm0 , and we get

f = A′x2 +B′y2 + C ′z2 ∈ I.

Thus I = Isat and we are done.

(c) Notice that [⟨x2, xy, xz⟩]j = [⟨x⟩]j for all j ≥ 2, so the desired saturation is ⟨x⟩. □

Exercise 29.
Assume V ⊂ Pn is a projective variety and let R = k[x0, x1, . . . , xn]. We know that

IV ⊆ IsatV , so we want to show the opposite inclusion. Let f ∈ IsatV . We want to show that
f ∈ IV , i.e. that f(P ) = 0 for all P ∈ V . Let P ∈ V . We know that V(x0, x1, . . . , xn) = ∅,
so there is at least one xi that does not vanish at P . But for this choice of xi we still have
f · xmi

i ∈ IV for some mi, so it vanishes at P . Since xmi
i does not vanish at P , we must have

f(P ) = 0 as desired. □

Exercise 30.
We have I = ⟨x2, xy, xz⟩ ⊂ R = k[x, y, z]. Notice that I = x · ⟨x, y, z⟩, i.e. the generators

of I are generators of the degree 2 component of the ideal ⟨x⟩. So [I]t = [⟨x⟩]t for all t ≥ 2,
so the Hilbert functions coincide. We get hR/I(t) = t+1 for all t ≥ 2. Since R/⟨x⟩ has depth
1 and R/I agrees with R/⟨x⟩ in all degrees ≥ 2, there is no other degree where ×L fails to
be injective. The saturation of I is ⟨x⟩, and it corresponds to a line in P2. □

Exercise 31.

(a) We saw in Exercise 29 that IV is a saturated ideal. The condition that LḠ = 0 in
R/IV means that LG ∈ IV . It’s easy to see that L /∈ IV and in fact L does not vanish
on either component of V . Thus if LG vanishes on all of V , we must have G ∈ IV .
This means Ḡ = 0 in R/IV . So L is a regular element by definition.

(b) The plane defined by L meets the component V(x0, x1) at the point

V(x0, x1, x0 + x1 + x2 + x3) = V(x0, x1, x2 + x3) = [0, 0, 1,−1].

Similarly, the plane defined by L meets the component V(x2, x3) at the point

V(x2, x3, x0 + x1 + x2 + x3) = V(x2, x3, x0 + x1) = [1,−1, 0, 0].

(c) By inspection we can choose L′ = x0 + x1.

(d) We check each xi separately.

x0(x0 + x1) = x20 + x0x1 = x0(x0 + x1 + x2 + x3)− x0x2 − x0x3 ∈ ⟨L, IV ⟩
x1(x0 + x1) = x0x1 + x21 = x1(x0 + x1 + x2 + x3)− x1x2 − x1x3 ∈ ⟨L, IV ⟩
x2(x0 + x1) = x0x2 + x1x2 ∈ IV ⊂ ⟨L, IV ⟩
x3(x0 + x1) = x0x3 + x1x3 ∈ IV ⊂ ⟨L, IV ⟩

(e) No matter what element of [R/⟨L, IV ⟩]1 you choose, part (d) shows that it is anni-
hilated by x0 + x1. Notice that (x0 + x1) ̸= 0 in R/⟨L, IV ⟩. So for a general linear
form ℓ, the equation ℓG = 0 always has a nonzero solution, namely G = x0 + x1.
Thanks to Remark 3.8, this means that R/⟨L, IV ⟩ has no non-zerodivisors, and
depth(R/IV ) = 1.

(f) x0, x2 ̸= 0 in R/IV but x0 · x2 = 0 in R/IV . □
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Exercise 32.
We know that I ⊆ Isat, so [I]t ⊆ [Isat]t for all t ≥ 0. The exercise is asserting that the

number of degrees in which this latter is not an equality is finite. For convenience denote by
m the irrelevant ideal ⟨x0, . . . , xn⟩.

Since R = k[x0, . . . , xn] is Noetherian, I
sat is finitely generated. Let d be the largest degree

of any element in a minimal generating set for Isat. Let {f1, . . . , fr} be a basis for [Isat]d.
(These elements may or may not be in I.) For each fi and each variable xj, 0 ≤ j ≤ n,
there is a positive integer mi,j so that fi · xmi,j

j ∈ I. It’s not hard to check that then for each
i there exists a positive integer Ni (for example the sum over j of the mi,j works) so that
fi ·mNi+p ⊂ I for all p ≥ 0.

Now let N = maxi{Ni}, so that fi ·mN ⊂ I for all fi. It follows that [I
sat]d ·mN ⊆ [I]d+N .

Since all the minimal generators of Isat occur in degree ≤ d, we know that mp · [Isat]d =
[Isat]d+p for any p ≥ 0. Putting it all together we have

[I]d+N+p ⊆ [Isat]d+N+p = mN+p · [Isat]d ⊆ [I]d+N+p

(since the fi generate I
sat). This gives the result. □

Exercise 33.

(a) Let f ∈ I : m and write f as the sum of its homogeneous parts:

f = f0 + f1 + · · ·+ fd.

We want to show that each fi is in I : m. Let m ∈ m. Without loss of generality
assume m is homogeneous. (If not, apply the same argument for each homogeneous
part.) By definition, fm ∈ I. Note that

fm = f0m+ f1m+ · · ·+ fdm.

This is the homogeneous decomposition of fm since m is a homogeneous polynomial.
Since I is a homogeneous ideal and fm ∈ I, each fim ∈ I. But this means that each
fi is in I : m, as desired.

(b) It’s clear that I : m ⊃ I always, so really we can replace I : m = I with I : m ⊆ I in
the statement.

Assume first that I is saturated. Let f ∈ I : m. We want to show that f ∈ I.
Since f ∈ I : m, we have fx0 ∈ I, fx1 ∈ I, . . . , fxn ∈ I. By Definition 3.3, this
means f ∈ Isat. But Isat = I since I is saturated, so we are done.

Conversely, assume that I : m ⊆ I. We want to show that I = Isat. Since Isat

in any case contains I, we can suppose that Isat properly contains I and seek a
contradiction. We have seen in Exercise 32 that for t≫ 0 we have [Isat]t = [I]t, so it
makes sense to choose f homogeneous of largest possible degree so that f ∈ Isat\I.
We claim that then we have

(13.7) fx0, . . . , fxn ∈ I.

Certainly since f ∈ Isat, some power of each xi multiplies f into I, so if fxi /∈ I for
some i we can replace f by fxi, contradicting the assumption that f is of largest
possible degree. But (13.7) implies that f ∈ I : m = I, so we are done.

(c) This is essentially what we proved in (b) via (13.7). □
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Exercise 34
Suppose that I is not saturated. We want to show that depth(R/I) = 0. By Exercise 33

(c), the fact that I is not saturated means that R/I has a socle element f , so for any (linear)
form L the equation LG = 0 in R/I does not force G = 0, since we can always take G = f
no matter what L is. So R/I has no non-zerodivisors, i.e. depth(R/I) = 0. □

Exercise 35.

(a) From Example 3.16 we have seen that Kdim(R) = n+1, while it is not hard to show
that (x0, . . . , xn) is a regular sequence.

(b) Since V is a finite union of points, the Krull dimension of R/IV is 1. On the other
hand, if L is a linear form defining a hyperplane that avoids all the points of V then
it is a non-zerodivisor since LF ∈ IV forces F ∈ IV .

(c) Take C = two skew lines. It is a union of two copies of P1 so it is a variety of dimen-
sion 1, and hence KdimR/IC = 2, while in Exercise 31 showed that depth(R/IC) = 1.

□
Exercise 36.

(a) In the following picture, the dots represent monomials.

(b)
1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, x2y2, xy3, y4, x3y2, y5.

(c) Count the number of dots on the diagonals, not in the shaded area.

hR/I(t) =





1 if t = 0;
2 if t = 1;
3 if t = 2;
4 if t = 3;
4 if t = 4;
2 if t = 5;
0 if t ≥ 6;

(d) The Hilbert polynomial of R/I is the zero polynomial, since R/I takes the value 0
for all t ≥ 6. □
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Exercise 37
The given sequence of integers is (1, 5, 12, 17, 25, 36). The growth from degree 0 to degree

1 is automatically OK, and the growth from degree 5 on is automatically OK. For the rest:

5 =

(
5

1

)
⇒ 5(1) =

(
6

2

)
= 15.

12 =

(
5

2

)
+

(
2

1

)
⇒ 12(2) =

(
6

3

)
+

(
3

2

)
= 20 + 3 = 23.

17 =

(
5

3

)
+

(
4

2

)
+

(
1

1

)
⇒ 17(3) =

(
6

4

)
+

(
5

3

)
+

(
2

2

)
= 15 + 10 + 1 = 26.

25 =

(
6

4

)
+

(
5

3

)
⇒ 25(4) =

(
7

5

)
+

(
6

4

)
= 21 + 15 = 36.

Since
12 < 15, 17 < 23, 25 < 26 and 36 ≤ 36,

the sequence is an O-sequence. Notice that the growth from degree 4 to degree 5 is maximal.
(So if the sequence had ended with 37 instead of 36, it would not be an O-sequence.)

Exercise 38
By the Auslander-Buchsbaum formula,

proj dim R/I + depth R/I = n+ 1 = 2.

Since R/I is artinian, its depth is 0. Thus the projective dimension is 2. We also know that
it is Gorenstein. Thus the minimal free resolution has the form

0 → R(−) → F → R → R/I → 0.

But the alternating sum of the ranks is 0, so F has to have rank 2. This is the codimension
of R/I so R/I is a complete intersection.

Exercise 39
See the instructors if you need help or suggestions.

Exercise 40
We saw in Example 3.19 that a single line is ACM so we just have to show that a set V

of two skew lines is not ACM.
A set of two skew lines (in any projective space) has Krull dimension 2, since the two skew

lines are one-dimensional as a projective variety. On the other hand, since by definition IV
is saturated, we have by Remark 3.11 that R/I has depth at least one.

So to show that V is not ACM, we have to show that the depth of R/IV is exactly 1. That
is, there does not exist a regular sequence of length 2. By Remark 3.8, it is enough to look
at linear forms. Then we are done by Exercise 31.

Exercise 41 Let Z ⊂ Pn be a set of d points and denote by hZ(t) its Hilbert function. It is
trivially true that hZ(t) = 0 for t ≤ −1 and hZ(0) = 1. If n = 0 then Z is a single point and
hZ(t) = 1 for all t ≥ 1 so there is nothing to prove. Thus we assume n ≥ 1. If d = 1, we have
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hZ(t) = 1 for all t ≥ 1 and again there is nothing to prove. So without loss of generality,
assume d ≥ 2; then we also have hZ(1) > hZ(0).
At this point, without loss of generality we can assume t ≥ 2 and d ≥ 2.
Let IZ be the defining homogeneous ideal of Z. Let L be a linear form not vanishing on

any of the points of Z. We first claim that IZ : L = IZ . Indeed, if LF ∈ IZ then F ∈ IZ
since L avoids all the points, so the claim follows immediately.

Then the exact sequence in Remark 3.12 gives us a short exact sequence

0 → [R/IZ ]t−1
×L−→ [R/IZ ]t → [R/⟨I,L⟩]t → 0.

Thus we get hZ(t−1) ≤ hZ(t) for all t. It only remains to show that once hZ(t0−1) = hZ(t0)
for some t0, we have equality for all t ≥ t0. But the stated equality means

[R/⟨I, L⟩]t0 = 0.

Since R/⟨I, L⟩ is a standard graded algebra, as an R-module it is generated in degree 0.
Thus once a component is zero, it can never become non-zero. So the Hilbert function is
strictly increasing from degree 0 until some t0, at which point it stabilizes.

Why is the value of the Hilbert function at this point precisely d? As in Example 7.3 (c),
you can check that for t ≫ 0, Z imposes independent conditions on forms of degree t. For
such t,

hZ(t) = dim[R/IZ ]t = dim[R]t − dim[IZ ]t = dim[R]t − (dim[R]t − d) = d.

Exercise 42.

(a) Let P1, . . . , P5 be a set of five points in P2. We’ll prove that if they lie on a line then
they do not impose independent conditions on cubics, and if they do not lie on a line
then they do impose independent conditions on cubics.

Assume that P1, . . . , P5 lie on a line, ℓ.

• • • • • ℓ

P1 P2 P3 P4 P5

We want to know: if we remove any point, say Pi, can we find a cubic vanishing
at all the remaining points but not at Pi? Say F were such a cubic. Then the
restriction of F to the line ℓ ∼= P1 would be a homogeneous polynomial of degree 3
with four zeros. But then this restriction has to be identically zero. This means that
F vanishes along all of ℓ, so in particular it vanishes at Pi. Thus the points do not
impose independent conditions on forms of degree 3, i.e. on plane cubics.

Now assume that the points do not all lie on a line.

Case 1: Four of the points are on a line, say ℓ, and the fifth is not on that line.
Without loss of generality say P5 is not on the line.

• • • •

•

ℓ

P1 P2 P3 P4

P5

We want to remove any of the five points and show that there is a cubic vanishing
at the remaining points but not the one we removed. If we remove P5, for example the
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cubic ℓ3 does the trick. If we remove any of the other points, without loss of generality
say it is P4 (but the same argument works for any of the points on ℓ). Then the cubic
consisting of the union of the three lines joining P5 to P1, P2, P3 respectively does the
trick:

• • • •

•

ℓ

P1 P2 P3 P4

P5

Case 2: Assume no four of the points lie on a line. In this case we can subdivide
into the subcase where three of the points lie on a line, and the subcase where no
three lie on a line. In both subcases, though, it’s easy to see that you can use three
lines to isolate any of the five points, as we did above.

(b)

•
••

• • •

•

Clearly not all the seven points lie on a line, so dim[I(V )]0 = dim[I(V )]1 = 0. This
accounts for the 1 and the 3. Also, clearly once we reach the value 7 it stays at 7, from
what we said in class. So we have to verify the values in degrees 2 and 3. It is a fact
(e.g. from [H]) that two conics contain at most four points in common, unless they
have a common factor. Since our conic is irreducible, it does not contain a common
factor with anything else. Thus we can’t have two independent conics containing V ,
so dim[I(V )]2 = 1 and so

hV (2) = dim[R]2 − dim[I(V )]2 = 6− 1 = 5.

Finally, to verify the value in degree 3 it’s enough to show that the points impose
independent conditions on cubics. But removing any point Pi, we can pair the re-
maining points up and consider the three lines that we thus get. Since each of these
lines already contains two points of the conic, the hint shows that they can’t contain
a third, i.e. Pi is not on the cubic formed by the union of these three lines. This
completes the proof.

(c) The 3 says that the points lie in P2 but do not all lie on a line (otherwise it would be
3 − 1 = 2). As above, the 5 says that the points lie on a unique conic. But if they
lay on an irreducible conic, we would get the Hilbert function from (b), which is not
the Hilbert function we’re looking at. So these points lie on a reducible conic, i.e. a
union of two lines. The 7’s tell us that we have a total of seven points. So the key is
to see what the 6 tells us.

The issue is to see how many points lie on one line and how many lie on the other.
We just saw that not all seven lie on one of them. Suppose that six lie on one line
and one lies on the other:



74 JUAN C. MIGLIORE AND GIUSEPPE FAVACCHIO

• • • • • •

•

ℓ1

ℓ2

P1 P2 P3 P4 P5 P6

P7

Then we could replace ℓ2 by any other line containing P7, so there would not be a
unique conic containing the seven points. So this is impossible.

We’re left with either 4 on one line and 3 on the other, or 5 on one line and 2 on
the other. Let’s rule out the former.

•
•

•

• • •

•

ℓ1

ℓ2

P1

P5

P2 P3 P4

P6

P7

If we remove one of P1, P2, P3, P4 then the remaining six can be paired up with lines
joining a point on ℓ1 with a point on ℓ2, avoiding the one we removed. If we remove
one of P5, P6, P7, say without loss of generality it’s P5, then we take ℓ1 together with
a line other than ℓ2 through P6 and one through P7. We conclude from this that
this set of seven points imposes independent conditions on cubics, so the value of the
Hilbert function in degree 3 is 7, not 6.

The only remaining possibility is that we have five points on one line (say ℓ1)
and two on the other (or else that this Hilbert function does not occur at all, but
this is not the case). Let’s verify that a set of points of this sort does have the
desired Hilbert function. The same kind of reasoning as in part (a) shows that this
set of points does not impose independent conditions on cubics, but it does impose
independent conditions on quartics. Remember that a finite set of points imposes
independent conditions on forms of degree t if and only if the value of the Hilbert
function in degree t is the number of points. So we have the following information:

t h(t)
0 1
1 3 (since the points don’t all lie on a line)
2 5 (since the points lie on a unique conic)
3 ? (but not yet 7)
4 7

≥ 5 7
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We said in class that the Hilbert function has to be strictly increasing until you
reach the number of points. Therefore the value in degree 3 has to be 6, and we’re
done. □

Exercise 43.

(a) IC is a monomial ideal, so as before we can count monomials not in IC .

t basis for [R/I]t hR/I(t)
0 1 1
1 w, x, y, z 4
2 w2, wx, x2, y2, yz, z2 6 (Note 6 = 10− 4.)
3 w3, w2x,wx2, x3, y3, y2z, yz2, z3 8
...
t wt, wt−1x,wt−2x2, . . . , wxt−1, xt

yt, yt−1z, yt−2z2, . . . , yzt−1, zt 2t+ 2

(b)
hR/IC 1, 4, 6, 8, . . .
∆hR/IC 1, 3, 2, 2, . . .
∆2hR/IC 1, 2,−1, 0, . . .

Notice that the entries of ∆2hR/IC are not all positive. This is related to the fact
that you proved in Exercise 31 that depth(R/IC) = 1, while Kdim(R/IC) = 2, so C
is not ACM. □

Exercise 44.
Remark 4.11 says that if V is a finite set of points then the eventual value of hV (t) is the

number of points, and Remark 7.4 shows that if R/I is Cohen-Macaulay (e.g. if I = IV
for some finite set of points V ) then you recover hR/IV by “integrating.” Thus the Hilbert
function in this case is given by

(1, 1 + a1, 1 + a1 + a2, . . . )

and the eventual value is 1 + a1 + a2 + · · ·+ ad as claimed. □

Exercise 45.
The artinian reduction of R/I has Hilbert function equal to the appropriate difference

of the original Hilbert function exactly when R/I is Cohen-Macaulay. This is because we
need (7.1) to be a short exact sequence, and for this we need a regular sequence of the right
length. □

Exercise 46.
The degree is obtained by adding the entries of the h-vector, namely 22.
For the Hilbert function, it’s the same idea as before: we integrate.

dimension Hilbert function
artinian (1, 4, 7, 8, 2)
points 1, 5, 12, 20, 22, 22, . . .
curve 1, 6, 18, 38, 60, 82, . . .
surface 1, 7, 25, 63, 123, 205, . . .
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□

Exercise 47.
If I were saturated, R/I would have depth at least 1 (Exercise 34). Thus for a general

linear form L, the Hilbert function of R/⟨I, L⟩ would be (1, 3,−1, 1, 1, . . . ). This is clearly
not the Hilbert function of any standard graded algebra. Thus I can’t be saturated.

The Hilbert polynomial of R/I is clearly t+ 1, so the leading coefficient tells us (Remark
4.7) that I is eventually equal to the homogeneous ideal of a line, which has Hilbert function
(1, 2, 3, . . . ) (Example 7.3 (4)). So Isat is the ideal of a line, and its Hilbert function is
(1, 2, 3, . . . ). □

Exercise 48.
We’ll use Lemma 8.4. Let L be a general linear form and consider the multiplication by

L on R/I from degree t− 1 to degree t. Assume that R/I has the WLP. Consider the exact
sequences

0 →
[
I : L

I

]

t−1

→
[
R

I

]

t−1

×L−→
[
R

I

]

t

→
[

R

⟨I, L⟩

]

t

→ 0

and

0 → [R/(I : L)]t−1
×L−→ [R/I]t → R/⟨I, L⟩ → 0

(see (3.1).
Surjectivity of ×L is equivalent to [R/⟨I, L⟩]t = 0. It is clear that once this is zero for

some t, it is zero forever after that (since once ⟨I, L⟩ is equal to R in one degree, it is equal
forever after). In other words, once you have surjectivity in one degree, it is surjective forever
after.

But WLP means that if surjectivity does not hold then injectivity does. Injectivity im-
plies hR/I(t − 1) ≤ hR/I(t), and equality means that ×L is both injective and surjective.
Surjectivity means hR/I(t− 1) ≥ hR/I(t).

Clearly ×L is injective but not surjective when t = 0. Then ×L must be injective but not
surjective for a while (possibly) – this corresponds to hR/I being strictly increasing – then
possibly both injective and surjective, and then surjective. The result follows.

One caveat is that it is possible that the tail of the Hilbert function does have places where
the values are equal. For example, (1, 3, 6, 8, 8, 6, 6, 4, 3, 3, 1) is possible. Here we have only
injectivity until t = 3, then surjectivity for t ≥ 4, but in fact we have both injectivity and
surjectivity for t = 4, 6, 9 (and of course after the Hilbert function reaches 0).

Exercise 49.
We want to show that if R/I is a monomial algebra (i.e. I is generated by monomials)

then R/I has the WLP if and only if multiplication by L = x1 + · · ·+ xn has maximal rank
in each degree, where R = k[x1, . . . , xn].
We already know that if this L gives maximal rank then it also holds for a general element

of [R]1, by semicontinuity. So we want to prove the converse. That is, assume that we know
that R/I has the WLP, so there is some element L′ for which ×L′ has maximal rank in each
degree.

Claim 1: Since R/I is artinian, some power of each variable is a minimal generator of I.
(You should convince yourself of this.)
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Claim 2: Recall that since, by assumption, L′ gives maximal rank in each degree, it is
also true for a general element of [R]1. So without loss of generality we can assume that
L′ = a1x1 + · · ·+ anxn with ai ̸= 0 for all 1 ≤ i ≤ n.

Claim 3: Performing a change of variables does not change whether or not R/I has WLP.
So use the substitution

xi 7→
1

ai
xi.

Claim 4: Under this change of variables, L 7→ x1 + · · ·+ xn.

Claim 5: Nevertheless, the monomial ideal I remains unchanged.

This completes the proof. Also see the attached paper [MMN1] (Proposition 2.2) and the
class notes.

Exercise 50.

(a) For a monomial ideal I, a basis for [R/I]t is given by all the monomials of degree t
not in I. In our case we have

t basis for [R/I]t
0 1
1 x, y, z
2 xy, xz, yz
3 xyz

t ≥ 4 0

(b) A basis for [R/I]0 is given by 1, and clearly 1 · L = L ̸= 0 so injectivity is clear from
degree 0 to degree 1. As for the multiplication from degree 2 to degree 3, we saw that
a basis for [R/I]2 is given by {xy, xz, yz}, and a basis for [R/I]3 is given by {xyz}.
Consider

(x+ y + z)(axy + bxz + cyz) = (a+ b+ c)xyz

in R/I. For example taking a = 1, b = c = 0 gives surjectivity.

(c) Now consider the multiplication from degree 1 to degree 2. Using the given bases for
[R/I]1 and [R/I]2 we get that ×L is represented by the matrix




1 1 0
1 0 1
0 1 1




The determinant of this matrix is−2, which is zero if and only if k has characteristic 2.
The conclusion about WLP is immediate.

(d) Using the given bases, an element f = ax+ by + cz of [R/I]1 can be represented by
the column matrix [a b c]t, so the multiplication gives




1 1 0
1 0 1
0 1 1





a
b
c


 =



a+ b
a+ c
b+ c


 .

Since we are in characteristic 2, taking a = b = c = 1 does the trick. Notice that this
means L itself is in the kernel of ×L, i.e. that L2 = 0 in R/I. □
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Exercise 51.

(a) I contains a pure power of each variable, so it is artinian.

(b) As in Exercise 50, for a monomial ideal I, a basis for [R/I]t is given by all the
monomials of degree t not in I. In our case we have

t basis for [R/I]t hR/I(t)
0 1 1
1 x, y, z 3
2 x2, xy, xz, y2, yz, z2 6
3 x2y, x2z, xy2, xz2, y2z, yz2 6
4 x2y2, x2z2, y2z2 3

t ≥ 5 0

so the Hilbert function is (1, 3, 6, 6, 3).

(c) We want to show that ×(x+ y + z) fails maximal rank, no matter what the charac-
teristic of k is. Consider the exact sequence

[R/I]2
×L−→ [R/I]3 → [R/⟨I, L⟩]3 → 0.

where L = x+ y + z. It is enough to show that

dim[R/⟨x3, y3, z3, xyz, x+ y + z⟩]3 > 0.

We have

k[x, y, z]/⟨x3, y3, z3, xyz, x+ y + z⟩ ∼= k[x, y]/⟨x3, y3, (x+ y)3, xy(x+ y)⟩
∼= k[x, y]/⟨x3, y3, x3 + 3x2y + 3xy2 + y3, xy(x+ y)⟩
∼= k[x, y]/⟨x3, y3, 3xy(x+ y), xy(x+ y)⟩
∼= k[x, y]/⟨x3, y3, xy(x+ y)⟩

so this is clearly non-zero in degree 3 since dim[k[x, y]]3 = 4. At no point did the
characteristic play a role in our calculation, so it is independent of the characteristic.

□

Exercise 52.
We have assumed that R/I is an artinian Gorenstein algebra with the WLP, and that h

is its Hilbert function. We want to show that h is an SI-sequence.
By Definition 10.1, we have to show that h is symmetric and that its first difference up

to the middle is an O-sequence. The first of these is automatic since R/I is Gorenstein (see
Remark 5.1) so we focus on the second one.

Recall the exact sequence from Remark 3.12:

0 →
[
I : L

I

]

t−1

→
[
R

I

]

t−1

×L−→
[
R

I

]

t

→
[

R

⟨I, L⟩

]

t

→ 0

We have the following facts.

1. The WLP tells us that the first vector space and the last vector space in this exact
sequence can never be non-zero at the same time.

2. R/⟨I, L⟩ is a standard graded algebra, so once it is zero in some degree, it is zero
forever after. (This is observed in Lemma 8.4.)

3. By duality, we must have injectivity in the first half and surjectivity in the second
half. (See also Proposition 11.1.)
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This means that we have injectivity up to the middle, so ∆h is the Hilbert function of
R/⟨I, L⟩ up to the middle, hence is an O-sequence.

Exercise 53.
This is immediate from the fact that(

k

n

)
−
(
k − 1

n

)
=

(
k − 1

n− 1

)

for any k, n > 0.

Exercise 54.
The following is from [MZ3] but you can come up with your own example. Consider the

sequence

(1, 10, 14, 20, 14, 10, 1).

It is obviously symmetric and unimodal. It is an O-sequence because

14 ≤ 10(1) = 55, 20 ≤ 14(2) = 30

(and the rest is immediate because it is non-increasing).
However, the first difference is (1, 9, 4, 6), and

6 > 4(2) = 5

so this is not an O-sequence.
It is shown in [MZ3] that this sequence is actually the Hilbert function of a suitable artinian

Gorenstein algebra.

Exercise 55.

(a) The polynomial ring R = k[x, y] satisfies

dim[R]i =

(
i+ 2− 1

i

)
= i+ 1.

Let I = ⟨f, g⟩, where deg f = m and deg g = n ≥ m. We have the Koszul resolution
(see page 19)

0 → R(−m− n) → R(−m)⊕R(−n) → R → R/I → 0

which gives

dim[R/I]i =





i+ 1 for 0 ≤ i < m;
(i+ 1)− (i−m+ 1) for m ≤ i < n;
(i+ 1)− (i−m+ 1)− (i− n+ 1) for n ≤ i < m+ n;
(i+ 1)− (i−m+ 1)− (i− n+ 1) + (i−m− n+ 1) for i ≥ m+ n

=





i+ 1 for 0 ≤ i < m;
m for m ≤ i < n;
m+ n− i− 1 for n ≤ i < m+ n;
0 for i ≥ m+ n.





as desired.
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(b) First, it is clearly symmetric.
Second, note that for any t,

t+ 1 =

(
t+ 1

t

)

so

(t+ 1)(t) =

(
t+ 2

t+ 1

)
= t+ 2.

Since the growth of the given sequence is never greater than this, it is an O-sequence.
(This is obvious anyway since it is the Hilbert function of a specific algebra.)

Finally, the first difference of the first half of the sequence is the constant sequence
(1, 1, . . . , 1), which is clearly also an O-sequence.

Exercise 56.
Let Z = {P1, . . . , Pr}. Let τ =

(
t+n
n

)
, and note that dim[R]t = τ . Let

f = a1x
t
0 + · · ·+ aτx

t
n ∈ [R]t.

Then vanishing at any Pi gives a homogeneous linear equation in the variables a0, . . . , aτ ,
and solving the r linear equations gives [I ∩ IZ ]t. Showing that these linear equations are
independent is the same as showing that none of them is dependent on the other r−1, which
boils down to showing that the removal of any of the points has a solution that does not
vanish at the last one. □

Exercise 57.
For P = [1, 0, . . . , 0] we have ImP = ImP = ⟨x1, . . . xn⟩m. Then

dimC(C[x0, x1, . . . , xn] ∩ [ImP ]t) = dimC[I
m
P ]t.

Recall from Exercise 1 that dimC(C[x0, . . . , xn]t) =
(
t+n
n

)
; hence we write

dimC[I
m
P ]t =

(
t+ n

n

)
−
((

t+ n

n

)
− dimC[I

m
P ]t

)
.

Therefore the number of conditions imposed by mP on forms of degree t is the number of
monomials of degree t in C[x0, x1, . . . , xn] that are not in (x1, . . . xn)

m. This number is
(
t+n
n

)

if m > t; otherwise it is
m−1∑

j=0

(
n− 1 + j

j

)
=

(
n+m− 1

m− 1

)
=

(
n+m− 1

n

)
,

where each summand is the number of monomials of type xt−j
0 ·M with M ∈ C[x1, . . . , xn]j,

and we are using the well-known Pascal’s rule
(
d
k

)
+
(

d
k+1

)
=
(
d+1
k+1

)
.

Notice that this latter number in the displayed equation is the number of monomials of
degree m− 1 in C[x0, . . . , xn]. □

Exercise 58.
The picture is sketched in the accompanying figure, and it is helpful to keep it in mind

as you go through the solution. We will give two solutions – the first is very computational,
and the second is very geometric (and possibly easier to follow).

First solution. By Exercise 41, the value of the Hilbert function is strictly increasing until
it reaches the value 8, at which it stabilizes. It is clear that IX contains no forms of degree 2.
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Figure 1. The set X in Exercises 58 and 59

Also note that the curves (x+ z)x(x− z) and (y + z)y(y − z)) ∈ IX . So, there are only two
possibilities either HX = (1, 3, 6, 7, 8, . . .) or HX = (1, 3, 6, 8, 8, . . .).
Let’s start the computation.

IX =
⟨x+ z, y − z⟩ ∩ ⟨x, y − z⟩∩

⟨x+ z, y⟩ ∩ ⟨x, y⟩ ∩ ⟨x− z, y⟩∩
⟨x+ z, y + z⟩ ∩ ⟨x, y + z⟩ ∩ ⟨x− z, y + z⟩.

Then

IX =
〈
(x+ z)x, y − z

〉
∩
〈
(x+ z)x(x− z), y

〉
∩
〈
(x+ z)x(x− z), y + z

〉

=
〈
(x+ z)x, y − z

〉
∩
〈
(x+ z)x(x− z), y(y + z)

〉

=
〈
(x+ z)x(x− z), (y + z)y(y − z)), x(x+ z)y(y + z)

〉
.

Now, the linear form z defines a line not containing any of the points in X so it is a regular
element in R/IX and then the first difference of HX is the Hilbert function of the artinian
algebra

R/⟨z⟩/IX + ⟨z⟩/⟨z⟩ = k[x, y]/⟨x3, y3, x2y2⟩.
Therefore

∆HX = (1, 2, 3, 2)

and
HX = (1, 3, 6, 8, 8, . . .).

Second solution. Observe that X does not lie on any conics. We now show that X imposes
independent conditions on [R]t for t ≥ 3, and this will give the Hilbert function that we found
in the first solution.

By Exercise 56, it is enough to show that the removal of any point Pi ∈ X allows one to
find a curve of degree t ≥ 3 that vanishes at the remaining points but does not vanish at
Pi. It is enough to handle the case t = 3. We leave it to you to check that for any such
Pi there is a subset of the remaining points consisting of three collinear points, and then a
conic vanishing at the remaining four points of X\{Pi} but not at Pi. □
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Exercise 59
In Exercise 58 we computed that HX(3) = 8 and thus dimk[IX ]3 = 10− 8 = 2. However,

the forms (x + z)x(x − z), (y + z)y(y − z) ∈ IX are generators for [IX ]3 and both vanish
at P . These forms define two cubic curves meeting in the 9 points of the set X ∪ {P}, so
P imposes no conditions on [IX ]3; however, any other point not in this set will impose one
condition on [IX ]3. □

Exercise 60. Let F ∈ [IX ]t, let P not in the hypersurface defined by F . Then P imposes
a condition on forms of degree t vanishing at X since by construction, not every element of
[IX ]t vanishes at P . □

Exercise 61. We have

IX = (x, y)2 ∩ (x, z) ∩ (y, z) = (xy, x2z, y2z).

So IX is a monomial ideal and then the Hilbert function of X can be calculated as shown
in Section 4. Therefore we get, dim[IX ]4 = 10. So e-dim(X, 4, 4) = 10−10 = 0. However, for
a general point P of multiplicity 4, the curve C consisting of the union of the lines P1P with
multiplicity 2, P2P and P3P vanishes at X, and by Bezout’s Theorem any curve of degree 4
vanishing at X and at 4P must be equal to C. Hence we get a-dim(X, 4, 4) = 1. □

Exercise 62. Assume that a = 1 or 2 and b ≥ 4. The two lines ℓ1, ℓ2 ∈ L certainly lie
on a smooth quadric surface (for instance since we know any three disjoint lines do), so the
grid points X do as well. However, consider the grid lines ℓ′1, ℓ

′
2, ℓ

′
3 ∈ L′. These determine a

unique smooth quadric surface Q, and by Bezout’s theorem this quadric surface must contain
ℓ1 and ℓ2. But we have too much freedom to choose ℓ′4 and beyond, and in particular they
can be chosen off of Q.

On the other hand, if 3 ≤ a ≤ b then again considering ℓ′1, ℓ
′
2, ℓ

′
3 as before, we get that all

of the other lines are forced to be on Q by Bezout’s theorem. □

Exercise 63. Consider the plane spanned by three points in X and take a general point P
on this plane. Project from P to get in P2 a set of six points, of which three are collinear
and the other three are not on a line. Such a set of six points cannot lie on a conic. □

Exercise 64 Let π be the projection from a general point. If no three points of X are on
a line and no four points are on a plane then, by Exercise 63, six of the points in X are
enough to exclude that π(X) lies on a conic. Therefore three points of X must be on a line.
In order for X to be (2, b)-geproci, this line must be a component of the conic. Hence the
conic containing π(X) splits into the union of two lines, and again in order to be a complete
intersection, both of the lines must contain b points of X. Since the projection is general
and X is non-degenerate, X is contained in two skew lines. This is enough to conclude that
X is a (2, b)-grid. □
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ABSTRACT. An artinian graded algebra, A, is said to have
the weak Lefschetz property (WLP) if multiplication by a gen-
eral linear form has maximal rank in every degree. A vast
quantity of work has been done studying and applying this
property, touching on numerous and diverse areas of algebraic
geometry, commutative algebra and combinatorics. Amaz-
ingly, though, much of this work has a “common ancestor”
in a theorem originally due to Stanley, although subsequently
reproved by others. In this paper we describe the different
directions in which research has moved starting with this the-
orem, and we discuss some of the open questions that continue
to motivate current research.

1. Introduction. The weak and strong Lefschetz properties are
strongly connected to many topics in algebraic geometry, commutative
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algebra and combinatorics. Some of these connections are quite sur-
prising and still not completely understood, and much work remains
to be done. In this expository paper we give an overview of known
results on the weak and strong Lefschetz properties, with an emphasis
on the vast number of different approaches and tools that have been
used, and connections that have been made with seemingly unrelated
problems. One goal of this paper is to illustrate the variety of methods
and connections that have been brought to bear on this problem for
different families of algebras. We also discuss open problems.

Considering the amazing breadth and depth of results that have been
found on this topic, and the tools and connections that have been
associated with it, it is very interesting to note that, to a large degree,
one result motivated this entire area. This result is the following. It was
proved by Stanley [53] in 1980 using algebraic topology, by Watanabe
in 1987 using representation theory, by Reid, Roberts and Roitman
[48] in 1991 with algebraic methods, by Herzog and Popescu [30]
(unpublished) in 2005, essentially with linear algebra, and it follows
from the work of Ikeda [50] in 1996 using combinatorial methods.

Theorem 1.1. Let R = k[x1, . . . , xr ], where k has characteristic
zero. Let I be an artinian monomial complete intersection, i.e.,

I = 〈xa1
1 , . . . , xar

r 〉.

Let � be a general linear form. Then, for any positive integers d and i,
the homomorphism induced by multiplication by �d,

×�d : [R/I]i → [R/I]i+d

has maximal rank. (In particular, this is true when d = 1.)

This paper is organized around the ways that subsequent research
owes its roots to this theorem.

Our account is by no means exhaustive. Fortunately, the manuscript
[27] has appeared recently. It gives an overview of the Lefschetz
properties from a different perspective, focusing more on the local
case, representation theory and combinatorial connections different
from those presented here.
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There is one topic that is neither treated in [27] nor here but
that is worth mentioning briefly. In [39], examples of monomial
ideals were exhibited that did not have the WLP but that could be
deformed to ideals with the WLP. A systematic way for producing
such deformations that preserve the Hilbert function has been proposed
by Cook and Nagel in [19]. The idea is to lift the given monomial
ideal to the homogenous ideal of a set of points and then pass to a
general hyperplane section of the latter. It is shown in [19] that this
procedure does indeed produce ideals with the WLP for a certain class
of monomial ideals without the WLP.

In May 2011, the first author gave a talk at the Midwest Commutative
Algebra and Geometry Conference at Purdue University on this topic.
This paper is a vast expansion and extension of that talk, containing
many more details and several new topics.

2. Definitions and background. Let k be an infinite field. We
will often take char (k) = 0, but we will see that changing the charac-
teristic produces interesting new questions (and even more interesting
answers!).

Let R = k[x1, . . . , xr] be the graded polynomial ring in r variables
over k. Let

A = R/I =

n⊕

i=0

Ai

be a graded artinian algebra. Note that A is finite dimensional over k.

Definition 2.1. For any standard graded algebra A (not necessarily
artinian), the Hilbert function of A is the function

hA : N −→ N

defined by hA(t) = dim [A]t. One can express hA as a sequence

(h0 = 1, h1, h2, h3, . . . ).

An O-sequence is a sequence of positive integers that occurs as the
Hilbert function of some graded algebra. When A is Cohen-Macaulay,
its h-vector is the Hilbert function of an artinian reduction of A. In
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particular, when A is artinian, its Hilbert function is equal to its h-
vector.

Definition 2.2. An almost complete intersection is a standard
graded algebra A = R/I which is Cohen-Macaulay, and for which the
number of minimal generators of I is one more than its codimension.

Definition 2.3. A is level of Cohen-Macaulay type t if its socle
is concentrated in one degree (e.g., a complete intersection) and has
dimension t.

Definition 2.4. Let � be a general linear form. We say that A has
the weak Lefschetz property (WLP) if the homomorphism induced by
multiplication by �,

×� : Ai −→ Ai+1,

has maximal rank for all i (i.e., is injective or surjective). We say that
A has the strong Lefschetz property (SLP) if

×�d : Ai −→ Ai+d

has maximal rank for all i and d (i.e., is injective or surjective).

Remark 2.5. (a) One motivation for the work described in this paper
is that something interesting should be going on if multiplication by a
general linear form does not induce a homomorphism of maximal rank,
even in one degree.

(b) Later we will see that there is a strong connection to Fröberg’s
conjecture. In this regard, we note that �d should not be considered to
be a “general” form of degree d, since in the vector space [R]d (d > 1),
those forms that are pure powers of linear forms form a proper Zariski-
closed subset.

(c) Suppose that deg f = d and ×f : [R/I]i → [R/I]i+d has
maximal rank, for all i. Pardue and Richert [47] call such an f semi-
regular. Reid, Roberts and Roitman [48] call such an f faithful. If
×f j : [R/I]i → [R/I]i+dj has maximal rank for all i and all j, they call
such an f strongly faithful. So R/I has the WLP if R contains a linear
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faithful element, and R/I has the SLP if R contains a linear strongly
faithful element.

(d) Several authors consider the question of the ranks that arise if
×�d is replaced by ×F for a general F of degree d. This is the essence
of the Fröberg conjecture, is related to the WLP, and will be discussed
below in Section 6.

How do we determine if R/I fails to have the WLP? Let � be a general
linear form and fix an integer i. Then we have an exact sequence

[R/I]i−1
×�−→ [R/I]i −→ [R/(I, �)]i −→ 0.

Thus, ×� fails to have maximal rank from degree i − 1 to degree i if
and only if

dim [R/(I, �)]i > max{0, dim [R/I]i − dim [R/I]i−1}.

More precisely, if we want to show that the WLP fails, it is enough to
identify a degree i for which we can produce one of the following two
pieces of information:

(i) dim [R/I]i−1 ≤ dim [R/I]i and dim [R/(I, �)]i > dim [R/I]i −
dim [R/I]i−1; in this case, we loosely say that WLP fails because of
injectivity; or

(ii) dim [R/I]i−1 ≥ dim [R/I]i and dim [R/(I, �)]i > 0; in this case,
we loosely say that WLP fails because of surjectivity.

In general, even identifying which i is the correct place to look can be
difficult. Then, determining which of (i) or (ii) holds, and establishing
both inequalities, is often very challenging. This is where computer
algebra programs have been very useful, in suggesting where to look
and what to look for! On the other hand, to prove that R/I does have
the WLP, the following result is helpful:

Proposition 2.6 [39, Proposition 2.1]. Let R/I be an artinian
standard graded algebra, and let � be a general linear form. Consider
the homomorphisms φd : [R/I]d → [R/I]d+1 defined by multiplication
by �, for d ≥ 0.

(a) If φd0 is surjective for some d0, then φd is surjective for all d ≥ d0.
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(b) If R/I is level and φd0 is injective for some d0 ≥ 0, then φd is
injective for all d ≤ d0.

(c) In particular, if R/I is level and dim [R/I]d0 = dim [R/I]d0+1 for
some d0 then R/I has the WLP if and only if φd0 is injective (and
hence is an isomorphism).

This result helps to narrow down where one has to look, especially in
the situation where we want to show that the WLP does hold. In this
case you have to find the critical degrees and then show that surjectivity
and (usually) injectivity do hold just in two (or occasionally one) spots.

In the case of one variable, the WLP and SLP are trivial since all
ideals are principal. The case of two variables also has a nice result, at
least in characteristic 0:

Theorem 2.7 [28]. If char (k) = 0 and I is any homogeneous ideal
in k[x, y], then R/I has the SLP.

The proof of this result used generic initial ideals with respect to the
reverse lexicographic order. In the case of the WLP, it is not hard to
show that the above theorem is true in any characteristic ([20, 35,
44]). However, the characteristic zero assumption cannot be omitted
for guaranteeing the SLP. In fact, also the WLP may fail if there are
at least three variables. The following is an easy exercise:

Lemma 2.8. Assume char (k) = p. Consider the ideal

I = 〈xp
1, . . . , x

p
r〉 ⊂ R = k[x1, . . . , xr],

where r ≥ 2. Then

• R/〈xp
1, . . . , x

p
r〉 fails the SLP for all r ≥ 2.

• It fails the WLP for all r ≥ 3.

• It has the WLP when r = 2.

Remark 2.9. It was pointed out to us by the referee that, in order for
failure of SLP to hold, one does not even need to take the exponents
to be p for all the variables. It suffices to take exponents at most
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p summing to at least p + r. For example, I = 〈x2+p−r
1 , x2

2, . . . , x
2
r〉

works if p ≥ r, and I = 〈x2
1, x

2
2, . . . , x

2
r〉 works if p ≤ r. For the WLP

one can as well use I = 〈xp
1, x

p
2, x

2
3, . . . , x

2
r〉.

In Section 7 we will discuss the presence of the WLP in positive
characteristic in more detail.

A useful consequence of knowing that an algebra A has the WLP
or SLP is that its Hilbert function is unimodal. In fact, the Hilbert
functions of algebras with the WLP have been completely classified:

Proposition 2.10 [28]. Let h = (1, h1, h2, . . . , hs) be a finite
sequence of positive integers. Then h is the Hilbert function of a graded
artinian algebra with the WLP if and only if the positive part of the
first difference is an O-sequence and after that the first difference is
non-positive until h reaches 0. Furthermore, this is also a necessary
and sufficient condition for h to be the Hilbert function of a graded
artinian algebra with the SLP.

The challenge is thus to study the WLP and SLP (or their failures),
and the behavior of the Hilbert function, for interesting families of
algebras. Most of the results below fall into this description. It should
also be noted that, conversely, some Hilbert functions h force any
algebra with Hilbert function h to have the WLP; these were classified
in [44].

In the rest of this paper, we indicate different directions of research
that have been motivated by Theorem 1.1; in most cases, there also
remain many intriguing open problems.

3. Complete intersections and Gorenstein algebras. By semi-
continuity, a consequence of Theorem 1.1 is that a general complete
intersection with fixed generator degrees has the WLP and the SLP.

Question 3.1. Do all artinian complete intersections have the WLP
or the SLP in characteristic 0?

We know that the answer is trivially “yes” in one and two variables.
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In three or more variables, the following is the most complete result
known to date.

Theorem 3.2 [28]. Let R = k[x, y, z], where char (k) = 0. Let
I = 〈F1, F2, F3〉 be a complete intersection. Then R/I has the WLP.

The proof of this result introduced the use of the syzygy module of I,
and its sheafification, the syzygy bundle. Subsequently, several papers
have used the syzygy module to study the WLP for different kinds of
ideals (see, e.g., [11, 12, 20, 26, 39, 51]). In the case of complete
intersections in k[x, y, z], the syzygy bundle has rank 2. The WLP
is almost immediate in the “easy” cases, and semi-stability and the
Grauert-Mülich theorem give the needed information about R/(I, �) in
the “interesting” cases.

Remark 3.3. (i) The SLP is still wide open for complete intersections
in three or more variables and, in fact, even the WLP is open for
complete intersections of arbitrary codimension ≥ 4. Some partial
results on the WLP for arbitrary complete intersections in four variables
have been obtained recently by the authors together with Boij and
Miró-Roig, in work in progress.

(ii) It was conjectured by Reid, Roberts and Roitman [48] that the
answer to both parts of Question 3.1 is yes.

We have seen that conjecturally (and known in special cases), all
complete intersections have the WLP. Complete intersections are a
special case of Gorenstein algebras. Does the conjecture extend to
the Gorenstein case? That is,

Question 3.4. Do all graded artinian Gorenstein algebras have the
WLP? If not, what are classes of artinian Gorenstein algebras that do
have this property?

The answer to the first question is a resounding “no.” Indeed, Stanley
[52] in 1978 gave an example of an artinian Gorenstein algebra with
Hilbert function (1, 13, 12, 13, 1), which, because of non-unimodality,
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clearly does not have the WLP. Other examples of non-unimodality
for Gorenstein algebras were given by Bernstein and Iarrobino [3], by
Boij [4] and by Boij and Laksov [5]. Even among Gorenstein algebras
with unimodal Hilbert functions, WLP does not necessarily hold. For
instance, an example in codimension 4 was given by Ikeda [32] in 1996.

On the other hand, the problem in three variables is still wide open,
with only special cases known (see for instance [1, 45]):

Question 3.5. Does every artinian Gorenstein quotient of k[x, y, z]
have the WLP, provided char (k) = 0? What about the SLP?

Given the complete intersection result for three variables mentioned
above, this is a very natural and intriguing question.

In four variables, the result of Ikeda mentioned above shows that
WLP need not hold. Nevertheless, the main result of [43] shows that,
for small initial degree, the Hilbert functions are still precisely those of
Gorenstein algebras with the WLP. More precisely, it was shown that,
if the h-vector is (1, 4, h2, h3, h4, . . . ) and h4 ≤ 33, then this result
holds. More recently, using the same methods, Seo and Srinivasan [51]
extended this to h4 = 34. Thus, the result holds for initial degree ≤ 4.

Another interesting special case is the situation in which the gen-
erators of the ideal have small degree. We say that an algebra R/I
is presented by quadrics if the ideal I is generated by quadrics. Such
ideals occur naturally, for example, as homogeneous ideals of sufficiently
positive embeddings of smooth projective varieties ([23]) or as Stanley-
Reisner ideals of simplicial flag complexes ([55]). Gorenstein algebras
presented by quadrics are studied, for example, in [42]. There, the
following conjecture has been proposed.

Conjecture 3.6 [42]. Any artinian Gorenstein algebra presented by
quadrics, over a field k of characteristic zero, has the WLP.

The conjecture predicts, in particular, that if the socle degree is at
least 3 then the multiplication by a general linear form from degree one
to degree two is injective. Though this is established in some cases in
[42], even this special case of the conjecture is open.
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The analog of Question 3.4 is also of interest for rings of positive
dimension. If A is a Gorenstein ring of dimension d, then A is said to
have the WLP if a general artinian reduction of A has the WLP, that
is, if A/〈L1, . . . , Ld〉 has the WLP, where L1, . . . , Ld ∈ A are general
forms of degree 1. Recall that the Stanley-Reisner ring of the boundary
complex of a convex polytope is a reduced Gorenstein ring. The so-
called g-theorem classifies their Hilbert functions. The necessity of the
conditions on the Hilbert function is a consequence of the following
result by Stanley.

Theorem 3.7 [54]. The Stanley-Reisner ring of the boundary com-
plex of a convex polytope over a field k has the SLP if char (k) = 0.

The so-called g-conjecture states that the above-mentioned conditions
on the Hilbert function characterize in fact the Hilbert functions of the
Stanley-Reisner rings of triangulations of spheres. Note that there are
many more such triangulations than boundary complexes of convex
polytopes. In this regard, the following question merits highlighting:

Question 3.8. Does a general artinian reduction of a reduced,
arithmetically Gorenstein set of points in Pn have the WLP, provided
char (k) = 0?

We point out that, if this question has an affirmative answer, then, by
the main result of [41], we have a classification of the Hilbert functions
of reduced, arithmetically Gorenstein schemes: their h-vectors are
precisely the SI-sequences, meaning that they are symmetric, with the
first half itself a differentiable O-sequence.

An affirmative answer to Question 3.8 would also imply the g-
conjecture, thus providing a characterization of the face vectors of
triangulations of a sphere. Moreover, the methods used to establish the
WLP could lead to information about the face vectors of triangulations
of other manifolds as well. In fact, Novik and Swartz [46, Theorem
1.4], show that a certain quotient of the Stanley-Reisner ring of any
orientable k-homology manifold without boundary is a Gorenstein ring.
Kalai conjectured that this Gorenstein ring has the SLP. If true, this
would establish new restrictions on the face vectors of these complexes.
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A special case of Kalai’s conjecture has been proved in Theorem 1.6 of
[46].

4. Monomial level algebras. Note that R/〈xa1
1 , . . . , xar

r 〉 is also
a level artinian monomial algebra.

Question 4.1. Which (if any) level artinian monomial algebras fail
the WLP or SLP?

The first result in this direction is a positive one:

Theorem 4.2 (Hausel [29, Theorem 6.2]). Let A be a monomial
artinian level algebra of socle degree e. If the field k has characteristic
zero, then for a general linear form �, the induced multiplication

×� : Aj −→ Aj+1

is an injection, for all j = 0, 1, . . . , 	(e− 1)/2
. In particular, over any
field the sequence

1, h1 − 1, h2 − h1, . . . , h�(e−1)/2�+1 − h�(e−1)/2�

is an O-sequence, i.e., the “first half” of h is a differentiable O-
sequence.

Thus, roughly “half” the algebra does satisfy the WLP. What about
the second half? The first counterexample was due to Zanello ([57,
Example 7]), who showed that the WLP does not necessarily hold for
monomial level algebras even in three variables. His example had h-
vector (1, 3, 5, 5). Subsequently, Brenner and Kaid ([11, Example 3.1])
produced an example of a level artinian monomial almost complete
intersection algebra that fails the WLP; this algebra has h-vector
(1, 3, 6, 6, 3) and, in particular, Cohen-Macaulay type 3. The study
of such almost complete intersections was continued by Migliore, Miró-
Roig and Nagel [39], and more recently by Cook and Nagel [18, 20]
(see also Section 7).

The Hilbert functions of the algebras considered in Question 4.1 are
of great interest in a number of areas. In fact, they are better known
under a different name.
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Definition 4.3. A pure O-sequence of type t in r variables is the
Hilbert function of a level artinian monomial algebra k[x1, . . . , xr]/I of
Cohen-Macaulay type t.

Question 4.4. We have already seen that level artinian monomial al-
gebras do not necessarily have the WLP. Nevertheless, are their Hilbert
functions unimodal? That is, are all pure O-sequences unimodal? If
not, can we find subfamilies, depending upon the type t and/or the
number of variables r, that are unimodal? And, if they are not neces-
sarily unimodal, “how non-unimodal” can they be?

Remark 4.5. If I is a monomial ideal in R = k[x1, . . . , xr ], then the
linear form � = x1 + · · ·+ xr is “general enough” to determine whether
R/I has the WLP or SLP. This observation has been extremely useful
in simplifying calculations to show the existence or failure of the WLP.
In [39, Proposition 2.2], this was stated for the WLP, but the same
proof also gives it for the SLP.

For the remainder of this section we will assume that k has character-
istic 0, unless explicitly mentioned otherwise. We have seen that, in one
or two variables, we always have the WLP (and even SLP). Turning to
the next case, the following seemingly simple result in fact has a very
intricate and long proof. It illustrates the subtlety of these problems.

Theorem 4.6 [8, Theorem 6.2]. A level artinian monomial algebra
of type 2 in three variables has the WLP.1

Of course, this has the following consequence.

Corollary 4.7. A pure O-sequence of type 2 in three variables is
unimodal.

The monograph [6] gave a careful study of families of level artinian
monomial algebras that fail the WLP. As a consequence, we have the
following conclusion.
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Theorem 4.8 [6]. If R = k[x1, . . . , xr] and R/I is a level artinian
monomial algebra of type t, then, for all r and t, examples exist where
the WLP fails, except if:

• r = 1 or 2;

• t = 1 (this is Theorem 1.1);

• r = 3, t = 2 (this is Theorem 4.6).

In particular, the first case where WLP can fail is when r = 3 and
t = 3. This occurs, for instance, if I = 〈x3, y3, z3, xyz〉 (see [11,
Example 3.1]). Nevertheless, Boyle has shown that, despite the failure
of the WLP, all level artinian monomial algebras with r = 3 and t = 3
have strictly unimodal Hilbert function (that is, in addition to being
unimodal, once the function decreases then it is strictly decreasing
from that point until it reaches zero):

Theorem 4.9 [9]. Any pure O-sequence of type 3 in three variables
is strictly unimodal.

In more variables, the first case where the WLP can fail is when
r = 4 and t = 2. Here again, Boyle has shown that, nevertheless, such
algebras have strictly unimodal Hilbert function:

Theorem 4.10 [10]. Any pure O-sequence of type 2 in four variables
is strictly unimodal.

Since the WLP is not available in these cases, Boyle’s method is a
classification theorem followed by a decomposition of the ideals and a
careful analysis of sums of Hilbert functions of complete intersections.

However, there is no hope of such a result for all pure O-sequences,
even when r = 3:

Theorem 4.11 [8]. Let M be any positive integer, and fix an integer
r ≥ 3. Then there exists a pure O-sequence in r variables which is
non-unimodal, having exactly M maxima.
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In view of the last two results, we have the following natural question.

Question 4.12. What is the smallest socle degree and (separately)
the smallest socle type t for which non-unimodal pure O-sequences
exist? This is especially of interest when r = 3.

In [6], Boij and Zanello produced a non-unimodal example with r = 3
and socle degree 12. In [8], for r = 3, we produced a non-unimodal
example for socle type t = 14. It was also shown that pure O-sequences
can fail unimodality if and only if the socle degree is at least 4 (but one
may need many variables for small socle degree).

It is also natural to ask how things change when you remove “mono-
mial” and ask about artinian level algebras. Some work in progress by
Boij, Migliore, Miró-Roig, Nagel and Zanello indicates that the behav-
ior of such algebras from the point of view of the Hilbert function can
become surprisingly worse, in the sense that dramatic non-unimodality
is possible even in early degrees, which would violate Hausel’s theorem
(Theorem 4.2) for instance, in the monomial case.

5. Powers of linear forms. In this section we always assume
that k has characteristic zero. Note that xi is a linear form, and
that if L1, . . . , Ln (n ≥ r) are general linear forms, then, without
loss of generality, (by a change of variables) we can assume that
L1 = x1, . . . , Lr = xr . Thus, Theorem 1.1 is also a result about ideals
generated by powers of linear forms. It says that, in k[x1, . . . , xr],
an ideal generated by powers of r general linear forms has the WLP
and the SLP. It also leads to an interesting connection to Fröberg’s
conjecture, which we discuss in Section 6.

Question 5.1. Which ideals generated by powers of general linear
forms define algebras that fail the WLP or SLP?

We saw in Theorem 2.7 that all such ideals (and in fact all homoge-
neous ideals) in two variables satisfy both the WLP and the SLP. More
surprisingly, Schenck and Seceleanu showed a similar result in three
variables:
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Theorem 5.2 [51]. Let R = k[x, y, z], where char (k) = 0. Let
I = 〈La1

1 , . . . , Lam
m 〉 be any ideal generated by powers of linear forms.

Then R/I has the WLP.

A shorter proof of this result is given in [40]. One reason that it
is surprising is that the same is not true for SLP. For instance, if
I = 〈L3

1, L
3
2, L

3
3, L

3
4〉 (where Li is general in k[x, y, z]), then (×�3) fails to

have maximal rank. The case of three variables acts as a bridge case: we
will see that, for four or more variables, even WLP fails very commonly.
Some recent work in this area was motivated by the following example
of Migliore, Miró-Roig and Nagel:

Example 5.3 [39]. Let r = 4. Consider the ideal I = 〈xN
1 , xN

2 , xN
3 ,

xN
4 , LN 〉 for a general linear form L. By computation using CoCoA,

R/I fails the WLP, for N = 3, . . . , 12.

There are some natural questions arising from this example:

Problem 5.4. • Prove the failure of the WLP in Example 5.3 for
all N ≥ 3.

• What happens for mixed powers?

• What happens for almost complete intersections, that is, for r + 1
powers of general linear forms in r variables when r > 4?

• What about more than r + 1 powers of general linear forms?

This example motivated two different projects at the same time:
by Migliore, Miró-Roig, Nagel [40] and by Harbourne, Schenck and
Seceleanu [26]. Both of these papers used the dictionary between ideals
of powers of general linear forms and ideals of fat points in projective
space, provided by the following important result of Emsalem and
Iarrobino:

Theorem 5.5 [24]. Let

〈La1

1 , . . . , Lan
n 〉 ⊂ k[x1, . . . , xr ]

be an ideal generated by powers of n linear forms. Let ℘1, . . . , ℘n be
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the ideals of the n points in Pr−1 corresponding to the linear forms.
Then, for any integer j ≥ max{ai},

dim k[R/〈La1
1 , . . . , Lan

n 〉]j = dim k

[
℘j−a1+1
1 ∩ · · · ∩ ℘j−an+1

n

]
j
.

One important difference between the two papers is that [26] assumed
that the powers are uniform, and usually that the powers are “large
enough.” Usually they allow more than r + 1 forms. On the other
hand, most of the results in [40] allow mixed powers. We quote some
of the results of these two papers. Together they form a nice start to an
interesting topic. The conjectures listed later indicate that more work
is to be done!

Theorem 5.6 [26]. Let

I = 〈Lt
1, . . . , L

t
n〉 ⊂ k[x1, x2, x3, x4],

with Li ∈ R1 generic. If n ∈ {5, 6, 7, 8}, then the WLP fails, respec-
tively, for t ≥ {3, 27, 140, 704}.

Theorem 5.7 [26]. For

I = 〈Lt
1, . . . , L

t
2k+1〉 ⊂ R = k[x1, . . . , x2k]

with Li generic linear forms, k ≥ 2 and t � 0, R/I fails the WLP.

(See also Theorem 5.10 below.) The following result gives the most
complete picture to date, about the case of four variables, when the
exponents are not assumed to be uniform and the ideal is assumed
to be an almost complete intersection (i.e. the number of minimal
generators is one more than the number of variables). It summarizes
several theorems in [40, Section 3], and we refer to that paper for the
more detailed individual statements.

Theorem 5.8 (Four variables, [40]). Let

I = 〈La1
1 , La2

2 , La3
3 , La4

4 , La5
5 〉 ⊂ R = k[x1, x2, x3, x4],
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where all Li are generic. Without loss of generality, assume that
a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. Set

λ =

{
(a1 + a2 + a3 + a4)/2− 2 if a1 + a2 + a3 + a4 is even

(a1 + a2 + a3 + a4 − 7)/2 if a1 + a2 + a3 + a4 is odd.

(a) If a5 ≥ λ, then R/I has the WLP.

(b) If a1 = 2, then R/I has the WLP.

(c) Most other cases (explicitly described in terms of a1, a2, a3, a4) are
proven to fail the WLP.

(d) For the few open cases, experimentally sometimes the WLP holds
and sometimes it does not.

Notice that the case where all the ai are equal and at least 3 is
contained in Theorem 5.6.

In more than four variables, it becomes progressively more difficult to
obtain results for mixed powers. We have the following partial result.

Theorem 5.9 (Five variables, almost uniform powers [40]). Assume
r = 5. Let L1, . . . , L6 be general linear forms. Let e ≥ 0 and

I = 〈Ld
1, L

d
2, L

d
3, L

d
4, L

d
5, L

d+e
6 〉.

(a) If e = 0, then R/I fails the WLP if and only if d > 3.

(b) If e ≥ 1 and d is odd, then R/I has the WLP if and only if
e ≥ (3d− 5)/2.

(c) If e ≥ 1 and d is even, then R/I has the WLP if and only if
e ≥ (3d− 8)/2.

We also have the following improvement of Theorem 5.7, which has
the additional assumption that t � 0.

Theorem 5.10 (Even number of variables, uniform powers [40]).
Let

I = 〈Lt
1, . . . , L

t
2k+1〉 ⊂ R = k[x1, . . . , x2k]
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with Li generic linear forms and k ≥ 2. Then R/I fails the WLP if
and only if t > 1.

(The case k = 2 is contained in Theorem 5.8.)

What about an odd number of variables? Here is a result for seven
variables:

Theorem 5.11 [40]. Let

I = 〈Lt
1, . . . , L

t
8〉 ⊂ k[x1, . . . , x7],

where L1, . . . , L8 are general linear forms.

• If t = 2, then R/I has the WLP.

• If t ≥ 4, then R/I fails the WLP.

Interestingly, for t = 3, CoCoA [16] says that the WLP fails, but we
do not have a proof. We can believe a computer that says that the
WLP holds, but otherwise we have to be skeptical about whether its
choice of forms was “general enough.”

For these results, sometimes it was necessary to prove failure of
surjectivity (when hi−1 ≥ hi in the relevant degrees), sometimes failure
of injectivity (when hi−1 ≤ hi), and sometimes we had to show that
the WLP does hold. These present quite different challenges.

After making the translation to fat points, as described above, the
first difficulty is to determine the degrees where WLP fails. Then,
it is necessary to find the dimension of a linear system of surfaces
in a suitable projective space vanishing to prescribed multiplicity at
a general set of suitably many points. To do this, in [40], Cremona
transformations and works of Dumnicki (2009), Laface-Ugaglia (2006)
and De Volder-Laface (2007) were used as the main tools, plus ad hoc
methods. These Cremona transformation results are central to the
proofs in [40].

Much remains to be shown on this topic. Here are two conjectures
from [26, 40].
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Conjecture 5.12 [26]. For I = 〈Lt
1, . . . , L

t
n〉 ⊂ R = [x1, . . . , xr]

with Li ∈ R1 generic and n ≥ r + 1 ≥ 5, the WLP fails for all t � 0.

Conjecture 5.13 [40]. Let R = k[x1, . . . , x2n+1]. Let L1, . . . , L2n+2

be general linear forms and I = 〈Ld
1, . . . , L

d
2n+1, L

d
2n+2〉.

• If n = 3 and d = 3, then R/I fails the WLP. (This is the only open
case in Theorem 5.11.)

• If n ≥ 4, then R/I fails the WLP if and only if d > 1.

These conjectures are supported by a great deal of computer evidence,
using CoCoA [16] and Macaulay2 [25].

6. Connection between Fröberg’s conjecture and the WLP.
In this section we continue to assume that our field has characteristic
zero. Closely related to the SLP is the so-called maximal rank property
(MRP), which just replaces �d by a general form of degree d in
Definition 2.4. Nevertheless, it is known that the MRP does not
imply the SLP. See [38, 58] for some connections between these two
properties.

One way of stating Fröberg’s conjecture is as follows.

Conjecture 6.1 (Fröberg). Any ideal of general forms has the MRP.
More precisely, fix positive integers a1, . . . , as for some s > 1. Let
F1, . . . , Fs ⊂ R = k[x1, . . . , xr] be general forms of degrees a1, . . . , as,
respectively, and let I = 〈F1, . . . , Fs〉. Then, for each i, 2 ≤ i ≤ s, and
for all t, the multiplication by Fi on R/〈F1, . . . , Fi−1〉 has maximal
rank, from degree t− ai to degree t. As a result, the Hilbert function of
R/I can be computed inductively.

This conjecture is known to be true in two variables. This follows,
for example, from Theorem 2.7. In three variables it was shown to
be true by Anick [2]. In this section, we explore the following natural
questions.

Question 6.2. What is the Hilbert function of an ideal generated by
powers of general linear forms of degrees a1, . . . , an? In particular, is
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it the same as the Hilbert function predicted by Fröberg? What, if any,
is the connection to the WLP?

Theorem 1.1 says that, when n = r + 1, the answer to the second
question is yes.

The fact that the answer is often “no” for n = r+2 was first observed
by Iarrobino [31]. Chandler [13, 14] also gave some results in this
direction. Concerning the connection to the WLP, the following result
of Migliore, Miró-Roig and Nagel gives a partial answer.

Proposition 6.3 [40]. (a) If Fröberg’s conjecture is true for all ideals
generated by general forms in r variables, then all ideals generated by
general forms in r + 1 variables have the WLP.

(b) Let R = k[x1, . . . , xr+1], let � ∈ R be a general linear form and let
S = R/〈�〉 ∼= k[x1, . . . , xr ]. Fix positive integers s, d1, . . . , ds, ds+1. Let
L1, L2, . . . , Ls, Ls+1 ∈ R be linear forms. Denote by the restriction
from R to S ∼= R/〈�〉. Make the following assumptions:

(i) The ideal I = 〈Ld1

1 , . . . , Lds
s 〉 has the WLP.

(ii) The multiplication ×L
ds+1

s+1 : [S/I]j−ds+1 → [S/I]j has maximal
rank.

Then R/〈Ld1
1 , . . . , L

ds+1

s+1 〉 has the WLP.

Remark 6.4. (a) Part of this result was in fact contained in the paper
[38] of Migliore and Miró-Roig. It was used there to show that any ideal
of general forms in k[x1, x2, x3, x4] satisfies the WLP, because Anick [2]
had shown much earlier that any ideal of general forms in k[x1, x2, x3]
satisfies Fröberg’s conjecture.

(b) It was shown in [40] that this result also leads to a short proof
of Theorem 5.2. The point is that the restriction of such ideals
corresponds to an ideal in k[x, y], and in characteristic zero all such
ideals have the SLP by Theorem 2.7.

The following corollary was also shown in [40]:

Corollary 6.5 [40]. Assume the characteristic is zero. Let R =
k[x1, . . . , xr+1], let � ∈ R be a general linear form and let S =
R/〈�〉 ∼= k[x1, . . . , xr]. For integers d1, . . . , dr+2, if an ideal of the
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form 〈Ld1
1 , . . . , L

dr+2

r+2 〉 ⊂ R of powers of general linear forms fails
to have the WLP, then an ideal of powers of general linear forms

〈Ld1

1 , . . . , L
dr+2

r+2 〉 ⊂ S fails to have the Hilbert function predicted by
Fröberg’s conjecture.

Thus, the results in the previous section give additional insight to
the observations of Iarrobino [31] and Chandler [13, 14] that, when
n = r + 2, there are many cases when an ideal of powers of general
linear forms does not have the same Hilbert function as that predicted
by Fröberg for general forms. Since Theorem 5.8 covers almost all
possible choices of exponents, it gives a much more complete answer
to the question of exactly which powers of five general linear forms
in three variables fail to have the Fröberg-predicted Hilbert function,
contrasting with the result of Anick which says that an ideal of general
forms of any fixed degrees in three variables does have the predicted
Hilbert function. Theorems 5.9 and 5.10 provide new partial answers
(via Corollary 6.5) in the case of more variables.

Example 6.6. Let R = k[x1, x2, x3, x4]. Let L1, L2, L3, L4, L5

and � be general linear forms. Let S = R/〈L〉 ∼= k[x, y, z]. Let
I = 〈L3

1, L
3
2, L

3
3, L

3
4, L

3
5〉 (the smallest case in Example 5.3 above). The

Hilbert function of R/I is (1, 4, 10, 15, 15, 6). We have

[R/I]3
×�−→ [R/I]4 −→ [R/(I, �)]4 −→ 0.

We saw that WLP fails, and in fact

dim [R/(I, �)]4 = 1.

Notice that R/(I, �) ∼= S/J , where J is the ideal of cubes of five general
linear forms in k[x, y, z]. Thus, dim [S/J ]4 = 1.

On the other hand, let K be the ideal of five general cubics in S.
Fröberg predicts (and Anick proves) that dim [S/K]4 = 0. Thus, J
does not have the Hilbert function predicted by Fröberg.

In fact, whenever we prove that an ideal of n powers of general linear
forms fails the WLP (for specified exponents), then for some subset
of these powers of general linear forms, the same number and powers
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of general linear forms in one fewer variable fails to have Fröberg’s
predicted Hilbert function.

7. Positive characteristics and enumerations. Considering
Theorem 1.1 again, we saw in Lemma 2.8 that the assumption on the
characteristic of the base field cannot be omitted.

Question 7.1. What happens in Theorem 1.1 if we allow the
characteristic to be positive?

Actually, investigating the dependence of the WLP on the character-
istic makes sense whenever the ideal can be defined over the integers.
This applies to all monomial ideals. In fact, in this case one has the
following result.

Proposition 7.2 [20, Lemma 2.6]. Let I ⊂ R be a monomial ideal. If
R/I has the WLP when char (k) = 0, then R/I has the WLP whenever
char (k) is sufficiently large.

The proof is based on two observations that have their origin in
[39]. For a monomial ideal, one can check the WLP by considering
the specific linear form � = x1 + · · · + xr . Thus, the maximal rank
property of the multiplications by � is governed by integer matrices.
Their determinants have only finitely many prime divisors if they do
not vanish.

It also follows that R/I fails the WLP in every positive characteristic
if it fails the WLP in characteristic zero.

Proposition 7.2 motivates the following problem.

Question 7.3. Let I ⊂ R be a monomial ideal such that R/I
has the WLP when char (k) = 0. What are the (finitely many) field
characteristics such that R/I fails the WLP?

This turns out to be a rather subtle problem. It was first considered
in [39] in the case of a certain almost complete intersection in three
variables. Recall that a monomial almost complete intersection in three
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variables is an ideal of the form

(7.1) I = Ia,b,c,α,β,γ = 〈xa, yb, zc, xαyβzγ〉.

If the syzygy bundle of I is not semi-stable or its first Chern class is
not divisible by three, then R/I has the WLP in characteristic zero
(see [11, 39]). However, if the syzygy bundle satisfies both conditions,
then deciding the WLP is more difficult and very subtle on the one
side. On the other side, the investigations in this case have brought to
light surprising connections to combinatorial problems.

In fact, if the syzygy bundle of I is semi-stable and its first Chern
class is divisible by three, then R/I has the WLP if and only if the
multiplication by � in a certain degree is an isomorphism or, equiva-
lently, a certain integer square matrix has a non-vanishing determinant.
This has first been observed in the special case, where R/I is level, in
[39] and then for arbitrary almost complete intersections in [20]. The
first connection to combinatorics was made by Cook and Nagel in [18,
Section 4]. There it was observed that the determinant deciding the
WLP for certain families of monomial almost complete intersections
is the number of lozenge tilings of some hexagon, which is given by a
formula of MacMahon. Lozenge tilings of a hexagon are in bijection
to other well-studied combinatorial objects such as, for example, plane
partitions and families of non-intersecting lattice paths.

Independently of [18], but subsequent to it, Li and Zanello studied
the WLP in the case of the complete intersections R/〈xa, yb, zc〉 in [35],
and they also related MacMahon’s numbers of plane partitions to the
failure of the WLP:

Theorem 7.4 [35]. For any given positive integers a, b, c, the number
of plane partitions contained inside an a × b × c box is divisible by a
prime p if and only if the algebra k[x, y, z]/〈xa+b, ya+c, zb+c〉 fails to
have the WLP when char (k) = p.

(This connection is already implicitly contained in [18], although it
was only made explicit in the proof of Corollary 6.5 in [20].) Next,
Chen, Guo, Jin and Liu [15], explained bijectively the result by Li
and Zanello for complete intersections. Both [18, 35] have been
substantially extended in [20]. Here the bijective approach of [15]
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was extended to almost complete intersections, and further relations
between the presence of the WLP and difficult counting problems in
combinatorics have been given. In the remainder of this section, we
give an overview of some of the results of [20] which illustrate this
fascinating connection.

We focus on the most difficult case, in which the presence of the
WLP is a priori not even known in characteristic zero, that is, we
assume that the syzygy bundle of the almost complete intersection
I = Ia,b,c,α,β,γ = 〈xa, yb, zc, xαyβzγ〉 is semi-stable in characteristic
zero and its first Chern class is divisible by three. By [20, Proposition
3.3], this is exactly true if and only if the following conditions are all
satisfied:

(i) s := (a+ b+ c+ α+ β + γ)/3− 2 is an integer,

(ii) 0 ≤ M ,

(iii) 0 ≤ A ≤ β + γ,

(iv) 0 ≤ B ≤ α+ γ, and

(v) 0 ≤ C ≤ α+ β,

where

A := s+ 2− a,

B := s+ 2− b,

C := s+ 2− c, and

M := s+ 2− (α+ β + γ).

The above conditions have a geometric meaning. In fact, due to The-
orem 4.1 in [20], they guarantee that I can be related to a hexagonal re-
gion with a hole, which is called the punctured hexagon H = Ha,b,c,α,β,γ

associated to I = Ia,b,c,α,β,γ (see Figure 1).

There are two square matrices that govern the WLP of the ideal I.

In fact, I has the WLP if and only if the multiplication [R/I]s
×�→

[R/I]s+1 is bijective or, equivalently, [R/(I, �)]s+1 = 0. The latter
condition means that a certain (C + M) × (C + M) matrix, N =
Na,b,c,α,β,γ, with binomial coefficients as entries is regular. The above
multiplication map can be described by a much larger zero-one square
matrix, Z = Za,b,c,α,β,γ. The above-mentioned equivalence implies that
the determinants of N and Z have the same prime divisors. However,
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FIGURE 1. Punctured hexagon Ha,b,c,α,β,γ (shadowed) associated to Ia,b,c,α,β,γ.

much more is true. Both determinants have the same absolute value,
which has combinatorial interpretations.

Theorem 7.5 [20, Theorems 4.4, 4.6 and 5.4]. Adopt the above
assumptions. Then the following conditions are equivalent:

(a) Ia,b,c,α,β,γ has the WLP if the characteristic of the base field k is
p ≥ 0.

(b) p does not divide the enumeration | detNa,b,c,α,β,γ| of signed
lozenge tilings of the associated punctured hexagon Ha,b,c,α,β,γ.

(c) p does not divide the enumeration |detZa,b,c,α,β,γ| of signed perfect
matchings of the bipartite graph associated to Ha,b,c,α,β,γ.

In particular, |detNa,b,c,α,β,γ| = |detZa,b,c,α,β,γ|.

A lozenge is a rhombus with unit side-lengths and angles of 60◦ and
120◦. Lozenges have also been called calissons and diamonds in the
literature. A perfect matching of a graph is a set of pairwise non-
adjacent edges such that each vertex of the graph is matched. We refer
to [20] for more details, in particular for assigning the signs, although
Figure 2 indicates an associated lozenge tiling and a perfect matching.

Theorem 7.5 has been used to establish the WLP of Ia,b,c,α,β,γ in
many new cases. The results also lend further evidence to a conjectured
characterization of the presence of the WLP of Ia,b,c,α,β,γ in case
Ia,b,c,α,β,γ is level that has been proposed in [39].
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Hexagon tiling by lozenges Perfect matching of edges

FIGURE 2. A lozenge tiling and its associated perfect matching.

The determinants occurring in Theorem 7.5 can be rather big.

Example 7.6. Consider the ideal

I = 〈x14, y21, z25, x2y9z13〉.

Then the absolute value of the corresponding determinants is (see [18,
Remark 4.8])

2 · 32 · 53 · 114 · 135 · 19 · 233 · 29 · 5011.

Hence, R/I fails the WLP if and only if the characteristic of k is any
of the nine listed prime divisors.

In the situation of Theorem 7.5, the presence of the WLP in charac-
teristic zero can also be read off from the splitting type of the syzygy
bundle. In fact, Ia,b,c,α,β,γ has the WLP if and only if its syzygy bundle
has splitting type (s+ 2, s+ 2, s+ 2) (see [20, Theorem 9.9]).

In [20], explicit formulae for the enumerations appearing in Theo-
rem 7.5 are derived in various cases. However, even then determining
the prime divisors of the enumerations can be challenging. In fact, this
problem is open even in the special case of monomial complete inter-
sections, though, recently, there has been progress in the case where
the generators all have the same degree. Brenner and Kaid [12] gave
an explicit description of when R/〈xd, yd, zd〉 has the WLP in terms of
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d and the characteristic p. In particular, they proved a conjecture of
[35] for the case p = 2. This latter result is stated very concisely:

Theorem 7.7 [12]. The algebra k[x, y, z]/〈xd, yd, zd〉 has the WLP
in char (k) = 2 if and only if d = 	(2n + 1)/3
 for some positive integer
n.

The approach of [12] was via a theorem of Han computing the syzygy
gap for an ideal of the form 〈xd, yd, (x+ y)d〉 in k[x, y]. The analogous
result in the case of more variables, that is, for I = 〈xd

1, . . . , x
d
n〉 (n ≥ 4),

has been obtained by Kustin and Vraciu in [34]. Independently, Cook
made progress in deciding the Lefschetz properties of more general
monomial complete intersections in positive characteristic (see [17]),
addressing Question 7.1 (see also [36, Lemma 5.2], for a result in two
variables).

In a different direction, Kustin, Rahmati and Vraciu [33] showed that
A = R/〈xd, yd, zd〉 has the WLP in characteristic p �= 2 if and only if
its residue field has finite projective dimension as an A-module.
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ENDNOTES

1. A simpler proof of this result has recently been given in [21].

Note added in proof. In the time since this paper was submitted,
several important advances have been made in the study of the WLP
which we have not been able to describe in this survey. Among these
we single out [7, 21, 22, 37].
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Abstract

Let A =⊕
i�0Ai be a standard graded ArtinianK-algebra, where charK = 0. ThenA has the

Weak Lefschetz property if there is an element� of degree 1 such that the multiplication×� :Ai →
Ai+1 has maximal rank, for everyi, andA has the Strong Lefschetz property if×�d :Ai → Ai+d

has maximal rank for everyi andd. The main results obtained in this paper are the following.
(1) Every height-three complete intersection has the Weak Lefschetz property. (Our method,

surprisingly, uses rank-two vector bundles onP2 and the Grauert–Mülich theorem.)
(2) We give a complete characterization (including a concrete construction) of the Hilbert functions

that can occur forK-algebras with the Weak or Strong Lefschetz property (and the characterization
is the same one!).

(3) We give a sharp bound on the graded Betti numbers (achieved by our construction) of Artinian
K-algebras with the Weak or Strong Lefschetz property and fixed Hilbert function. This bound is
again the same for both properties! Some Hilbert functions in factforce the algebra to have the
maximal Betti numbers. (4)EveryArtinian ideal inK[x, y] possesses the Strong Lefschetz property.
This is false in higher codimension.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let A be a graded Artinian algebra over some fieldK (which we will restrict shortly).
ThenA has theWeak Lefschetz property(sometimes called the Weak Stanley property) if
there is an element� of degree 1 such that the multiplication×� :Ai → Ai+1 has maximal
rank, for everyi. We say thatA has theStrong Lefschetz propertyif there is an element� of
degree 1 such that the multiplication×�d :Ai → Ai+d has maximal rank for everyi andd .
If A = R/I , whereR is a polynomial ring andI is a homogeneous ideal, then sometimes
we will abuse notation and refer to the Weak or Strong Lefschetz properties forI rather
than forA. These are both fundamental properties and have been studied by many authors,
especially whenA is Gorenstein (e.g., [4,13,15,16,19,24,26–28]).

Throughout this paper, unless specified otherwise, we assume that we work over a field
of characteristic zero. This paper began with a study of the Weak Lefschetz property for
complete intersections of height three, and grew to a study of Artinian ideals of arbitrary
codimension. Our original interest in the subject was to try to get a handle on “how
many” Artinian complete intersections possess this natural property. However, a further
motivation comes from the fact that this property can be translated into (at least) two other
natural questions.

First, suppose thatF1,F2, . . . ,Fn is a homogeneous complete intersection in the
n-dimensional polynomial ringR. Then the minimal free resolution of the ideal
(F1, . . . ,Fn) is well understood; namely it is obtained as the Koszul complex. However,
the graded Betti numbers of the minimal free resolution of the ideal(F1, . . . ,Fn,L), where
L is a generic linear form, does not seem to be well understood. For example, should they
be all the same, depending only on the degrees of the generators and not on the generators
themselves, as long as they are a regular sequence of given degrees plus a generic element?
(We could also ask the same question forLd in the place forL.) The connection between
the Weak Lefschetz property and this question is discussed in the last part of Section 2, and
we give a complete answer (Corollary 2.7) whenn = 3.

One other problem concerns the generic initial ideal, gin(I), of a complete intersec-
tion I , i.e., the initial ideal ofI with respect to generic variables (cf., for instance, [9]).
It is well known that gin(I) is Borel-fixed. But ifI is a complete intersection and if we
fix a monomial order, is the Borel-fixed ideal gin(I) unique? Or are there two complete
intersectionsI andJ such that gin(I) and gin(J ) are different Borel-fixed ideals with the
same Hilbert function? These questions seem to be open since if gin(I) is unique with
respect to the reverse lex order then it would imply the Strong Lefschetz property of all
complete intersections of those degrees. Since a Borel-fixed ideal is unique in codimen-
sion two (for a fixed Hilbert function), the Strong Lefschetz property can be proved in this
case (Proposition 4.4).

It should also be mentioned that Stanley and others have made deep connections
between the Weak and Strong Lefschetz properties and questions in combinatorics [24,
25]. For example, the Weak Lefschetz property was the crucial ingredient in Stanley’s part
of the characterization of thef -vectors of simplicial polytopes. Thus, we are exploring in
this paper also the restrictions on the possible Hilbert functions and graded Betti numbers
imposed by the presence of the Weak or Strong Lefschetz property.
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It was noticed by Stanley [25] and independently by the fourth author [27] that any
monomial complete intersection (in any number of variables) has the Strong Lefschetz
property, and the fourth author proved that in any codimension, “most” Artinian Gorenstein
rings with fixed socle degree possess the Strong Lefschetz property [27, Example 3.9]. We
remark (following [15]) that Stanley’s proof used the idea of recognizingA = R/I as the
cohomology ring of a productX of projective spaces, and then using the hard Lefschetz
theorem for the algebraic varietyX. The fourth author noticed that it follows from the
representation theory of the Lie algebrasl(2).

Yet even in codimension 3, we do not have a clear idea of which Artinian Gorenstein
rings possess this property, and in particular whether all of them do. The (apparently)
simplest situation is for height-3 complete intersections inR = K[x1, x2, x3]. Until now
the most general result for this case is again due to the fourth author. Suppose that the
generators of the complete intersectionI have degrees 2� d1 � d2 � d3. Then it was
proved in [28] that ifd3 > d1 + d2 − 2 thenR/I has the Weak Lefschetz property. But for
arbitrary complete intersections, even the case of three polynomials of degree 4 had been
open.

The first main result of this paper (Theorem 2.3) is thatall Artinian complete
intersections inK[x1, x2, x3] have the Weak Lefschetz property. It is a somewhat surprising
result. Indeed, it was known to be a very difficult problem among the experts, and at times
it seemed more natural to seek a counter-example rather than to try to prove it! We are able
to give a relatively simple proof by translating the problem to one of vector bundles onP2

and invoking a deep theorem due to Grauert and Mülich.
This part of the paper was inspired by [28], but as mentioned earlier, our techniques

are completely different from those of the papers cited above. Because we apply the
Grauert–Mülich theorem, we are forced to assume characteristic zero (as indeed was done
in [28]). In fact, the Weak Lefschetz property does not hold for all complete intersections
in characteristicp; see Remark 2.9.

As a further illustration of the power of our approach, we give a simple proof
(Corollary 2.5) of the main result of [28].

In the third section of the paper we do not assume that charK = 0. We consider graded
Artinian K-algebras which are not necessarily complete intersections. Here we produce
(Construction 3.4) a particular graded ArtinianK-algebra, which allows us to give a
necessary and sufficient condition for a sequence of integers to be the Hilbert function
of a graded ArtinianK-algebra with the Weak Lefschetz property (Proposition 3.5). We
also answer several natural questions about the minimal free resolutions of algebras with
the Weak Lefschetz property.

Our second main result (Theorem 3.20) shows that if we fix an allowable Hilbert
function then there is a sharp upper bound on the graded Betti numbers amongK-algebras
having the Weak Lefschetz property. Indeed, this bound is achieved by the algebra
produced by Construction 3.4, once we refine the construction slightly. This result is
analogous to the main result of [19], which proved it for Gorenstein ideals with the Weak
Lefschetz property (see also [11]). As a corollary we show that there are Hilbert functions
which occur forK-algebras with the Weak Lefschetz property and for which this property
forces the graded Betti numbers to be the maximal ones.
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In Section 4 we again assume charK = 0. We consider the Strong Lefschetz property,
namely that there exists a linear form� such that for eachd , the multiplication
×�d : Ai → Ai+d has maximal rank, for everyi. This condition implies the Weak
Lefschetz property, but is not equivalent to it in general. We show that these conditions
are both automatic in codimension two, however.

Since there are algebras with the Weak Lefschetz property but not the Strong Lefschetz
property, one might guess that the imposition of the Strong Lefschetz property reduces
the number of possible Hilbert functions. However, we are able to show that with another
slight refinement of Construction 3.4, that algebra has the Strong Lefschetz property. This
yields the surprising result that a Hilbert function occurs among algebras with the Weak
Lefschetz property if and only if it occurs among algebras with the Strong Lefschetz
property. Furthermore, the extremal graded Betti numbers for algebras with the Weak
Lefschetz property also occur among algebras with the Strong Lefschetz property.

Our results have some consequences for the punctual Hilbert scheme. Since by
semicontinuity the Weak and Strong Lefschetz properties are open properties, it follows
that the general point of a component has the Strong (respectively Weak) Lefschetz
property if and only if the component has one point with the Strong (respectively Weak)
Lefschetz property. Moreover, we know precisely the possible Hilbert functions of the
K-algebras corresponding to such a general point.

2. The Weak Lefschetz Property for height-three complete intersections

LetR = K[x1, x2, x3], whereK is a field of characteristic zero. Initially we will assume
thatK is algebraically closed, in order to freely use the results of [23]. However, we note
in Corollary 2.4 and beyond that our results hold without that assumption.

Let I be a complete intersection ideal ofR generated by homogeneous elements
F1,F2,F3 ∈ R of degreesd1, d2, d3 respectively, andd1 � d2 � d3. The minimal free
resolution forR/I has the form

0 R(−d1 − d2 − d3) F2 F1
[F1,F2,F3]

R R/I 0

E

0 0

(2.1)

whereF2 = R(−d2 − d3)⊕ R(−d1 − d3)⊕ R(−d1 − d2) andF1 = R(−d1)⊕ R(−d2)⊕
R(−d3). Sheafifying, we get the following two exact sequences:

0 E F1
[F1,F2,F3] OP2 0 (2.2)

and

0 −→OP2(−d1 − d2 − d3) −→F2 −→ E −→ 0, (2.3)
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whereE is locally free (sinceI is Artinian) of rank two,F1 = OP2(−d1) ⊕ OP2(−d2) ⊕
OP2(−d3) andF2 =OP2(−d2 − d3)⊕OP2(−d1 − d3)⊕OP2(−d1 − d2).

We would like a condition which forcesE to be semistable. We first consider the case
whered1 + d2 + d3 is even. Choose an integerd so that 2d = d1 + d2 + d3. Notice
that c1(E) = −d1 − d2 − d3 = −2d , so the normalized bundleEnorm is E(d) (an easy
computation, or see, for instance, [23, p. 165]). Twisting the sequence (2.3) byd − 1 we
obtain

0 −→OP2(−d − 1) −→

OP2(−d + d1 − 1)
⊕

OP2(−d + d2 − 1)
⊕

OP2(−d + d3 − 1)

−→ Enorm(−1) −→ 0. (2.4)

We now consider the case whered1 + d2 + d3 is odd. Choosed so that 2d = d1 + d2 +
d3 − 1. Then againEnorm = E(d) (again see [23, p. 165]). Now we have the short exact
sequence

0 −→ OP2(−d − 1) −→

OP2(−d + d1 − 1)
⊕

OP2(−d + d2 − 1)
⊕

OP2(−d + d3 − 1)

−→ Enorm−→ 0. (2.5)

Lemma 2.1. Let E be the rank-two locally free sheaf obtained above as the kernel of the
map[F1,F2,F3].

(1) Assumed1 + d2 + d3 is even. Ifd3 < d1 + d2 + 2 thenE is semistable.
(2) Assumed1 + d2 + d3 is odd. Ifd3 < d1 + d2 + 1 thenE is semistable.

Proof. Whenc1(E) is even andE has rank two, we know from [23, Lemma 1.2.5] thatE
is semistable if and only ifH 0(Pn,Enorm(−1)) = 0 (since it has rank two). Whenc1(E) is
odd andE has rank two, stability and semistability coincide [23, p. 166] and the condition
for semistability isH 0(P2,Enorm) = 0.

The two sequences (2.4) and (2.5) are exact on global sections. Hence semistability
follows in either case if we have−d + d3 − 1< 0 (whered changes slightly depending on
the parity ofd1 + d2 + d3). The lemma then follows from a simple computation.✷

Let λ ∼= P1 be a general line inP2. Recall that every vector bundle onP1 splits, so in
particularE |λ ∼=OP1(e1)⊕OP1(e2). The pair(e1, e2) is called thesplitting typeof E .

Corollary 2.2. Let E be the locally free sheaf obtained above, and assume thatd3 <

d1 + d2 + 1. Then the splitting type ofE is

(e1, e2) =
{
(−d,−d) if d1 + d2 + d3 = 2d;
(−d,−d − 1) if d1 + d2 + d3 − 1= 2d.
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Proof. By Lemma 2.1,E is semistable. The theorem of Grauert and Mülich ([23, p. 206],
[8, p. 68]) says that in characteristic zero the splitting type of a semistable normalized
2-bundleEnorm overPn is

(e1, e2) =
{
(0,0) if c1(Enorm) = 0;
(0,−1) if c1(Enorm) = −1.

In our caseEnorm= E(d), so a simple calculation gives the result.✷
With this preparation, we now prove the main result of the paper. We continue to assume

thatK is algebraically closed of characteristic zero.

Theorem 2.3. Every height-three Artinian complete intersection has the Weak Lefschetz
property.

Proof. It was shown in [28, Corollary 3] that ifd3 � d1 + d2 − 3 thenR/I has the Weak
Lefschetz property. So without loss of generality assume thatd3 < d1 + d2 − 3. Note that
then Corollary 2.2 applies. To prove the Weak Lefschetz property it is enough to prove
injectivity in the “first half,” so we will focus on this.

Let L be a general linear form and letR = R/L. We denote byF the restriction of a
polynomialF to R and by�F1 the freeR-moduleR(−d1)⊕ R(−d2)⊕ R(−d3). Consider
the multiplication induced byL. From (2.1) we obtain a commutative diagram

0 0

0 E(−1) F1(−1)
[F1 F2 F3]

M

R(−1)
(×L)

R/I (−1)

(×L)

0

0 E F1
[F1 F2 F3]

R R/I 0

�F1
[F 1 F 2 F3]

R

0 0

(2.6)

whereM is the matrix

[
L 0 0
0 L 0
0 0 L

]
.

Note that the first vertical exact sequence is the direct sum of three copies of the exact
sequence

0 −→ R(−1)
×L−−−→ R −→ R −→ 0
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twisted by−d1, −d2, and−d3, respectively. The induced map on the kernels,E(−1) → E,
is just multiplication byL.

Let λ be the line inP2 defined byL. Invoking the Snake Lemma and using the fact that
the sheafification ofR/I is 0, the sheafified version of (2.6) is

0 0 0

0 E(−1)

(×L)

F1(−1)
[F1 F2 F3]

M

OP2(−1)

(×L)

0

0 E F1
[F1 F2 F3] OP2 0.

0 E |λ F1

[F1 F 2 F3] Oλ 0

0 0 0

(2.7)

By Corollary 2.2,

E |λ ∼=
{
Oλ(−d)2, if d1 + d2 + d3 = 2d;
Oλ(−d)⊕Oλ(−d − 1), if d1 + d2 + d3 − 1 = 2d.

Let Ī be the ideal(F 1, F 2,F 3) in R. Taking global sections on the last line of (2.7)
gives

0 −→
2⊕

i=1

R(−ei) −→�F1 −→ Ī −→ 0

where|e1 − e2| = 0 or 1 according to whetherd1 + d2 + d3 is even or odd, respectively. It
was observed in [28, Remark on p. 3165] that this implies thatR/I has the Weak Lefschetz
property. However, for completeness we will sketch the argument. We will treat only the
cased1 + d2 + d3 even, leaving the other case to the reader.

We have the exact sequence

0 −→ R(−d)2 −→

R(−d1)

⊕
R(−d2)

⊕
R(−d3)

[F 1 F2 F 3]
Ī 0 (2.8)

whered = (d1 + d2 + d3)/2.
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As noted earlier, we only have to show that multiplication byL is injective on the “first
half” of R/I . The socle degree ofR/I is d1 + d2 + d3 − 3, so we have to show that the
multiplication

(R/I)j
×L−−−→ (R/I)j+1

is injective forj � (d1 + d2 + d3)/2− 2 = d − 2. We will show it to be true forj = d − 2,
and from the form of the proof it will be clear that it holds also for smallerj .

The kernel of(×L) is [I :R L], so if (×L) is not injective we have an elementF ∈ Rd−2,
F /∈ I , such thatLF ∈ Id−1. That is, we have formsAi , 1� i � 3, with degAi = d−1−di
and

LF −A1F1 −A2F2 −A3F3 = 0.

Restricting this syzygy toR gives

A1F 1 +A2F 2 +A3F 3 = 0.

But (2.8) says that the smallest possible syzygies come from polynomials of degreed −di ,
1� i � 3, so this is a contradiction. As noted, this works equally well to prove injectivity
for all j � d − 2. ✷
Corollary 2.4. LetK be a field of characteristic zero which is not necessarily algebraically
closed. Then every height-three Artinian complete intersection inK[x1, x2, x3] has the
Weak Lefschetz property.

Proof. The Weak Lefschetz property for a graded ArtinianK-algebraA is equivalent to
the statement that for a general linear form�, the Hilbert function ofA/�A is just the
positive part of the first difference of the Hilbert function ofA. But this does not change
under extension of the base field, so the result follows from Theorem 2.3.

Using the same methods, we can also give a new proof of the main result of [28]. As
above, we can assume thatK is algebraically closed initially, but the rest of the results of
this section do not need this assumption.

Corollary 2.5. Let R = K[x1, x2, x3], I = (F1,F2,F3) a complete intersection inR,
di = degFi for i = 1,2,3, L a general linear form,R = R/LR, and Ī = (I + LR)/LR.
Then the following are equivalent:

(i) µ(Ī ) = 3, whereµ is the minimal number of generators;
(ii) d3 � d1 + d2 − 2.

Proof. For completeness we repeat the proof from [28] of the fact that (i) implies (ii). Since
L is general,F1,F2, andL are regular sequences, and the socle degree ofR/(F1,F2,L)
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is d1 + d2 − 2. If (ii) is not true thenF3 is contained in the ideal(F1,F2,L), soF 3 is
contained in((F1,F2)+LR)/LR, contradicting (i).

The hard part of the proof is the converse, which we prove using our approach. We have
from Corollary 2.2 that the splitting type ofE is

(e1, e2) =
{
(−d,−d) if d1 + d2 + d3 = 2d;
(−d,−d − 1) if d1 + d2 + d3 − 1 = 2d.

With this definition ofd , a simple calculation gives that

If d is even then d3 < d ⇔ d3 < d1 + d2;
If d is odd then d3 < d ⇔ d3 < d1 + d2 − 1.

So in either case, if (ii) holds thend3 < d . But the splitting type gives exactly the leftmost
free module in the short exact sequence (2.8), and the fact thatd3 < d means that no
splitting can occur in the resolution.✷

We now apply these ideas to the question of minimal free resolutions. In particular,
supposeI = (F1,F2,F3) is a complete intersection inR = K[x1, x2, x3] andF is a general
form of degreed . What can be the possible minimal free resolutions of the ideal(I,F )?
Does it depend only on the degrees of the generators ofI , or does the choice of the
complete intersection itself play a role? We can answer this question whenF has degree 1,
which in any case was an open question. To be consistent with notation, we writeL for
this general linear polynomial. We begin with a lemma.

Lemma 2.6. Let I ⊂ R = K[x1, x2, x3] be an Artinian ideal. Then there exists a Cohen–
Macaulay height-two idealJ ⊂ R such thatJ + (L) = I + (L). J can even be taken to be
reduced.

Proof. Let I = (F1, . . . ,Fk). We know thatI + (L)/(L) = (F 1, . . . ,F k) is Artinian in
R = R/(L), hence Cohen–Macaulay of height 2. After a change of coordinates, we can
assume thatL = x3, hence we obtain polynomialsG1, . . . ,Gk ∈ K[x1, x2] by canceling
all monomials inF1, . . . ,Fk which are a multiple ofx3. Then viewing these polynomials
in R gives the first result. This ideal is not reduced, however. But it has a Hilbert–Burch
matrix, whose entries are all polynomials inx1, x2. Using standard lifting techniques, one
can obtain a reduced schemeJ with the desired property. (A more geometric use of this
trick may be found in [6].) ✷

Note that the preceding lemma trivially implies that all the graded Betti numbers (over
R/(L)) of the reduction ofJ modulo L are the same as those of the reduction ofI

moduloL. However, in general we are not able to say what these Betti numbers are, or
what the Betti numbers of the idealI + (L) are (overR), or even what the Hilbert function
is. Nevertheless, in the case of complete intersections we can say something much stronger,
thanks to our results above.
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Corollary 2.7. Let I = (F1,F2,F3) ⊂ R be a complete intersection. Then there is
a (reduced) arithmetically Cohen–Macaulay idealJ = (G1,G2,G3) ⊂ R such that
degGi = degFi = di for i = 1,2,3 and such thatJ + (L) = I + (L). Furthermore,

(a) If d3 � d1 + d2 − 2 thenJ is an almost complete intersection with minimal generators
given by theGi . Letd be defined by

{
d1 + d2 + d3 = 2d if d1 + d2 + d3 is even;
d1 + d2 + d3 − 1 = 2d if d1 + d2 + d3 is odd.

If d1 + d2 + d3 is even then the minimal free resolution ofR/(I + (L)) is given by

0−→ R(−d − 1)2 −→

R(−d1 − 1)
⊕

R(−d2 − 1)
⊕

R(−d3 − 1)
⊕

R(−d)2

−→

R(−1)
⊕

R(−d1)

⊕
R(−d2)

⊕
R(−d3)

−→ R −→ R/(I + (L)) −→ 0.

(The case whered1 + d2 + d3 is odd is analogous.)
(b) If d3 > d1 + d2 − 2 thenJ = (G1,G2) is a complete intersection. In this case the

minimal free resolution ofR/(I + (L)) is given by

0→ R(−d1 − d2 − 1)−→

R(−d1 − 1)
⊕

R(−d2 − 1)
⊕

R(−d1 − d2)

−→

R(−1)
⊕

R(−d1)

⊕
R(−d2)

−→ R −→ R/(I + (L)) → 0.

Proof. The first part of the corollary is immediate from Lemma 2.6.
For both (a) and (b) we know that(I + (L)) = (J + (L)) whereJ is arithmetically

Cohen–Macaulay of depth 1. HenceR/(I + (L)) has the same resolution asR/(J + (L)),
either overR or overR/(L).

Consider (a). We know from Corollary 2.5 that[I +(L)]/(L) = [J +(L)]/(L) ⊂ R/(L)

is an almost complete intersection, so the same is true ofJ ⊂ R since depthR/J = 1.
Suppose thatd1 + d2 + d3 is even (the case where it is odd is completely analogous). We
have a minimal free resolution (overR/(L)) for R/(J + (L)) given in Theorem 2.3, so we
thus have a minimal free resolution overR for R/J given by

0−→ R(−d)2 −→

R(−d1)

⊕
R(−d2)

⊕
R(−d3)

−→ R −→ R/J −→ 0.
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Then the desired minimal free resolution forR/(J +(L)) (and henceR/(I +(L))) is given
by the tensor product of this resolution with the resolution

0 −→ R(−1) −→ R −→ R/(L) −→ 0.

The proof of (b) is trivial ✷
Remark 2.8. It is possible that similar techniques can be used to prove the Strong Lefschetz
property for height-three complete intersections (see Definition 4.1), or to attack either
the Weak or Strong Lefschetz properties for Artinian complete intersections in higher-
dimensional rings. However, a more subtle proof will be needed, as simple examples show
that thedegreesof the syzygies will not be enough to obtain a contradiction.

Nevertheless,we conjecture that every Artinian complete intersection inK[x0, x1, x2]
has the Strong Lefschetz property.

Remark 2.9. What happens in characteristicp? We first note that we cannot expect a result
as strong as the one given in Theorem 2.3. Indeed, letA= K[x1, x2, x3]/(x2

1, x
2
2, x

2
3) where

K has characteristic 2. Letg = ax1+bx2+cx3 be a general linear form. Theng :A1 → A2
is not injective; indeed,g is itself in the kernel! A similar observation can be made for
A = K[x1, x2, x3]/(x4

1, x
4
2, x

4
3), etc.

The main problem here is that the Grauert–Mülich theorem does not hold in
characteristicp. There are weaker versions: a theorem of Ein [8, Theorem 4.1] bounds the
splitting type ofE by a function ofc2(E). However, as we saw in the proof of Theorem 2.3,
we need the full strength of Grauert–Mülich in order to prove our result. In the highest
degree (at the “middle” of theh-vector), the contradiction from the degrees of the syzygies
would not have occurred if this degree had been one greater. Hence a weaker version of
Grauert–Mülich is not good enough with the present techniques.

For example, ifI is the complete intersection of three polynomials of degree 10 inR,
then one can compute thatc2(Enorm) = 75, and then Ein’s theorem gives that the splitting
type is no worse than(5,−5). However, that means that the restriction toR = R/(L) has
resolution “no worse” than

0−→ R(−10)⊕ R(−20)−→ R(−10)3 −→ Ī −→ 0.

In particular, it cannot even be excluded that the restriction ofI to R is a complete
intersection. In characteristic zero this is excluded immediately by our work above
(applying the strong Grauert–Mülich theorem) and in fact it follows immediately also from
the main theorem of [28].

Remark 2.10. (1) The Weak Lefschetz property says that a general linear form induces a
map of maximal rank on consecutive components. One might be interested in a description
of the set of (special) linear forms which doesnot give maps of maximal rank. This is
parameterized by the variety of jumping lines of the bundleE .

It is interesting to combine the two techniques involved here. For any set of distinct
linesλ1, . . . , λr in P2, one can easily construct bundles having theλi as jumping lines. For
example, letr = 3 and consider complete intersections of type(4,4,4).
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Onλi , i = 1,2,3, choose general pointsPi,1,Pi,2,Pi,3,Qi,1,Qi,2,Ri,1,Ri,2,Ri,3,Ri,4.
Consider the 4-tuples

(Pi,1,Pi,2,Pi,3,Qi,1), (Pi,1,Pi,2,Pi,3,Qi,2), and (Ri,1,Ri,2,Ri,3,Ri,4).

Choose a general quartic curveF1 ∈ R4 containing the 12 points(Pi,1,Pi,2,Pi,3,Qi,1) (i =
1,2,3), a general quartic curveF2 ∈ R4 containing the 12 points(Pi,1,Pi,2,Pi,3,Qi,2) (i =
1,2,3), and a general quartic curveF3 ∈ R4 containing the 12 points(Ri,1,Ri,2,Ri,3,Ri,4)

(i = 1,2,3). (This is possible since the points were chosen generically.)
Then(F1,F2,F3) is a complete intersection, but its restrictions toλ1, λ2, andλ3 each

have linear syzygies. LetE be the bundle constructed from this complete intersection. Since
the restriction to a general line has no smaller than quadratic syzygies,λ1, λ2, andλ3 are
jumping lines.

(2) The bundleE used in this section is a Buchsbaum–Rim sheaf. The interested reader
can find a much more extensive treatment of such sheaves and their properties in [17,18,
20].

3. Hilbert functions and maximal Betti numbers of algebras with the Weak
Lefschetz property

In this section we do not require that charK = 0 or thatK be algebraically closed.
We give a complete characterization of the possible Hilbert functions of algebras with the
Weak Lefschetz property. Furthermore, we show that there is a sharp upper bound on all
of the graded Betti numbers in the minimal free resolution of an algebra with the Weak
Lefschetz property. For the remainder of this paper we writeR = K[x0, . . . , xn].

Notation 3.1. If A = R/I is a gradedK-algebra then we denote the Hilbert function ofA

by

hA(t) := dimK [R/I ]t .

The main result of [13] was to characterize the Gorenstein sequences (i.e., the
sequences of integers that can arise as the Hilbert function of an Artinian Gorenstein
ideal) corresponding to Artinian Gorenstein ideals with the Weak Lefschetz property.
These turned out to be the so-called Stanley–Iarrobino (SI)-sequences. As a consequence,
since the height-three Gorenstein ideals are well understood ([5,7] among others), in
K[x1, x2, x3] every Gorenstein sequence occurs as the Hilbert function of an Artinian ideal
with the Weak Lefschetz property. We now consider the non-Gorenstein case.

Question 3.2. Which Hilbert functions (in any codimension) can occur for ideals whose
coordinate rings have the Weak Lefschetz property?

We will give a complete answer to this question, giving a construction for an Artinian
K-algebra with any allowable Hilbert function, having the Weak Lefschetz property. Later
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we will give a bound for the graded Betti numbers of an ArtinianK-algebra with the
Weak Lefschetz property (Theorem 3.20), and we will show that our construction achieves
the bound. Of course, this result includes as a special case the maximal possible socle
type. However, we have the additional nice result that this maximal socle type can be read
directly from the Hilbert function, so we will consider the socle type along with the Hilbert
function.

Let A be an Artinian gradedK-algebra with the Weak Lefschetz property, and letg be
a Lefschetz element ofA. We make the following observations about the Hilbert function
and the socle type ofA.

Remark 3.3. (1) Let d be the smallest degree for which×g :Ad → Ad+1 is surjective.
Then the map×g :Aj → Aj+1 is also surjective for allj � d . This is because we are
considering the natural grading.

(2) Hence×g :Aj −→ Aj+1 is injective, but not surjective, for allj < d .
(3) Let h = (h0, h1, . . . , hs) be the Hilbert function ofA. From (1) and (2) it follows

that

h0 < h1 < · · · < hd � hd+1 � · · ·� hs.

In particular,h is unimodal and strictly increasing until it reaches its peak, which is called
theSperner numberof the Hilbert function ofA [27].

(4) Thus we see that there exist integersu1, u2, . . . , u� such that

h0 < h1 < · · · < hu1 = · · · = hu2−1 > hu2 = · · · = hu3−1 > hu3 · · · > hu� = · · · = hs > 0.

In particularu1 = d .
(5) Furthermore from (1) and (2) we have that the positive part of the first difference

of h, namely

1, h1 − h0, h2 − h1, . . . , hu1 − hu1−1,

is the Hilbert function ofB = A/(g). In particular, this is anO-sequence.
(6) Let (a0, . . . , as) be theh-vector of the socle ofA. The Hilbert series of the socle is

called the socle typeS(A,λ) of A, i.e.,

S(A,λ) =
s∑

i=0

aiλ
i .

We want to compare the socle type with the following polynomial:

Φh(λ) :=
s∑

i=u1

(hi − hi+1)λ
i ,
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where hs+1 = 0. It can easily be checked from (1), (2), and (4) thatai = 0 for all
i /∈ {u2 − 1, u3 − 1, . . . , u� − 1, s}. Furthermore, we haveai � hi − hi+1 for all i ∈
{u2 − 1, u3 − 1, . . . , u� − 1, s}. This follows from

Soc(A)i ⊂ ker(×g :Ai −→ Ai+1),

dimSoc(A)i = ai , and dimker(×g :Ai −→ Ai+1) = hi −hi+1. An ArtinianK-algebra for
which ai = hi − hi−1 will be said to havemaximal socle type.Notice that the rank of the
last free module in the minimal free resolution ofA is equal to

∑
ai , the dimension of the

socle, so for an algebra with maximal socle type, this rank is actually equal to the Sperner
number ofA (see (3) above).

Conditions (3)–(5) give a necessary condition for a Hilbert functionh to be the Hilbert
function of an Artinian gradedK-algebra with the Weak Lefschetz property. We now show
that not only are these conditions also sufficient, thus characterizing the Hilbert functions of
Artinian K-algebras with the Weak Lefschetz property, but in fact an example exists with
the maximal possible socle type, as described in (6). We first give the basic construction.

Construction 3.4. Let h = (h0, h1, . . . , hs, hs+1 = 0) be a finite sequence of integers
satisfying the conditions of (3)–(5) above. Define

h̄(j) := max{hj − hj−1,0}.

Choose Artinian ideals

J 1 ⊂ J 2 ⊂ · · · ⊂ J � ⊂ R := K[x1, . . . , xn]

such thathR/J 1
= h̄ and degJ i = h(ui) for all i = 2, . . . , �. Now put Ji = J iR for all

i = 1, . . . , � and

I := J1 +
�∑

i=2

[Ji]�ui +ms+1,

wherem = (x0, . . . , xn). SetA := R/I . Note thatJi is not reduced, but it is the saturated
ideal of a zero-schemeXi . Furthermore, we haveX1 ⊃X2 ⊃ · · · ⊃ X�.

Proposition 3.5. Let h = (1, h1, . . . , hs) be a finite sequence of positive integers. Thenh

is the Hilbert function of a graded ArtinianK-algebraR/J having the Weak Lefschetz
property if and only ifh is a unimodal O-sequence such that the positive part of the first
difference is an O-sequence.

Furthermore, letu1, . . . , u� andΦh(λ) be as in Remark3.3. Then theK-algebraA of
Construction3.4 has the Weak Lefschetz property, Hilbert functionh and maximal socle
typeΦh(λ).
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Proof. The necessity is proved in Remark 3.3. The sufficiency follows immediately from
the claim about Construction 3.4, which we now prove.

(1) The ArtinianK-algebraA has the Weak Lefschetz property: LetB(j) := R/Jj =⊕[B(j)]i . We may assume thatx0 is not a zero divisor modJj for all j . Considering the
following commutative diagram:

[
B(j)

]
uj+1−1

x0 [
B(j)

]
uj+1

[
B(j+1)

]
uj+1

Auj+1−1
x0

Auj+1,

we have, as the proof of Lemma 3.2 in [13], thatA has the Weak Lefschetz property.
(2) The Hilbert function ofA ish: First we recall a basic property of the Hilbert function

of a zero-schemeY in Pn. Set

σ(Y) := min
{
i | 1hR/IY(i) = 0

}
,

where1hR/IY(i) is the first difference ofhR/IY(i). Then it follows that

hR/IY(0) < · · · < hR/IY
(
σ(Y) − 1

)= hR/IY
(
σ(Y)

)= · · · = degY,

and we see that ifY′ ⊂Y thenσ(Y′)� σ(Y). Hence from this property we get

hB(j) (i) = huj

for all i � u1. Thus sinceAi = [B(1)]i for all 0 � i � u2 − 1, Ai = [B(j)]i for all
uj � i � uj+1 − 1 andAi = (0) for all i � s + 1, we have that the Hilbert function of
A coincides withh.

(3) The socle type ofA is Φh(λ): We note that

[
Soc(A)

]
uj+1−1 = [

I (j+1)]
uj+1−1

/[
I (j)

]
uj+1−1.

Furthermore we see that

dim
{[
I (j+1)]

uj+1−1

/[
I (j)

]
uj+1−1

} = hB(j) (uj+1 − 1)− hB(j+1) (uj+1 − 1)

= huj − huj+1.

Thus it follows from Remark 3.3(6) that

S(A,λ) = Φh(λ).

This completes the proof.✷
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Example 3.6. Not all Artinian ideals inR whose Hilbert functions satisfy the necessary and
sufficient conditions given in Proposition 3.5 have the Weak Lefschetz property. Indeed, we
give a simple example of one which even has the Hilbert function of a complete intersection
but does not have the Weak Lefschetz property. We take

I = (
x2

1, x1x2, x1x3, x
3
2, x

2
2x3, x2x

2
3, x

4
3

)
,

soR/I has Hilbert function (1 3 3 1). For any linear formL, the elementx1 ∈ (R/I)1 is in
the kernel of multiplication byL, hence the Weak Lefschetz property fails in passing from
degree 1 to degree 2.

A finer invariant of an ArtinianK-algebra is its minimal free resolution. It is probably
not possible now to give a set of necessary and sufficient conditions on the graded Betti
numbers for the existence of an ideal with the Weak Lefschetz property and that set of Betti
numbers. Even in the Gorenstein case this is open. However, as in the Gorenstein case [19],
we can give a sharp upper bound for the graded Betti numbers. We will do this shortly.

However, we begin with some natural questions, which are the analogs, for resolutions,
of results which we know for Hilbert functions.

Question 3.7. (1) Is there a minimal free resolution (meaning only the graded Betti
numbers, not the maps) corresponding to an Artinian ideal with a Hilbert function allowed
by Proposition 3.5, which cannot occur for an ideal with the Weak Lefschetz property?

(2) Are there two Artinian ideals,I1 andI2, which have the same graded Betti numbers,
but one has the Weak Lefschetz property and the other not?

We answer both of these questions. First we recall some terminology.

Definition 3.8. Let > denote the degree-lexicographic order on monomial ideals, i.e.,
x
a1
1 · · ·xan

n > x
b1
1 · · ·xbn

n if the first nonzero coordinate of the vector

(
n∑

i=1

(ai − bi), a1 − b1, . . . , an − bn

)

is positive. LetJ be a monomial ideal. Letm1,m2 be monomials inS of the same degree
such thatm1 > m2. ThenJ is a lex-segment idealif m2 ∈ J implies m1 ∈ J . When
char(K) = 0, we say thatJ is aBorel-fixed idealif

m = x
a1
1 · · ·xan

n ∈ J, ai > 0, implies
xj

xi
·m ∈ J

for all 1� j < i � n.
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Example 3.9. We first answer Question 3.7(1). LetJ ⊂ K[x1, x2, x3] be the lex-segment
ideal for the Hilbert function(1 3 3 1). Then its minimal free resolution is of the form

R(−4) R(−3)3 R(−2)3

⊕ ⊕ ⊕
0 −→ R(−5)2 −→ R(−4)5 −→ R(−3)3 −→ J −→ 0.

⊕ ⊕ ⊕
R(−6) R(−5)2 R(−4)

Now let I be any Artinian ideal inK[x1, x2, x3] with these graded Betti numbers. The
generators ofI in degree 2 have three linear syzygies. It is not hard to check (e.g., using
methods of [3]) that this can only happen if they have a common linear factor (so in
particular there is no regular sequence of length 2 among these three quadrics). But then
after a change of variables we may assume that this common factor isx1, and we are in
the situation of Example 3.6. HenceR/I cannot have the Weak Lefschetz property. (As
an alternative proof, note that the Socle type isλ + 2λ2 + λ3, so it also follows from
Remark 3.3(6) that it cannot have the Weak Lefschetz property.)

Example 3.10. We now give a (positive) answer to Question 3.7(2). H. Ikeda has shown
[16, Example 4.4] that there is a Gorenstein ArtinianK-algebraA = R/I with Hilbert
function(1,4,10,10,4,1) and minimal free resolution

0 −→ F4 −→ F3 −→ F2 −→ F1 −→ R −→ R/I −→ 0,

where

F1 = R(−3)10 ⊕ R(−4)6, F2 = R(−4)15 ⊕ R(−5)15,

F3 = R(−5)6 ⊕R(−6)10, and F4 = R(−9),

and not possessing the Weak Lefschetz property. These graded Betti numbers are precisely
the maximum possible for this Hilbert function among ideals with the Weak Lefschetz
property, and an ideal exists with these graded Betti numbers and with the Weak Lefschetz
property, thanks to [19, Theorem 8.13].

In Example 3.9 we saw that the resolution of the lex-segment ideal (which is known to
be extremal among all possible resolutions with the given Hilbert function [2,14,22] for
charK > 0) cannot, in general, be the minimal free resolution of an ideal with the Weak
Lefschetz property, and we gave a reason for this failure based on the beginning of the
resolution, and a different reason based on the end of the resolution. This suggests the
following question:

Question 3.11. Leth = (h0, h1, . . . , hs) be a Hilbert function which can occur for Artinian
K-algebras with the Weak Lefschetz property (see Proposition 3.5). Is there a maximal
possible resolution among Artinian ideals with the Weak Lefschetz property and Hilbert
functionh?
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We now answer Question 3.11 by establishing upper bounds for the graded Betti
numbers of an ArtinianK-algebra with the Weak Lefschetz property and exhibiting
examples where these bounds are attained. Note that such bounds were found for Artinian
Gorenstein algebras with the Weak Lefschetz property in [19]. We adapt the techniques
developed there to our problem.

We begin by recalling [19, Lemma 8.3].

Lemma 3.12. Let M be a gradedR-module,� ∈ R a linear form. Then there is an exact
sequence of gradedR-modules(whereR := R/�R)

· · · −→ TorRi−1

(
(0 :M �),K

)
(−1) −→ TorRi (M,K) −→ TorRi (M/�M,K) −→ · · ·

−→ TorR1 (M,K) −→ TorR1 (M/�M,K) −→ 0.

Notation 3.13. Now let A = R/I be an Artinian gradedK-algebra with the Weak
Lefschetz property, and letg ∈ [R]1 be a Lefschetz element ofA. Denote byd the end
of A/gA and bya the initial degree of 0: g := 0 :A g, i.e.,

d := max
{
j ∈ Z | [A/gA]j �= 0

}
a := min

{
j ∈ Z | [0 : g]j �= 0

}
.

Observe thatd � a. Using the notation of Remark 3.3 we haved = u1, a = u2 − 1.
Moreover, we putR := R/gR and define[

torRi (M,K)
]
j

:= rank
[
TorRi (M,K)

]
j
.

Now we can state the next result.

Proposition 3.14. We have for all integersi, j :

[
torRi (A,K)

]
i+j




= [
torRi (A/gA,K)

]
i+j

if j � a − 2;
�
[
torRi (A/gA,K)

]
i+j

if j = a − 1;
�
[
torRi−1(0 : g,K)

]
i+j−1 + [

torRi (A/gA,K)
]
i+j

if a � j � d;
�
[
torRi−1(0 : g,K)

]
i+j−1 if j = d + 1;

= [
torRi−1(0 : g,K)

]
i+j−1 if j � d + 2.

Furthermore,TorRn+1(A,K) ∼= TorRn (0 : g,K)(−1).

Proof. Using[TorRi ((0 :A g),K)]i+j = 0 if j < a and[TorRi (A/gA,K)]i+j = 0 if j > d ,
the claim follows by analyzing the exact sequence given in Lemma 3.12.✷

Observe that the conditiona � j � d can only be satisfied ifa = d .
Next, we need an elementary estimate.
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Lemma 3.15. LetM be a gradedR-module. Then we have for all integersi, j :

[
torRi (M,K)

]
i+j

� hM(j) ·
(
n + 1

i

)
.

Proof. PutP := Rn+1(−1). Then the Koszul complex gives the following minimal free
resolution ofR/m ∼= K:

0−→
n+1∧

P −→ · · · −→
i+1∧

P −→
i∧
P −→ · · · −→ P −→ R −→ K −→ 0.

Thus,[TorRi (M,K)]i+j is the homology of the complex

[ i+1∧
P ⊗ M

]
i+j

−→
[ i∧

P ⊗M

]
i+j

−→
[ i−1∧

P ⊗M

]
i+j

.

Since rank[∧i
P ⊗ M]i+j = hM(j) · (n+1

i

)
, the claim follows. ✷

Notation 3.16. Let h be the Hilbert function of an ArtinianK-algebraR/I . Then there is
a uniquely determined lex-segment idealJ ⊂ R such thatR/J hash as its Hilbert function.
We define

βi,j (h,R) := [
torRi (R/J,K)

]
i+j

.

Remark 3.17. The numbersβi,j (h,R) can be computed numerically without considering
lex-segment ideals. Explicit formulas can be found in [10].

Theorem 3.18 [2,14,22].If A = R/I is an Artinian algebra then we have for alli, j ∈ Z:

[
torRi (A,K)

]
i+j

� βi,j (hA,R).

In order to construct algebras with the Weak Lefschetz property and maximal Betti
numbers, we need one more technical result. In the following lemma, for a graded module
M of finite length, we denote bye(M) the last degree in whichM is non-zero.

Lemma 3.19. Let Ī ⊂ J ⊂ R := K[x1, . . . , xn] be Artinian ideals. Putd := e(R/Ī ),
I = ĪR, J := JR, and a := I + [J ]�d+1. Thena + x0R = I + x0R and we have for
the graded Betti numbers ofA := R/a:

[
torRi (A,K)

]
j

=
{[

torRi (A/x0A,K)
]
j

if j �= i + d;[
torRi (A/x0A,K)

]
j
+ k · ( n

i−1

)
if j = i + d,

wherek := degI − degJ .
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Proof. We proceed in several steps.

(I) SinceĪ ⊂ J , we gete(R/J )� e(R/Ī ) = d . Hence,Ī andJ are generated by forms
of degree� d + 1. In particular,[J ]�d+1 is generated by forms of degreed + 1.

The idealsI + x0R anda + x0R differ at most in degrees� d + 1. Thus, the Hilbert
functions ofA/x0A andR/Ī agree. It follows thatI + x0R = a + x0R. In particular, we
can write

a = I + x0 · (f1, . . . , fk),

wheref1, . . . , fk ∈ [J ]d , becauseJ : x0 = J .

(II) Put b := (f1, . . . , fk)R, i.e.,a = I + x0 · b. For j � d , multiplication byx0 factors
through two maps of maximal rank:

[A]j x0 [A]j+1

[R/I ]j x0 [R/I ]j+1 [R/a]j+1.

It follows that

0 :A x0 ∼= [a/I ]d ∼= Kk(−d)

and, in particular, 0:A x0 ∼= SocA.

(III) Denote byg1, . . . , gt the minimal generators ofI . Let (r1, . . . , rt , s1, . . . , sk)
t be a

syzygy ofa, i.e.,

t∑
i=1

rigi +
k∑

j=1

sj x0fj = 0.

We can writeri = r̄i + x0r̃i wherer̄i ∈ R andr̃i ∈ R. It follows that

t∑
i=1

r̄igi + x0

[
t∑

i=1

r̃igi +
k∑

j=1

sj fj

]
= 0.

Comparing coefficients we obtain
∑t

i=1 r̄igi = 0 and
∑t

i=1 r̃igi +∑k
i=1 sjfj = 0. Thus,

we see that(r̄1, . . . , r̄t ,0, . . . ,0)t + (x0r̃1, . . . , x0r̃t , s1, . . . , sk)
t is a syzygy ofa if and only

if (r̄1, . . . , r̄t )
t is a syzygy ofI and(r̃1, . . . , r̃t , s1, . . . , sk)

t is a syzygy ofI + b.

(IV) Let

0 −→ Gn −→ · · · −→ G2
ᾱ−→ G1

β̄−→ R −→ R/Ī −→ 0



T. Harima et al. / Journal of Algebra 262 (2003) 99–126 119

be a minimal free resolution ofR/Ī asR-module and let

0 −→ Fn −→ · · · −→ F1 −→ R −→ A −→ 0

be a minimal free resolution ofA asR-module. Tensoring byR gives the complex (with
F i := Fi ⊗R R)

0−→ Fn −→ · · · −→ F2
α−→ F 1

β−→ F 0 −→ R/a+ x0R −→ 0.

Sincea+ x0R = I + x0R, we get

kerβ ∼= kerβ̄ ⊕ R
k
(−d − 1).

Step (III) shows that imα splits as

imα ∼= im ᾱ ⊕M (*)

for someR-moduleM such that

kerβ/ imα ∼= R
k
(−d − 1)/M.

The proof of [19, Lemma 8.3] shows that kerβ/ imα ∼= 0 :A x0(−1). Using step (II) we
obtain the exact sequence ofR-modules

0 −→ M −→ Rk(−d − 1) −→ Kk(−d − 1)−→ 0.

It implies for all integersi � 0:

TorRi (M,K) ∼= Kk( n
i+1)(−d − 2− i).

From the proof of [19, Lemma 8.3] we also have fori � 0:

TorRi+2(A,K) ∼= TorRi (imα,K).

Hence, the sequence(∗) implies our claim. ✷
We are now ready for the announced result.

Theorem 3.20.

(a) Let A = R/I be a K-algebra with the Weak Lefschetz property and denote by
h̄ :Z→ Z the function defined by

h̄(j) := max{1hA(j),0}.
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Then the graded Betti numbers ofA satisfy

[
torRi (A,K)

]
i+j

�




βi,j

(
h̄,R

)
if j � a − 1;

βi,j

(
h̄,R

)+ max{0,−1hA(j + 1)} · ( n
i−1

)
if a � j � d;

max{0,−1hA(j + 1)} · ( n
i−1

)
if j � d + 1.

(b) Let h :Z → Z be a numerical function such that there is an Artinian algebraR/J

having the Weak Lefschetz property andh as a Hilbert function. Then there is an
Artinian algebraA = R/I having the Weak Lefschetz property andh as a Hilbert
function such that equality is true in(a) for all integersi, j .

Proof. We first prove (a). Sinceg is a Lefschetz element ofA, the Hilbert function of
A/gA is h̄ and the Hilbert function of 0:A g is given by

h0:Ag(j) = max
{
0,−1hA(j + 1)

}
.

Thus, our claim is a consequence of Proposition 3.14, Lemma 3.15, and Theorem 3.18
(using [22] for the case charK > 0).

Now we show (b). We use the notation of Remark 3.3. Consider the idealI of
Construction 3.4, and assume furthermore that

[
torRi

(
R/J 1,K

)]
i+j

= βi,j

(
h̄,R

)
for all integersi, j.

Such an idealJ 1 certainly exists: for example, we can choose it as a lex-segment ideal.
As in step (I) of the proof of Lemma 3.19 we see thatI +x0R = J1+x0R. An argument

as in step (II) of that proof shows that

0 :A x0 = SocA and rank[0 :A x0]j = max
{
0,−1h(j + 1)

}
.

It follows thatA has the Weak Lefschetz property,x0 is a Lefschetz element forA and

[
torRi (0 :A x0,K)

]
i+j

= max
{
0,−1h(j + 1)

} ·
(
n

i

)
.

Moreover, sinceA/x0A ∼= R/J 1, we have

[
torRi (A/x0A,K)

]
i+j

= βi,j

(
h̄,R

)
.

Observe again thatd = u1 and a := u2 − 1 � d . If a � d + 1, all Betti numbers
[torRi (A,K)]i+j are determined by Proposition 3.14 ifj � d + 2. Since[A]j = [R/J1]j ,
for j � a we get

[
torRi (A,K)

]
i+j

= [
torRi (R/J1,K)

]
i+j

= [
torRi (A/x0A,K)

]
i+j

if j � d.
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The remaining graded Betti numbers[torRi (A,K)]i+d+1 can be computed recursively from
the Hilbert function ofA. (A similar computation can be found in [21, p. 4386].)

Now leta = d . From the definition ofI we immediately obtain[
torRi (A,K)

]
i+j

= [
torRi

(
R/(J1 + [J2]�a),K

)]
i+j

for all j � d.

Thus, we know these graded Betti numbers by Lemma 3.19. Ifj � d + 2, we know
[torRi (A,K)]i+j by Proposition 3.14. Thus, the remaining Betti numbers can be computed
as in the previous case.

In any case, we can compute all graded Betti numbers ofA. The result shows our
claim. ✷

We would also like to point out that there are Hilbert functions such that all algebras
with that Hilbert function and the Weak Lefschetz property have the same (maximal)
graded Betti numbers. A similar phenomenon is true for Gorenstein algebras with the Weak
Lefschetz property (cf. [19, Corollary 8.14]).

Corollary 3.21. LetI ⊂ R be an Artinian ideal such thatA := R/I has the Weak Lefschetz
property and its Hilbert function satisfies

hA(j) =
(
n + j

n

)
for all j � d = u1 � u2 − 3

anduk + 2� uk+1 for all k with 2� k < �. Then the graded Betti numbers ofA are

[
torRi (A,K)

]
i+j

=


(
n+d
i+d

)
if j = d;

−1hA(uk) · ( n
i−1

)
if j = uk − 1;

0 otherwise.

Proof. By assumption we havea � d + 2. Thus, Lemma 3.12 provides

[
torRi (A,K)

]
i+j

=



[
torRi (A/gA,K)

]
i+j

if j � d;
0 if j = d + 1;[
torRi−1(0 : g,K)

]
i+j−1 if j � d + 2.

We may assume thatg = x0. Then we getA/x0A ∼= R/(x1, . . . , xn)
d+1. Thus, the graded

Betti numbers ofA/gA are known (cf., e.g., the proof of [19, Corollary 8.14]). This shows
our claim forj � d + 1.

SinceA has the Weak Lefschetz property, we have

rank[0 :A x0]j = max
{
0,−1h(j + 1)

}
.

This implies

0 :A x0 = SocA.

Our claim follows. ✷



122 T. Harima et al. / Journal of Algebra 262 (2003) 99–126

4. Hilbert functions and maximal Betti numbers of algebras with the Strong
Lefschetz property

In this section we give some results about a more stringent condition, namely the Strong
Lefschetz property. Several of our results require that charK = 0 (e.g., Proposition 4.4),
and we make this assumption throughout this section.

Not all algebras with the Weak Lefschetz property possess the Strong Lefschetz
property in codimension� 3. We show that nevertheless thisdoeshold in codimension
two. Furthermore, we give the surprising result that thesamecharacterization of Hilbert
functions and maximal graded Betti numbers that we gave in the last section for the Weak
Lefschetz property continues to hold for the Strong Lefschetz property.

The conditions for the Hilbert function given in the statement of Proposition 3.5 are
automatic in codimension two. In this case, interestingly, something much stronger than
Proposition 3.5 holds. We first recall the notion of the Strong Lefschetz property.

Definition 4.1. An Artinian idealI ⊂ R has theStrong Lefschetz propertyif, for a general
linear formL and anyd > 0, i � 0, the map

×Ld : (R/I)i → (R/I)i+d

has maximal rank.

Clearly if R/I has the Strong Lefschetz property then it has the Weak Lefschetz
property. However, there are examples of ideals with the Weak Lefschetz property which
do not have the Strong Lefschetz property.

Example 4.2. We first give a simple example of an ideal with the Weak Lefschetz property
but not the Strong Lefschetz property. LetI be the lex-segment ideal with generators

x2
1, x1x2, x1x

2
3, x3

2, x2
2x

2
3, x2x

3
3, x5

3.

This has Hilbert function(1 3 4 3 1), and one can check that for multiplication by a general
linear formL we have maximal rank between consecutive components, whileL2 has the
elementx1 in the kernel of the multiplication from degree 1 to degree 3.

Of much greater interest is the fact that there exist examples ofGorensteinideals with
the Weak Lefschetz property but not the Strong Lefschetz property. One uses the theory of
inverse systems.

Example 4.3. Let R be the ringK[u,v, x, y, z] and letf = xu2 + yuv + zv2. The dual
of f gives a Gorenstein algebra withh-vector(1 5 5 1) (this can be checked, for instance,
with the computer program Macaulay [1] using the script<l_from_dual). This algebra
has neither the Weak Lefschetz property nor the Strong Lefschetz property.

However, now take the polynomialg = uf . It gives an algebra withh-vector(1 5 6 5 1).
It has the Weak Lefschetz property butnot the Strong Lefschetz property.
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More generally, choose an elementg ∈ S = [u,v][f ] which is, in particular, homoge-
neous in the variablesx, y, z,u, v. Let A be the algebra obtained from such a form. Then
for a general linear formL, the map×Ls−2 :A1 → As−1 is not bijective. The key to this
goes back to P. Gordan and M. Noether [12]. They showed that if the Hessian of a form is
identically zero then one of the variables can be eliminated by means of a linear change of
the variables, as long as the number of variable is at mostfour. In dimension 5 or more it is
not true, and they gave the above example. In dimension 5 they claimed that these types of
forms are the only cases, where you have zero Hessian and still all variables are essentially
involved. Then the fourth author [29] showed that the zero Hessian of a form is equivalent
to the condition that the mapgs−2 :A1 → As−1 does not have full rank.

We believe that in general a polynomial of the above form does give rise to an Artinian
algebra with the Weak Lefschetz property, but have not confirmed it.

We saw in Example 3.6 that for a given Hilbert function in codimension� 3 it is
possible to find two ideals with that Hilbert function, one possessing the Weak Lefschetz
property and the other not. In codimension two we have the following proposition,
generalizing some results in [15].

Proposition 4.4. Every Artinian ideal inK[x, y] (charK = 0) has the Strong Lefschetz
property(and consequently also the Weak Lefschetz property).

Proof. First suppose thatI is a Borel-fixed ideal inR = K[x, y]. Since charK = 0,
Id consists of consecutive monomials from the first (eachd). (Sayxd is the first monomial
andyd the last.) So the vector spaceR/Id is spanned by the consecutive monomials from
the last.

Let (h0, h1, . . . , hs) be the Hilbert function ofA = R/I . Then it is well known (and
easy to see) that it is unimodal. Assume first thathi � hi+d . Thenyd : (R/I)i → (R/I)i+d

is injective, because if a monomialM is in (R/I)i thenydM is in (R/I)i+d . (The point
here is that ifM is the t th monomial of(R/I)i from the last thenydM is also thet th
monomial of(R/I)i+d from the last.)

Now assume thathi � hi+d . Suppose that a monomialM is in (R/I)i+d . SayM is the
t th monomial from the last. Then thet th monomial of(R/I)i from the last exists since
hi > hi+d . Let it beN . Then we haveydN = M. Thus the mapyd : (R/I)i → (R/I)i+d is
surjective. Hence we have proved that ifI is Borel-fixed in characteristic 0, thenR/I has
the Strong Lefschetz property.

In the general case we have the fact that gin(I) is Borel-fixed, where gin(I) denotes
the generic initial ideal ofI . It is easy to see and well known (or see Proposition 15.12 of
Eisenbud [9]) that In(I : yd) = In(I) : yd for d = 1,2,3 . . . , wherey is the last variable
with respect to the graded reverse lexicographic order. Since the Hilbert function does not
change by passing to gin(I) and since the Strong Lefschetz property is characterized by
the Hilbert function ofA/(yd), d = 1,2,3 . . . , the general case reduces to the case of
Borel-fixed ideals. ✷

We have seen that the Strong Lefschetz property is (naturally) a stronger condition than
the Weak Lefschetz property, in the sense that there exist ideals whose coordinate ring has
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the Weak Lefschetz property but not the Strong Lefschetz property. One would naturally
expect that the imposition of this extra condition would be accompanied by a further
restriction on the possible Hilbert functions (Proposition 3.5) or on the upper bounds on
the graded Betti numbers (Theorem 3.20).

We now show that any Hilbert function that occurs for ideals with the Weak Lefschetz
property also occurs for ideals with the Strong Lefschetz property. The following two
results do not require charK = 0.

Proposition 4.5. LetK be any field. LetI be the ideal obtained in Construction3.4, with
the further assumption thatJ 2, . . . , J � satisfy

hR/J i
(t) = 1h(i)(t) for all i = 2, . . . , �, whereh(i)(t) :=

{
min{ht , hui } if t < ui,

hui otherwise.

(Such ideals certainly exist. For example, we can choose those as lex-segment ideals.) Then
A = R/I has the Strong Lefschetz property.

Proof. We maintain the notation of Construction 3.4 and Proposition 3.5. We may assume
thatx0 is not a zero divisor modJj . First suppose thati + d < u2. Then from the proof of
Proposition 3.5, we see that(A,x0) has the Weak Lefschetz property. Hence it follows that
the map×xd

0 :Ai −→ Ai+d is injective.
So without loss of generality we may assume thatuj � i + d � uj+1 − 1 (where

2� j � � andu�+1 := s + 1). We note that

hB(j) (t) =
{
ht if 0 � t � σ(Xj )− 2;
huj otherwise.

Hence we see that

the natural mapAi −→ B
(j)
i is




bijective if 0� i � σ(Xj )− 2;
surjective ifσ(Xj )− 1� i � uj − 1;
bijective if uj � i � uj+1 − 1.

Also we note that

xd
0 :B(j)

i −→ B
(j)

i+d is

{
injective if i � σ(Xj )− 2;
bijective otherwise.

Thus, considering the following commutative diagram

Ai

xd0
Ai+d

B
(j)
i

xd0
B

(j)
i+d ,
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we have

xd
0 :Ai −→ Ai+d is

{
injective if i � σ(Xj )− 2;
surjective otherwise.

✷
The next result shows that the bounds on the graded Betti numbers that were given in

Theorem 3.20 are also achieved by an ideal with the Strong Lefschetz property.

Corollary 4.6. Let K be any field. A Hilbert functionh occurs for some graded Artinian
K-algebra with the Weak Lefschetz property if and only if it occurs for one with the
Strong Lefschetz property, and these Hilbert functions are characterized in Proposition3.5.
Furthermore, the bound on the graded Betti numbers obtained in Theorem3.20is achieved
by an algebra with the Strong Lefschetz property.

Proof. The only thing that needs to be observed is that the extra condition onJ 1 imposed
in Theorem 3.20, namely

[
torRi (R/J 1,K)

]
i+j

= βi,j

(
h̄,R

)
for all integersi, j,

can be imposed in the context of Proposition 4.5: simply takeJ 1 to be a lex-segment
ideal. ✷

We end with a natural question.

Question 4.7. Is there a set of graded Betti numbers that occurs for algebras with the Weak
Lefschetz property but not the Strong Lefschetz property?

We conjecture the answer to this question to be “no.”
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LIST OF PROBLEMS

MARTINA JUHNKE-KUBITZKE AND ROSA M. MIRÓ-ROIG

Abstract. The study of the Lefschetz properties of Artinian graded algebras was motivated by

the hard Lefschetz theorem for a smooth complex projective variety, a breakthrough in algebraic

topology and geometry. Over the last few years, this topic has attracted increasing attention from

mathematicians in various areas. Here, we suggest some important open problems about or related

to Lefschetz properties of Artinian graded algebras with the ultimate aim to attract the attention

of young researchers from different areas.

1. Introduction

As it was pointed out in the previous chapters of this book, the study of Lefschetz properties

of Artinian algebras was originally motivated by the Lefschetz theory for projective manifolds,

begun by S. Lefschetz and well-established by the late 1950s. Many of the important Artinian

graded algebras appear as cohomology rings of an algebraic variety or manifold, though recent

important developments have demonstrated cases of the Lefschetz property beyond such geometric

settings (such as Coxeter groups or matroids). Lefschetz properties also appear as one important

ingredient of the Kähler package. In the last two decades there has been fascinating progress on the

study of the weak and strong Lefschetz property from different perspectives, inspired in part by,

and contributing to, developments in algebraic geometry, commutative algebra and combinatorics

among others but we want to emphasize that in spite of the big progress in the area made during

these last decades a lot of interesting problems remain open. Lefschetz properties have shown to

be ubiquitous since this subject matter has connections to many branches of mathematics. Indeed,

a central object of study are Gorenstein algebras (also known as Poincaré duality algebras) which

are of strong interest not only in algebraic geometry but also in commutative algebra, algebraic

topology and combinatorics. Notably, several important results in this area have been obtained by

using unexpected methods and finding unexpected connections between apparently different topics.

In this last chapter, we gather a collection of open problems about or related to Lefschetz

properties with the ultimate aim to attract the attention of young researchers from different areas.

Many researchers have contributed to this list which in no means claims to be an exhaustive list

but which hopefully gives a flavor of the problems in this area. Moreover, the suggested problems

vary significantly in their level of detail.

In the following, we divide the problems into 4 blocks:

(1) Failure/presence of Lefschetz properties for special types of algebra.

(2) Geometric aspects related to Lefschetz properties.

The second author has been partially supported by the grant PID2019-104844GB-I00.
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(3) Lefschetz properties in combinatorics.

(4) Lefschetz properties and Jordan types of Artinian algebras.

.

2. Failure/presence of Lefschetz properties for special types of algebra

Though many algebras are expected to have the weak Lefschetz property (WLP, for short), es-

tablishing this property is often rather difficult. In this first section we gather some open problems

related to the failure/presence of the WLP for special types of Artinian algebras. We also mention

that some of the main results that have been achieved up to date only hold over fields of char-

acteristic zero or under other restrictions on the characteristic of the ground field. It is hence of

great interest to understand the influence of the characteristic of the ground field on Lefschetz type

questions. If not otherwise stated, in this section, we will always assume to work over a field K of

characteristic zero.

Complete Intersections. It is known that all graded algebras in two or fewer variables have

the WLP [24, Proposition 4.4]. In particular, these includes height two complete intersections in

two or fewer variables. Following up on our previous comment on the characteristic dependence,

we want to mention that it is not hard to see that complete intersections in two variables can fail

the WLP in positive characteristic. Coming back to characteristic zero, Harima, Migliore, Nagel

and Watanabe [24] showed that any Artinian height three complete intersection has the WLP. On

the other hand, Stanley [45] and Watanabe [47] showed that any monomial complete intersection,

independent of the number of variables, has even the strong Lefschetz property (SLP, for short)

(and hence the WLP). From this, the following question arises naturally:

Question 2.1. Does every complete intersection ideal I ⊆ K[x1, . . . , xn], in any number of vari-

ables, has the WLP (or even the SLP)?

This question should be considered as the main open problem concerning Lefschetz properties

for complete intersections. In a step towards an answer to Question 2.1, it seems reasonable to first

try to extend the work in [24] as follows.

Question 2.2. Does every height three complete intersection has the SLP? Is this true for complete

intersections of larger height, e.g., Artinian height four?

Even, more specific is the following problem, whose answer is also unknown.

Question 2.3. Let I ⊆ K[x1, . . . , xn] be a complete intersection generated by homogeneous polyno-

mials of uniform degree d ∈ N. Further assume that K[x1, . . . , xn]/I has the same monomial basis

as K[x1, . . . , xn]/(x
d
1, x

d
2, . . . , x

d
n). Does K[x1, . . . , xn]/I satisfy the SLP?

The last problem we are proposing for complete intersections is concerned with Lefschetz prop-

erties for non-standard graded Artinian complete intersection and relates to an old conjecture by

Almkvist [7, 8, 9] which we now explain. Let pn,d(t) be the generating function for the number of
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partitions of integers smaller than or equal to (d−1)n(n+1)/2 with at most n parts and each part

repeated at most d− 1 times. It is known that

pn,d(t) =

n∏

i=1

(
1 + ti + · · ·+ ti(d−1)

)
.

Conjecture 2.4 (Almkvist ’85). For every fixed d ≥ 2, the polynomial pn,d(t) has unimodal coef-

ficients for n sufficiently large.

Almkvist has already established his conjecture [9] for 3 ≤ d ≤ 20 (and also, oddly enough, for

d = 100 and d = 101) using analytic techniques, including integrals and Tchebychev polynomials.

One possible approach towards Conjecture 2.4 is via Lefschetz properties. We now explain this

in more detail. Given integers n, d ≥ 1, let ei = ei(x1, . . . , xn) be the ith elementary symmetric

polynomial in the variables x1, . . . , xn, and let êi = ei(x
d
1, . . . , x

d
n) be the ith elementary symmetric

polynomials in the variables raised to the dth powers xd1, . . . , x
d
n. It is known that K[e1, . . . , en] is

a polynomial ring, and that {ê1, . . . , ên} ⊆ K[e1, . . . , en] form a regular sequence. Consequently,

the quotient ring A(n, d) = K[e1,...,en]
(ê1,...,ên)

is a (non-standard) graded Artinian complete intersection.

It is easy to see that the Poincaré polynomial of A(n, d) equals pn,d(t). Hence, an answer to the

following question would solve Conjecture 2.4.

Question 2.5. For which pairs (n, d) does the ring A(n, d) have the SLP?

Gorenstein algebras. The question of which Gorenstein algebras do possess the WLP (or

even the SLP) is even more mysterious than the corresponding one for complete intersections. On

one hand, as mentioned above, all graded algebras in two or fewer variables have the WLP [24,

Proposition 4.4]. On the other hand, Ikeda and Boij showed that there exist Artinian Gorenstein

algebras of codimension > 3 failing the WLP. In view of the fact, that complete intersections of

codimension 3 do have the WLP, it is natural to ask the following question:

Question 2.6. Do all Artinian codimension three Gorenstein algebras have the WLP (or even the

SLP)? If not, can one characterize those which do?

Building on work of Boij and Ikeda, one might also aim to characterize (or at least better

understand) which Gorenstein algebras do have the WLP/SLP, e.g., in terms of properties of their

Hilbert functions. However, it is not enough to only consider Gorenstein algebras with unimodal

Hilbert functions (which is a consequence of the WLP), since, even in this more restricted setting,

there exist examples of Gorenstein algebras that do not have the WLP.

As for complete intersections, we now mention a more specific problem.

Question 2.7. Let A =
⊕c

i=0 Ai be a standard graded Artinian Gorenstein algebra over a field

of characteristic zero or greater than c with embedding dimension n. Suppose that the symmetric

group Sn acts on A by permutation of the variables. Does A have the SLP?

The above question has been answered in the affirmative for quadratic complete intersections.
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Jacobian ideals. Let S = C[x0, . . . , xn] be the polynomial ring in n+1 variables with coefficients

in C and let f ∈ S be a homogeneous polynomial of degree d whose corresponding hypersurface

V = V (f) = {x ∈ Pn : f(x) = 0} in Pn is smooth. Let Jf be the Jacobian ideal of f , generated by

the partial derivatives fi of f with respect to xi for i = 0, . . . , n. The graded algebra M(f) = S/Jf

is called the graded Milnor (or Jacobian) algebra of f . If f is generic, it follows from [45] and [47]

that M(f) has both the WLP and the SLP. Moreover, for any f ∈ C[x0, . . . , x3] of degree d ≤ 6

with V (f) smooth we know that M(f) satisfies the WLP (see [32] and [13]). This gives rise to the

following question:

Question 2.8. Does M(f) have the WLP (or the SLP) for any homogeneous form f ∈ C[x0, . . . , xn]
with V (f) ⊂ Pn smooth?

Monomial algebras. Though it is out of reach to provide a complete classification of all

Artinian monomial algebras A that have the WLP, one can still ask for a characterization for

special classes. Two natural subclasses come from looking at the end and at the beginning of a

minimal free resolution of A.

An algebra A is called level if the last free module in its minimal free resolution is concentrated

in one degree. The rank of the last free module is called the type of A. It is natural to ask which

monomial level algebras of a prescribed type have the WLP. It was shown in [45] and [47] that for

type 1 this is always true. Moreover, in [12] it was proven that also monomial level algebras of type

2 in three variables always have the WLP, whereas for every other number of variables (≥ 3) and

every possible type there exist monomial level algebras not having the WLP. This motivates the

following question:

Problem 2.9. Let n and t be positive integers. Find or bound the minimal degree d such that there

exists a monomial level algebra in n variables of type t whose last syszygy module is generated in

degree d and fails the WLP.

We want to emphasize that obviously this question also makes sense for the SLP, for which even

less is known in this setting.

Another class of monomial algebras, which is natural to consider are monomial almost complete

intersections. For these, several authors have studied the special case of three variables. It would

be interesting to know what happens if we allow one more generator. It is also not known what

happens if the algebra is not required to be monomial but just an almost complete intersection.

Once more, the results that are known in characteristic zero change dramatically in characteristic

p. A broad question is the following:

Question 2.10. Let I be a monomial ideal such that R/I has the WLP in characteristic zero.

What are the field characteristics in which R/I fails to have the WLP?

Powers of linear forms. Many other natural algebras lend themselves to questions about the

WLP or the SLP. A popular instance is that the underlying ideal is generated by powers of linear

forms (see, for instance, [33]). Most of the results achieved in this direction rely on a result of
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Emsalem and Iarrobino [21], that translates the problem of whether the considered algebra has the

WLP to one of studying sets of fat points in a projective space. In [37], the following conjecture

was stated:

Conjecture 2.11. Let R = K[x1, . . . , x2n+1]. Let L ∈ R be a general linear form, and let I =

〈xd1, . . . , xd2n+1, L
d〉.

(i) If n = 3, the algebra R/I fails the WLP if and only if d ≥ 3.

(ii) If n ≥ 4, the algebra R/I fails the WLP if and only if d > 1.

This conjecture has been solved for d 6= 3 and n = 3 in [37] and for all other cases in two steps

by work of Nagel and Trok [41]; and Boij and Lundqvist [14]. So, we are let to pose the following

problem:

Problem 2.12. Let R = K[x1, . . . , xm]. Let L1, . . . , Lr ∈ R be general linear forms, and let

I = 〈xd1, . . . , xdm, Ld
1, . . . , Lr〉. Determine for which values of m, d and r the algebra R/I fails t.he

WLP

Gotzmann ideals. A square-free monomial ideal I ⊆ S = K[x0, · · · xn] is called Gotzmann ideal

if and only if

I = m1(xi : i ∈ J1) +m1m2(xi : i ∈ J2) + · · ·+m1m2 · · ·ms(xi : i ∈ Js)

for some square-free monomials m1, . . . ,ms and pairwise disjoint subsets J1, . . . , Js of {0, 1, . . . , n}.
The above definition was introduced by Hoefel and Mermin in [25] Herzog and Hibi [27] showed

that all Gotzmann ideals are componentwise linear, and Bigdeli and Faridi [11] established a con-

nection between square-free Gotzmann and Stanley-Reisner ideals of chordal complexes – a large

class of componentwise linear ideals which can be defined via simplicial collapses. Open questions

that arise from this are the following:

Question 2.13. Which square free Gotzmann ideals satisfy the WLP? Do (some) Artinian reduc-

tions of Stanley-Reisner ideals of chordal complexes satisfy the WLP?

See [26] for some recent contributions to this question and related problems.

3. Geometric aspects related to Lefschetz properties

In the last decade the failure or presence of the WLP has been connected to a large number of

geometric problems, that appear to be unrelated at first glance. For example, in [36], Mezzetti,

Miró- Roig and Ottaviani proved that the failure of the WLP is related to the existence of projective

varieties satisfying at least one Laplace equation of order greater than 2. Another connection with

classical algebraic geometry has been discovered by Maeno and Watanabe, who proved that an

Artinian Gorenstein algebra A = K[x1, . . . , xn]/Ann(F ) fails the SLP if one of the higher Hessians

of F is identically zero [35]. This motivates the study of projective hypersurfaces with vanishing

Hessian or higher Hessians, a classical problem that goes back to Gordan and Noether. In this
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section we will exhibit other geometric properties closely related to the failure or presence of the

WLP. As in the previous section we divide this section into several subsections.

Reduced sets of points. It is known that not every Artinian ideal is an Artinian reduction of

the ideal of a reduced set of points, and certainly it is not a general Artinian reduction of the ideal

of a reduced set of points. An open question is the following:

Question 3.1. Does a general Artinian reduction of a reduced, arithmetically Gorenstein set of

points in Pn has the WLP (provided that the characteristic of the underlying field equals zero)?

A positive answer to this question would imply the algebraic g-conjecture and yields a complete

classification of the Hilbert functions of such sets of points. We want to emphasize that it is impor-

tant to consider general Artinian reductions since examples of reduced arithmetically Gorenstein

sets of points exist for which a special Artinian reduction fails the WLP. A similar but less ambitious

question whose positive answer would be implied by Question 3.1 is the following:

Question 3.2. Is the h-vector of every reduced, arithmetically Gorenstein set of points unimodal

(provided that the characteristic of the underlying field equals zero)?

Artinian reductions of arithmetically Cohen-Macaulay curves. A question which is of

the same flavour and completely wide open is the following:

Question 3.3. Do all irreducible arithmetically Cohen-Macaulay curves in P4 have an Artinian

reduction that has the SLP?

Unexpected curves and complex line arrangements. Unexpected sets of points relate

directly to failures of the SLP. In particular, a finite set Z ⊆ Pn of r points p1, . . . , pr dual to

hyperplanes H1, . . . ,Hr has an unexpected hypersurface cone of degree d with a general point of

multiplicity d if and only if C[x0, . . . , xn]/(Ld
1, . . . , L

d
r) fails SLP in degree d − 1 with range 1 (see

[23, Proposition 2.17]).

Unexpectedness in the plane often comes from line arrangements. In particular, there are four

known kinds of arrangements of distinct lines L1, . . . , Lr in P2 (over the complex numbers) such

that whenever Li and Lj meet there is a third line Lk meeting at the same point. They are:

• 3 or more concurrent lines,

• the Fermat arrangements ((xr0 − xr1)(x
r
0 − xr2)(x

r
1 − xr2)),

• the Klein arrangement of 21 lines, (this has 21 points where exactly 4 lines meet, 28 points

where exactly 3 lines meet, and no other points where 2 or more lines meet),

• the Wiman arrangement of 45 lines (this has 36 points where exactly 5 lines meet, 45 points

where exactly 4 lines meet, 120 points where exactly 3 lines meet and no other points where

2 or more lines meet).

For r ≥ 5, the points dual to the lines of the Fermat arrangements have unexpected curves. The

points dual to the Klein and Wiman lines also have unexpected curves (see [18]). This naturally

raises the following open problem:



LIST OF PROBLEMS 7

Question 3.4. Are there other complex line arrangements having no points where exactly two lines

meet?

Unexpected hypersurfaces and companion varieties. The existence of an unexpected

curve was first established for the points of the B3 root system. In [43] it was shown that the

unexpectedness is directly related to the existence of Togliatti-type surfaces (having defective os-

culating spaces). Moreover, the author showed, in the case of the surface associated to the B3 root

system, that there exists another surface, called a companion surface, which exhibits a number

of interesting geometrical properties. This direction of study has been pursued in [20] in case of

Togliatti-type varieties and their companions associated to the B4, F4 and H3 root systems and to

certain Fermat-type configurations of points. This motivates the following problem:

Problem 3.5. Study Togliatti-type varieties and their companion surfaces for other root systems

and find a Togliatti-type construction associated to configurations of points allowing multiple general

fat points as described in [44].

Sets of points projecting to complete intersections A finite set Z ⊆ Pn is said to be geproci

if its image ZP under projection from a general point P to a fixed hyperplane H is a complete

intersection. An example is a set of points Z contained in a hyperplane L which is already a

complete intersection in L. The only other examples of geproci sets known are in P3. In this case,

we say Z is (a, b)-geproci if Zp is the transverse intersection of a curve Ca,P of degree a with a

curve Cb,P of degree b where a ≤ b (hence |Z| = ab). Non-degenerate examples of such sets are

given by (a, b)-grids. A set Z of ab points in P3 is called an (a, b)-grid if there is a set A of a skew

lines and a set B of b ≥ a skew lines, such that each line in A meets each line in B in exactly one

point (see [16]). By a theorem of [15], if Z is an (a, b)-grid with 3 ≤ a ≤ b, then Ca,P and Cb,P are

unexpected curves and thus give failures of SLP (see the previous paragraph).

We define two more types of geproci sets. A halfgrid is a geproci set Z such that either Ca,P or

Cb,P (but not both) is a union of lines for a general P . A non-halfgrid is a geproci set Z such that

neither Ca,P nor Cb,P is a union of lines for a general P .

Since degenerate geproci sets and grids are easy to construct and well-understood, they are

referred to as trivial in the folowling. The obvious question is whether other geproci sets exist.

More precisely, the following problem is open:

Problem 3.6. Find a non-trivial (a, b)-geproci set, where Ca,P and Cb,P is not unexpected, or show

that no such example exists.

So far, not a single example of a non-trivial (a, b)-geproci set where Ca,P and Cb,P are not

unexpected, is known. Moreover, since every nontrivial geproci set known has at least one subset

of 3 collinear points, the following problem is natural:

Problem 3.7. Prove or disprove (by giving a counterexample) that every non-trivial (a, b)-geproci

set has a subset of 3 collinear points.

As a more general version, one can even consider the following problem:
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Problem 3.8. Find an example of a linearly general geproci set, or show that no such example

exists.

In fact, all non-trivial geproci sets known have a rich struccture of linearly dependent subsets.

Associating a matroid to these subsets, gives rise to Terao type problems, for instance:

Question 3.9. Are geproci sets with isomorphic matroids projectively equivalent? Is being geproci

a property of the associated matroids, i.e., is a set of points whose matroid is isomorphic to the

matroid of a geproci set, geproci itself?

4. Lefschetz properties in combinatorics

Lefschetz properties have very nice applications to ombinatorics. The main goal of this section is

to gather several open problems concerning Lefschetz problems for simplicial complexes and more

precisely for their Stanley–Reisner ideals. As for the other sections, we divide this section into

several topic areas.

We first fix some standard notation. Let S = K[x1, . . . , xn] be the standard graded polynomial

ring over a field K of characteristic zero. Usually ∆ will denote a simplicial complex on vertex

set [n] = {1, . . . , n} and I∆, respectively K[∆] will denote the corresponding Stanley–Reisner ideal

respectively Stanley-Reisner ring. These, themselves, are not Artinian rings, but knowing Lefschetz

properties of Artinian reductions of Stanley–Reisner rings is an important problem from both

algebraic and combinatorial viewpoints. One of the biggest progress on this topic is the following

recent result of Adiprasito [4] (see also [6, 34, 42])

Theorem 4.1. If ∆ is a simplicial (d− 1)-sphere, then for a generic linear system of parameters

Θ of S/I∆, the Artinian algebra S/(I∆ + (Θ)) has the SLP.

The special case of this theorem that ∆ is the boundary complex of a simplicial polytope is

a classical result due to Stanley and follows from the Hard Lefschetz theorem for toric varieties

(see [46, III §1]). It should also be mentioned that the theorem has a generalization to simplicial

manifolds and doubly Cohen–Macaulay simplicial complexes (see [6]). While these works give

answers to many unsolved problems, still a variety of open problems on this topic remains.

Balanced spheres A simplicial complex on [n] of dimension (d − 1) is said to be (completely)

balanced if there exists a function c : [n] → [d] such that c(v) 6= c(u) for all edges {u, v} ∈ ∆. It

should be noted that the function c can be regarded as a proper coloring of the 1-skeleton, i.e.,

the graph of ∆. If ∆ is balanced, then it is known that the sequence of linear forms θ1, . . . , θd

defined by θi =
∑

c(v)=i xv forms a linear system of parameters of ∆, called a colored linear system

of parameters of ∆ (see [46, II §4]). The following question is asked in [19, Conjecture 1.3].

Problem 4.2. Let ∆ be a balanced simplicial (d− 1)-sphere and Θ = θ1, . . . , θd be a colored linear

system of parameters of ∆. Does the algebra S/(I∆ + (Θ)) have the SLP (or WLP)?

Centrally symmetric spheres A simplicial complex ∆ on vertex set [n] is said to be centrally

symmetric (cs, for short) if it admits a free Z/2Z-action, that is, there is a fixed-point free involution
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α : [n] → [n] with ∆ = {α(F ) | F ∈ ∆}. For such a simplicial complex, one can choose a linear

system of parameters Θ = θ1, . . . , θd from S− = {f ∈ S | α(f) = −f}, where α(xv) is defined to be

xα(v).

Problem 4.3. Let ∆ be a centrally symmetric simplicial sphere and let Θ = θ1, . . . , θd be a linear

system of parameters for K[∆] that has been generically taken from S−. Does the algebra S/(I∆ +

(Θ)) have the SLP or WLP with respect to the linear form w = x1 + · · · + xn?

The answer is known to be yes for cs simplicial polytopes (see [46, III §8] for more background).

Flag spheres A simplicial complex ∆ is said to be flag if I∆ has no generators of degree

≥ 3. h-vectors of flag simplicial spheres have been of great interest in combinatorics and there

are two famous conjectures on this topic, known as Charney-Davis Conjecture and Gal’s gamma

non-negativity Conjecture. Motivated by these conjectures Hailun Zheng suggested the following

question.

Problem 4.4. Let ∆ be a flag simplicial (d− 1)-sphere with d ≥ 5, let Θ = θ1, . . . , θd be a generic

linear system of parameters and let w,w′ be additional generic linear forms. Is it true that the

multiplication ×w′ : (S/(I∆ + (Θ, w))1 → (S/(I∆ + (Θ, w))2 is injective?

Almost Lefschetz properties A special instance of a flag simplicial complex is the barycentric

subdivisions sd(Γ) of a CW complex Γ. If Γ is a (d − 1)-dimensional Cohen–Macaulay complex,

then the following almost Lefschetz property is known (see [40, Theorem 6.2])

(i) ×wd−2k−1 :
(
S/(Isd(Γ) + (Θ))

)
k
→

(
S/(Isd(Γ) + (Θ))

)
d−1−k

is injective for k ≤ (d− 1)/2;

(ii) ×wd−2k−1 :
(
S/(Isd(Γ) + (Θ))

)
k+1

→
(
S/(Isd(Γ) + (Θ))

)
d−k

is surjective for k ≤ (d− 1)/2.

Here, Θ is a generic linear system of parameters, and w is a generic linear form. This result in

particular implies that S/(Isd(Γ) + (Θ)) has the WLP if d is odd.

Question 4.5. Is there a Cohen–Macaulay CW complex Γ such that S/(Isd(Γ)+(Θ)) does not have

the weak Lefschetz property for any linear system of parameters Θ?

As a related vague question, one could also ask

Question 4.6. Are there other classes of simplicial complexes (different from barycentric subdivi-

sions) that satisfy (i) and (ii) above?

While property (i) is known to hold for more general subdivisions [5, Theorem 46], property (ii)

seems a bit mysterious at this moment.

Nagata idealizations. The idealization construction by Nagata has been used in many cases

to construct Artinian Gorenstein algebras failing the WLP, for example the famous example by R.

Stanley. In terms of Macaulay inverse systems, we can construct the idealization of the canonical

module of an Artinian level algebra with inverse system 〈F1, F2, . . . , Fs〉 as the Gorenstein algebra

with inverse system 〈∑xiFi〉 where x1, x2, . . . , xs are new variables. Here the forms F1, . . . , Fs
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are assumed to be homogeneous of degree d in variables y1, y2, . . . , yn. Preliminary studies of the

Gorenstein algebra given by 〈∑ xeiFi〉 show that for e ≥ d it satisfies the WLP for any forms Fi

while for e < d we have examples failing the WLP and examples satisfying the WLP. THerefore

we are in front of an interesting problem:

Problem 4.7. To determine whether the Gorenstein algebra given by
∑

xeiFi has the WLP and/or

the SLP.

As a first contribution to this last problem the reader can look at [3] and [22].

5. Lefschetz properties and Jordan types of Artinian algebras

Let K be any field, and let A be an Artinian algebra, quotient of the polynomial ringK[x1, . . . , xn]

or of the local regular ring K{x1, . . . , xn}. Let m = (x1, . . . , xn) be the maximal ideal of A. Let M

be a finite module over A, and let ℓ ∈ m. The Jordan type Pℓ,M of ℓ is the partition of dimKM

giving the sizes of the Jordan blocks in a Jordan canonical form for the linear map ×ℓ : M → M ,

defined by the multiplication by ℓ. There are several refinements of this invariant. We refer to [29]

in this volume for their definitions and a discussion of their properties. In particular, when M is

a graded module over an Artinian algebra A we define the generic linear Jordan type P1,M as the

Jordan type Pℓ,M for a generic linear form ℓ ∈ A1.

The Jordan type has two main strengths. First, in the graded case, it is a finer invariant than

the Lefschetz properties: we can determine if a linear form ℓ satisfies the WLP or the SLP on A

from its Jordan type and the Hilbert function H = H(A): that is, ℓ has the SLP if its Jordan type

is the conjugate H∨; and ℓ has the WLP if the number of parts of the Jordan type is the maximum

value of H. Second, the Jordan type is well-defined also on non-graded algebras, allowing us to

generalize the definitions of WLP and SLP to the non-graded case. As in the previous sections we

distinguish several topics:

Linear Jordan type and contiguous Jordan type. Let A be standard graded, if H = H(A)

is unimodal (and has a single maximum value with no dips) and if the generic Jordan type is the

conjugate partition of H (i.e., A is strong Lefschetz) then the generic linear Jordan type is equal

to H∨, and therefore they are the same [30, Proposition 2.14].

Question 5.1. Is this equality still true when H(A) is not unimodal, or when the generic Jordan

type is not the conjugate partition of the Hilbert function? More generally, under which conditions

on a graded module M over a graded Artinian algebra A do their generic and generic linear Jordan

types satisfy PM = P1,M? (See Questions 1.1 and 2.56 in [30].)

We can decompose M as the direct sum of K[ℓ] modules – called ℓ-strings – whose lengths are

given by the Jordan partition Pℓ,M , The Jordan degree type JDT Pdeg,ℓ,M of a graded module

M adds to the Jordan type the information about the initial degree of the ℓ-strings in such a

decomposition of M as module over k[ℓ], this depends only on the pair (ℓ,M). However, a problem

is that this definition of JDT does not generalize to non-graded Artinian algebras or modules [31].
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When the Hilbert function H of a graded Artin module is non-unimodal, we can define a

contiguous-Jordan type Pc,ℓ(H), and a contiguous-Jordan degree type Pc,deg,ℓ(H): using the bar

graph of H(M) [30, Definition 2.28].

Question 5.2. For which (non-unimodal) Hilbert functions H occurring for graded Artinian alge-

bras A, can we find pairs (A, ℓ) with H(A) = H and the Jordan type and Jordan degree types of A

agree with the contiguous Jordan or Jordan-degree type of H?

Jordan type of the initial ideal. Recall that the initial ideal init(I) of an ideal I ⊆ R =

K[x1, . . . , xn] is the ideal generated by the leading terms of elements of I under a fixed monomial

order. From a result in [17] and [48] we know that if R/(in(I)) has the WLP (resp. the SLP), then

the same holds for R/I. More precisely, for a generic linear form ℓ we have that for all j, k the

following inequality is true

dimK(R/(I, ℓk)j ≤ dimK(R/(inI, ℓk))j .

Question 5.3. How does the generic Jordan degree type of a standard graded Artinian algebra

A = R/I behave under projection to the quotient R/in(I)?

Is there a pair (A, ℓ), where A is a standard graded Artinian algebra and ℓ ∈ A1, such that the

Jordan degree type Pdeg,ℓ,A cannot occur for a pair (A′, ℓ′), if A′ is defined by a monomial ideal?

Jordan type for non-graded algebras. Lately, some refinements of Jordan type have been

introduced for non-graded Artinian algebras: namely sequential Jordan type, Loewy sequential

Jordan type, or double sequential Jordan type [31]. Each of these is semicontinuous in a family

of algebras having fixed Hilbert function. The semicontinuity of Jordan type has been used to

show that certain families Gor(H) of Artinian Gorenstein algebras with given Hilbert function

have several irreducible components, beginning in codimension three [28].

Question 5.4. Determine Hilbert function sequences H for non-graded Artinian algebras such that

the family Z(H) of all algebras with Hilbert function H has several irreducible components Ξ1,Ξ2-

whose general elements have the same generic Jordan type, but which differ in one of the refined

invariants?

Question 5.5. Let 0 → L → M → N → 0 be an exact sequence of finite modules over A. How

can we compare the generic Jordan types PL, PM , and PN? Under what conditions could we have

additivity PM = PL + PN , in a suitable sense for the Jordan types? The same question can be

extended to Jordan degree type, in the graded case, or to sequential Jordan type, Loewy sequential

Jordan type, or double sequential Jordan type, in the non graded case.

The next question has to do with the symmetric decomposition of the associated graded algebra

of a non-graded Gorenstein Artinian algebra (see [28]). We know, by an example of Chris McDaniel

[31] that it is not always possible to find a Jordan basis B for the multiplication by an element
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ℓ ∈ m that agrees with the Hilbert function of A, in the sense that B ∩mi is a basis for the vector

space mi for every i. We also know that there is always a pre Jordan basis that agrees with the

Hilbert function in this sense [31]. So we are let to pose the following question:

Question 5.6. If the Artinian algebra A is Gorenstein, can we always find a pre Jordan basis B

that agrees with the Q(a) decomposition, in the sense that B ∩mi ∩ (0 : mb) is a basis for the vector

space mi ∩ (0 : mb) for every i and b?

Jordan type of graded Artinian Gorenstein algebras. Graded Artinian Gorenstein (AG)

algebras satisfy Poincaré pairing. This allows us to determine their Lefschetz properties by the

ranks of fewer multiplication maps. For instance, a graded AG algebra A satisfies the WLP if

the multiplication map by a generic linear form has maximal rank in degree ⌊d2⌋, where d is the

socle degree of A (see [39] where it is also shown that WLP can be sensitive to characteristic). In

codimension three, when the characteristic of K is zero, each standard-graded complete intersection

algebra has the WLP [24]; some have conjectured that all codimension three standard graded AG

algebras have the WLP (see [12] where it is proven that this conjecture depends on showing the

special cases of compressed algebras). It is open which graded AG algebras of codimension three

have the SLP [1]. There are families of graded AG algebras of codimension four that fail the

WLP [2, Theorem 1.6]. There are AG algebras in codimension five whose Hilbert functions are

non-unimodal, and thus are also not WLP. The question of whether there are complete intersection

algebras in codimension four (or even higher) that fail WLP has been asked by many researchers

and is open.

Question 5.7. Determine the number of parts of generic linear Jordan types for the families of

graded Artinian Gorenstein algebras failing the WLP. More generally, determine the generic linear

Jordan type for a graded Artinian Gorenstein algebra that fails the SLP.

Question 5.8. Given a sequence H that can occur as the Hilbert function of a graded Artinian

Gorenstein algebra, can we find potential Jordan types or Jordan degree types? (Known in codi-

menson two [10]).

Question 5.9. In [10], all possible linear Jordan types of complete intersection algebras of codi-

mension two having a fixed Hilbert function is listed. For every such Hilbert function H, can we

determine the pairs of Jordan types P and Q that occur for (ℓ1, A) and (ℓ2, A) where H(A) = H?
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[20] R. Di Gennaro, G. Ilardi, R. M. Miró-Roig T. Szemberg, J. Szpond Companion varieties for root systems and

Fermat arrangements, Journal of Pure and Applied Algebra. - 2022, Vol. 226, nr 9, art. id.: 107055 ; pp. 1–22

[21] J. Emsalem and A. Iarrobino, Inverse system of a symbolic power I , J. Algebra 174 (1995), 1080-1090.
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[28] A. Iarrobino and P. Macias Marques, Reducibility of a family of local Artinian Gorenstein algebras,

arXiv:math.AC/2112.14664.

[29] A. Iarrobino and P. Macias Marques, Jordan type of an Artinian algebra, Cortona volume (2023), this reference

must be completed when we have the details of the volume on the Cortona Lefschetz meeting, September 2022.

[30] A. Iarrobino, P. Macias Marques, and C. McDaniel, Artinian algebras and Jordan type, Journal of Commutative

Algebra 14 (2022), no. 3, 365–414.

[31] A. Iarrobino, P. Macias Marques, and J. Steinmeyer, Jordan type and symmetric decomposition of an Artinian

Gorenstein algebra, in preparation.

[32] G. Ilardi, Jacobian ideals, arrangements and the Lefschetz properties, J. Algebra 508 (2018), 418–430.

[33] M. Juhnke-Kubitzke, R.M. Miró-Roig, S. Murai and A. Wachi, Lefschetz properties for complete intersection

ideals generated by products of linear forms, Proc. Amer. Math. Soc. 146 (2018), 3249–3256.

[34] K. Karu and E. Xiao, On the anisotropy theorem of Papadakis and Petrotou, arXiv:2204.07758.

[35] T. Maeno and J. Watanabe, Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous

polynomials, Illinois J. Math. 53 (2009), 593–603.
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Birkhäuser Boston, Boston, MA, 1996.

[47] J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, Commutative Algebra

and Combinatorics, Advanced Studies in Pure Math. Vol. 11, Kinokuniya Co. North Holland, Amsterdam (1987),

303–312.

[48] A. Wiebe, The Lefschetz Property for componentwise linear ideals and Gotzmann ideals, Comm. Algebra 32

(2004), no. 12, 4601–4611.

Universität Osnabrück, Albrechtstraße 28a, 49076 Osnabrück, Germany

Email address: juhnke-kubitzke@uni-osnabrueck.de
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