JORDAN TYPE OF AN ARTINIAN ALGEBRA PROBLEM SESSIONS

NANCY ABDALLAH AND PEDRO MACIAS MARQUES

1. Preliminaries

Exercise 1.1. Consider the Artinian algebra $A = \mathsf{k}[x,y]/(x^2,xy^2,y^5)$, let $\mathsf{m} = (x,y)$ be its maximal ideal.

- (1) Find the Jordan types of y^2 , xy, and $xy + y^3$ in A.
- (2) Write down a Jordan basis for y^2 , and the corresponding Jordan canonical form.
- (3) Describe the locus of the Jordan type (5, 2), i.e. the set

$$L_{(5,2)} = \{ \ell \in \mathbf{m} : P_{\ell,A} = (5,2) \}.$$

(4) Suppose k is infinite. Which is the generic Jordan type of *A*?

Exercise 1.2. Consider the Artinian algebra $A = k[x, y, z]/(yz - x^3, y^3, z^2)$, a non-graded complete intersection.

- (1) Suppose char k = 2 and compute the Jordan type of $\ell_1 = x + y + z$.
- (2) Suppose chark $\notin \{2,3,5\}$ and write $\ell = ax + by + cz + \ell'$, with $\ell' \in \mathsf{m}^2$. Show that $P_{\ell,A} = (7,5,3,3)$ if and only if $ab \neq 0$.

Exercise 1.3. Let A be an Artinian local algebra, with socle degree j, let m be its maximal ideal, and suppose that k = A/m is an infinite field, with $\operatorname{char} k = 0$ or $\operatorname{char} k > j$.

- (1) Show that there is an element $\ell \in m$ such that $\ell^j \neq 0$.
- (2) Show that if $\ell' \in \mathsf{m}^2$ then its Jordan type is not the generic Jordan type of A

Exercise 1.4. Consider the algebra $A = k[x, y]/(x^4, y^3)$. Use the Lemma 2.11 to compute the Jordan type of x.

Exercise 1.5. Consider the algebra $A = k[x, y, z]/(xy, xz, yz, x^j - y^j, x^j - z^j)$. Compute the Jordan type of x.

Exercise 1.6. Let $A=\mathsf{k}[x,y]/I$ be an Artinian algebra, and let $P_{x,A}=(p_1,\ldots,p_s)$. Consider the algebra $B=\mathsf{k}[x,y,z]/J$, where $J=(xz,yz,z^j,I)$. What is the Jordan type $P_{x,B}$?

2. Lefschetz properties

Exercise 2.1. Consider the Artinian algebra $A = k[x, y]/(x^2, y^2)$.

- (1) List all partitions of 4 that are dominated by $H(A)^{\vee}$.
- (2) Confirm that all partitions are attained as the Jordan type of an element in the maximal ideal.

Exercise 2.2. Consider the Artinian algebra $A = \mathsf{k}[x,y]/(x^2,xy^2,y^5)$, let $\mathsf{m} = (x,y)$ be its maximal ideal. Give an example of a partition that is dominated by $H(A)^\vee$ but is not the Jordan type of any element $\ell \in \mathsf{m}$.

3. Artinian Gorenstein algebras

Exercise 3.1. Consider the Artinian Gorenstein algebra

$$A = k\{x, y\}/(x^3 - y^5, x^2y^2).$$

Write down a monomial basis for A, where the order of each element is apparent (i.e if $m_1, m_2 \in k\{x, y\}$ are two monomials such that $m_1 = m_2$ in A, choose the one with highest degree).

Exercise 3.2. Consider the Artinian Gorenstein algebra $A = k\{x, y, z\} / \text{Ann } F$, for $F = X^2Y^2 + Z^3$.

- (1) Compute its Q(a) modules, and get the Hilbert function of A as the sum of its symmetric decomposition.
- (2) Check that Ann $F = (xz, yz, x^3, y^3, z^3 x^2y^2)$.
- (3) Compute the Jordan type $P_{x+y+z,A}$. Is this a weak or strong Lefschetz element?
- (4) Find two Jordan types of elements of order one (i.e. elements in $m \setminus m^2$) that are not comparable.

Exercise 3.3. Let *A* be an Artinian Gorenstein algebra, with maximal ideal m.

(1) Let $z \in m^k \cap (0 : m^c)$, and $\ell \in m^i$, with c > i. Show that

$$\ell z \in \mathsf{m}^{i+k} \cap (0 : \mathsf{m}^{c-i}).$$

(2) Suppose z represents a non-zero class in $Q(a)_k$ and $\ell \in m$. Show that if ℓz represents a non-zero class in $Q(b)_m$, and b < a then $m \ge k + 2$.

Exercise 3.4. Let *A* be an Artinian Gorenstein algebra with Hilbert function

$$H(A) = (1, 3, 3, 4, 2, 1).$$

- (1) Compute the Hilbert functions of its Q(a) modules.
- (2) Use Exercise 3.3 to show that *A* is not strong Lefschetz.
- 4. Finer invariants, Jordan type, and their behaviour under deformations

Exercise 4.1. Let R = k[x, y, z], and let

$$A = R/(y^2, x^2z, x^2y, z^3, x^6)$$
, and $B = R/(yz, x^2y, xy^2, z^3, x^4, y^4)$.

- (1) Show that $P_{z,A} = P_{z,B}$.
- (2) Compute the Jordan degree types $S_{z,A}$ and $S_{z,A}$.

Exercise 4.2. Consider the Artinian Gorenstein algebra $A = k\{x, y, z\} / \operatorname{Ann} F$, for $F = X^4 + XY^3 + ZY^3$. Use the rank matrix to compute the Jodan degree type of x.

Exercise 4.3. Consider the Artinian Gorenstein algebra $A = k\{x, y, z\} / \text{Ann } F$, for $F = X^4Y^2 + ZY^3$. Compute the sequential Jodan degree type of y.