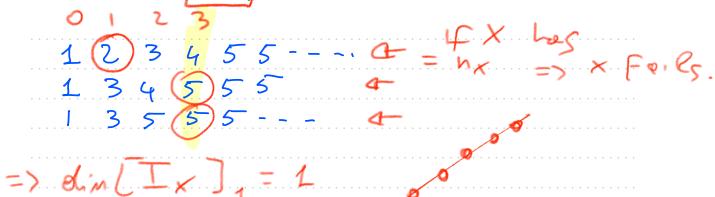
I S FIPT] X 5 PM X imposes re notified to conditions e [I] IF dim [In Ix] = dim[I] - r X 's e set of "d" district ports in Pr dim [RNIx]== dim[R]=-r r= dim RT - dim[Ix] = = hx(t)

Exercise 56. Prove that in order to show that a finite set of points Z imposes independent conditions on $[R]_t$, it is enough to show that for each $P \in Z$ there is a form of degree t vanishing on $Z \setminus \{P\}$ but not vanishing at P.

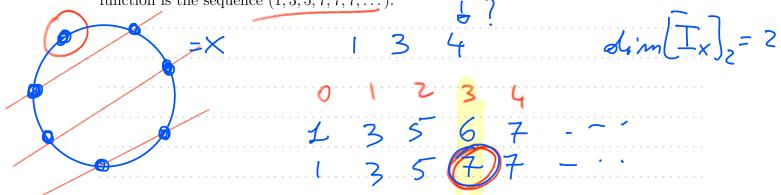
vanishing on 2	· (1) Sat Hot vall			
d-1	2= 1 P2	1-1 Pol }		
			F1: (P;	
[R/T] <u>~</u> K	, લ	F.; (P;)=0 17.
	55 h	× (t) =	d	t= el-1

Exercise 42.

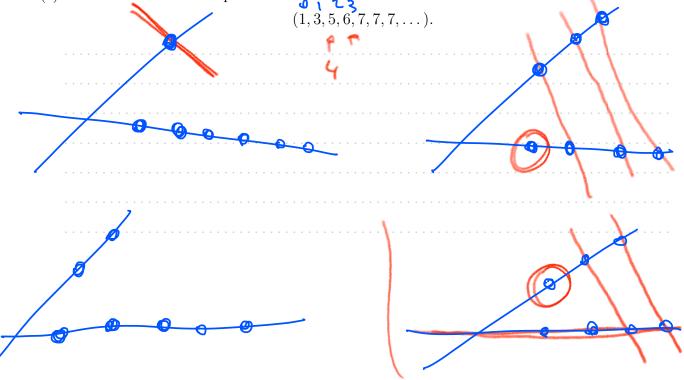
(a) Prove that five points in \mathbb{P}^2 fail to impose independent conditions on plane cubics (i.e. forms of degree 3 in $\mathbb{C}[x_0, x_1, x_2]$) if and only if they all lie on a line.



(b) If V is a set of seven points lying on an irreducible conic in \mathbb{P}^2 , prove that its Hilbert function is the sequence $(1, 3, 5, 7, 7, 7, \dots)$.



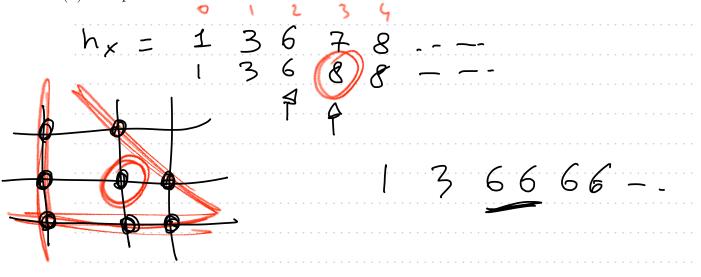
(c) Describe what a set of points would look like if its Hilbert function is



Exercise 58. Let X be the following set of 8 points in
$$\mathbb{P}^2$$

$$X = \left\{ \begin{array}{ccc} [-1,1,1] & [0,1,1] \\ [1,0,1] & [0,0,1] & [-1,0,1] \\ [1,-1,1] & [0,-1,1] & [-1,-1,1] \end{array} \right\}$$

- (a) Sketch this set of points in the affine space given by $z \neq 0$, noting the collinearities.
- (b) Compute the Hilbert function of X.



Exercise 59. Let X be the following set of 8 points in \mathbb{P}^2

$$X = \left\{ \begin{bmatrix} [-1,1,1] & [0,1,1] \\ [1,0,1] & [0,0,1] & [-1,0,1] \\ [-1,-1,1] & [0,-1,1] & [1,-1,1] \end{bmatrix} \right\}$$

Compute the number of conditions imposed by P = [1, 1, 1] on $[I_X]_3$. How many conditions does the point P' = [1, 0, 0] impose on $[I_X]_3$?

