(exture 15 (see notifier anything that's unclear)
From lacture 1a we saw that in order for the Leftchetz properties to
be interesting, we need depth (R/T) = 0.
erw beth arise in the control
three are (at least) two natural ways to get this, of Jacobien ideals (Greenwerker)
L. Let T be a caturated homospherous ideal and let I = T be an
ideal for which
$$T^{2nt} = T$$
. E.g. $T = T(X)$ for rowe $X \circ P^{net}$.
This is if that intersting
Ex.1 T = ideal of 4 points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of 4 points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the points in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the point in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the point in P^2 - note due $[T]_2 = 10 - 4 = 6$
 $T = ideal of the point in P^2
 $T = ideal of the poi$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Ex1 and Ex2 both have depth 0 but positive Krule dimension. (see Def 3.13 in notes) Recall if X C P⁻¹ has dim d then the krule dimension is d+1.

Recall:

Det A ring R is Cohen-Macaulay if depith(R) = krull demension of R.
A subvariety X = P¹⁻¹ is a cithanetically Cohen-Macaulay (Acm) if
$$R/I(X)$$
 is a Cohen-Macaulay ring.
Now: R/I is articlen if depth(R/I) = krull dem(R/I) = D
(in particular articlen \Rightarrow CM)

Minimal Free Resolutions
Recall proj. dim (R/I) = length of MFR (starting at D)
Recurring

$$E_X(x) I = (x, y) C K[x, y, z, z]$$
 (ideal of a line). MFR:
 $x \in \mathbb{R}^3$

$$\mathcal{O} \longrightarrow \mathcal{R}(-2) \longrightarrow \mathcal{R}(-1) \longrightarrow \mathcal{R} \longrightarrow \mathcal{R}/\underline{1} \longrightarrow \mathcal{O} \qquad \mathcal{O} \xrightarrow{\mathcal{O}} \xrightarrow{\mathcal{O}} \mathcal{O} \xrightarrow{\mathcal{O}} \xrightarrow{\mathcal{O}} \mathcal{O} \xrightarrow{\mathcal{O}} \xrightarrow{\mathcal{O}} \mathcal{O} \xrightarrow{\mathcal{O}} \xrightarrow{$$

Theorem (Auslander - Buchsbaum) (Special case)
let
$$R = k[x_{i}, -, x_{n}]$$
 and let $I \subset R$ be an ideal. Then
projdim (R/I) + depth (R/I) = depth $R = n$

(b) has projectime $2 \implies R(I) \stackrel{\circ}{\circ} CM$ (c) has projectime $3 \implies depth(R(I) = 4 - 3 = 1)$ $\implies R/I \stackrel{\circ}{is} not CM.$

$$\underbrace{\mathsf{Ex}}_{\mathsf{R}/\mathsf{I}} \quad \mathsf{artinian} \implies \mathsf{depth}(\mathsf{R}/\mathsf{I}) = \mathsf{kdim}(\mathsf{R}/\mathsf{I}) = 0 \\ \implies \mathsf{projdim}(\mathsf{R}/\mathsf{I}) = \mathsf{n} - 0 = \mathsf{n}$$

Note converse is false. In fact (Auslander - Buchebaum)
projdim
$$(R/I) = n$$
 iff dep $n(R/I) = 0$ (but this doesn't force artinian)

Def let
$$R/T$$
 be artinian. An element $f \in R/T$ is a rack element
 $\implies f$ is annihilated by $m_T = (x_{1,-}, x_{1})$
 $\implies f \in \frac{T \cdot m}{T}$
The socle is the set of all socle elements:
Using useful field when R/T is artinian:
The socle of R/T can be read from the last column of the Betti table
(or diagram) !
 $E_X = T = (x_{1,y}^{3,y} + \frac{5}{2}, \frac{2}{2}, \frac{x_{1,y}^{2}}{7})$
 $h_{0/T} : (13,6,9,9,6,3,1)$
Betti diagram
 $\frac{0 + 2 - 3}{1 - 1}$
 $T = \frac{3}{2} - 1 - \frac{3}{2}$
 $H_{1,2} = \frac{3}{2} + \frac{1}{2} - \frac{3}{2}$
 $H_{2,2} = \frac{1}{2} - \frac{3}{2} + \frac{1}{2} + \frac{3}{2} + \frac{1}{2} + \frac{1}$

Gurenstein Algebras

Def R/I is Gurenstein if it is CM and the rank of the last free module in the MFR is 1 (ie the last column adds up to 1)

$$\frac{Ex}{1. R = k[x, y, 2]}, \quad I = (x^{2}, y^{3}, 2^{3}) \quad \text{HF} (1, 3, 5, 5, 3, 1)$$

Betti diagram

	_	-	-	
_				
	ι	—	_	
-	2	_	_	
-	-	2	_	Note symmetry.
	-	I	-	, ,
-	_	_	۱	
]	- 2 	- 2 2 1 	

(note Gorenstein algebras are usually much less simple than this,)

Ex
$$X \in P^3$$
, $|X| = 5$
 $\Rightarrow X$ is AG. (not artinian)
Remark the symmetry of the Betti diagram is related to the fact that R/I is
self-dual. (Details omither.) In particular, when R/I is
artinian and Gorrenstein, the thibbert function is symmetric.
Mare generally, Gorenstein of any dimension \Rightarrow the L-nector
is symmetric.
Special case: Complete intersections
 R/I is a CI if (recalling artinian) the number of minimal
generators of I is n.
Ex previous example.
Remark for any n_1 CI \Rightarrow Gorrenstein
Most important (notivating) theorem for Lebschetz properties:
thum (Stantry, Watanate, RRR)
 $\overline{V(r_1, ..., r_n)}$ hor SLP.

Extra stuff if time !

If RII is CM of depth = krull dimension = d and L is any non-zerodivisor then R/(I,L) has krull dimension - depth = d-1 R/(I, LI, -, LI) (where all linear forme are general) is artinian. Definition the Hilbert function of any actinian reduction of R/I by linear forms is called the h-vector of R/I. Question we saw that for R/I CM of depth = ke-dim 2 1 then WLP always holds, But how do you tell if (a) a general actinian reduction of R/I has WLP? (6) every artinian reduction of R/I has WLP? Several papers have been written on this question.