

I. The non-befschetz locus
Def Let R/I & a standard graded artinized algebra. The non-befschetz locus

$$Z_{R/I}$$
 is the set of $L \in [R]$, that are not befschetz elements.
Cleanest situation: R/I is Goronstein
lenna let R/I be graded artinian Goronstein with Hilbert function either
(a) (1, r, hz, --, hz, hz+1, r--, hzz+1, hzz+1, hz+1) or
 K_{t} K_{z} r K_{z}
(b) (1, r, hz, --, hz, hz+1, hz+1, hz+1, hz+1, hz+1) or
 K_{t} K_{z} r K_{z}
(c) K_{z} K_{z}

It
$$*L: [P(T]_{i} \rightarrow [P(T]_{i+1}] fails to be surgestive than
 $*L: [P(T]_{L} \rightarrow [P(T]_{t+1}]$
So you can find $Z_{P(T)}$ by looking of
Periods
1. Inpetivity cases but free since R/I is Greattin
2. This is a stronger idal-theoretic statement
3. Leave proof to you.
Ex $I = (x^{e}, y^{e}, t^{e}) = k[n, y, t]$ let $L = a_{1} \cdot b_{1} + c_{2}$
 $HF (1, 3, 5, 6, 5, 3, 1)$
Choose by brief for $[P(T]_{3}$ and $[P(T]_{4}]$.
 $x^{e}_{1} = x_{2} t^{e}_{2} y^{2} t^{e}_{2} t^{2}$$$

As a subscheme, the Leri = P² is defined by the ideal of maximal minors of this matrix. It defines a nonreduced curve of degree 2 in P² with Hilbert polynomial 26+5.

two elements of [K]2 define the same curve in P (as schemes) iff they differ by a scalar multiple. => think of P[R]2 = PS as parametrizing curves in P of degree 2. • Let P=[1,2,3] ei? which curres vanish at P? $a_{1}(1)^{2} + a_{2}(1)(2) + a_{3}(1)(3) + a_{4}(2)^{2} + a_{5}(2)(3) + a_{6}(3)^{2} = 0$ a, 1292 + 393 + 494 + 695 + 996 = 0 this definer a 5-dimit vector space in [P]. =) hyperplane in P⁵ · l'emposes one condition on carics in P . If there are k points are get k homogeneous liver equation in 51, --, 8 we say the k points impose independent condition if the corresp. linear equations are linearly independent. $\longrightarrow p^{n}$, $R = k[x_{n-1}, \pi_n]$ · A linear system of hypersurfaces of degree I in P is the projectivization of q vector subspace of [P]. din [P] = ("+d) so {hypersurfaces in IP"} = IP of dyred . A general set of k points imposes min { k, (n+d) } conditions · Question: how many conditions on P is it for a hypersurface of degree d to be singular at one point P. (i.e. vanish to multiplicity 2)

there precisely

$$F \in [I_{Z}]_{J} \text{ vanishes to only } r \text{ at } P$$
if $F \in [I_{Z} \cap I_{P}^{r}]_{J}$

Dif Guen $Z \in \mathbb{P}^{n}$, positive integers d, r , general point P
the actual dimension is α -dim = dim $[I_{Z} \cap I_{P}^{r}]_{J}$
the viertual dimension is α -dim = dim $[I_{Z}]_{J} - \binom{r-r+n}{n}$
the expected dimension is α -dim = max $\{v \cdot dim, 0\}$
Z admost an unexpected dispersenting of day d and multiplicitly r' if
 α -dim > e-dim
II Unexpected Cones
Dif in the previous differention, if $d = r$
when usery Z admits an inexpected convert dispect.
To perturb Discription
 $Z = \frac{q}{rp}(Z)$ lies an inplane conic

hetere 36 Weddle Surfaces led Z c IP be a set of 6 points in LGP. HF (1,4,6,6,--) let Z= {P.,...,P. } Claim A general projection of Z to R2 does not lie on a conic. . it suffices to find one such propertion · Pick any 3 of the points. They span a plan H'. . the other 3 points of 2 are off H'. (by LGP) . Let P be a general point of H . let Tip les projection from P. P₄ . P₅ (+ Done the claim

Question which points Peril do have the property that Ty(2) lies on a conic?

Def let W & the set of all such points. W is the Weddle surface.

Higheric observation
TFAE
(1)
$$P \in W$$

(2) $\pi_P(2)$ bit on a rowic
(3) Z first on a quarter corre with
writer P
(4) $[T_2 \cap T_P^2]_Z \neq O$
What does W look like?
Some "obvicus" subsets of W
1. Get P_iP_j be the line joining P_i , P_j . The projection from a point $P \in \frac{1}{P_iP_j}$
lives on a covic so $\overline{P_iP_j} \equiv W$
 \Longrightarrow get its base on W
2. Partition Z undo Z sets of 3 points, (a) $\{P_i, P_i, P_i\} \cup \{P_i, P_i, P_i\}$
Get Z plaves the H_2 . Let $X = H_i \cap H_2$.
Then projecting from any $P \in X$ ands Z to 6 points on a indivisible conic.
Get is mare these.
3. the points of Z live on W .
Fields (prove in a moment)
 T_i relativity
(. W is share-and degree H
2. W is the anoileficients lacus of a conformation graded algebre with WLP
3. if we track LGP a bit we get different behavior
 e_{i} . $Z \equiv \begin{bmatrix} -Q_i \\ -Q_i \end{bmatrix}$

4. More extreme:

l the may points are a complete ankrisection sj type (2,3)

Q: What can you say about sets in Purhose several projection is a complete intersection? geproci = GEneral PROjection is a Complete Interestion.

Convection to Lefschetz (6 points in LGP)

$$Z = \{P_{i_1}, \dots, P_{i_n}\} \subset P' \quad \text{in } LGP.$$

$$W = \text{ set of points } P \text{ from which } \pi_p(Z) \text{ lies on a conic}$$

$$R = k[x, y, z, w]$$

$$P_i = \mathbb{I}(P_i)$$

$$\vdots$$

$$P_6 = \mathbb{I}(P_i)$$

Child
2. Entries of A.
Choose bases for
$$\left(\mathbb{P}\left((l_{1}^{2}, -l_{2}^{2})\right), \text{ and } \left[\frac{1}{2}\left(l_{1}^{2}, -l_{2}^{2}\right)\right)_{1}^{2}\right)$$

 $l = ax + b_{1} + cz + jw$
 $\cdot x \iff A_{1}$
 $\cdot y \iff A_{2}$
 $\cdot z \iff A_{3}$
 $\cdot w \iff A_{4}$
 $\cdot l \iff A_{4} + bA_{2} + cA_{3} + jA_{4}$
 $= 4 \times 4 \text{ matrix of lower forms in } a_{1}^{L} c_{3}^{L} d$.
det A jives SR for which $\cdot l$ fails max rank S
 $a = \frac{a}{2} \frac{a}{B}$ Weddle surface
 $\Rightarrow w$ is both the non-lefsdete locus and the Weddle surface for Z.
 2^{-1}
 $if f is the same
 $if 4 + 6 - \cdots$
 $\Rightarrow W = B^{3}$
 $a = K/(a_{1}^{L} - c_{1}^{L}) fails WLP!$$