The Weak Lefschetz Property for artinian Gorenstein algebras of low Sperner number Lefschetz Conference Krakow

Mats Boij KTH Royal Institute of Technology

June 24, 2024

Joint work with

- Juan Migliore
- Rosa Maria Miró-Roig
- Uwe Nagel

Joint work with

Remark (Banff, March 2024)

- Juan Migliore
- Rosa Maria Miró-Roig
- Uwe Nagel

Artinian Gorenstein algebras

Definition

A graded artinian \mathbb{K} -algebra A is Gorenstein if it has a perfect pairing

$$A_i imes A_{d-i} \longrightarrow A_d, \quad \forall i$$

Macualay's Inverse Systems describe them. $R = \mathbb{K}[x_1, x_2, ..., x_n]$ acts on $S = \mathbb{K}[X_1, X_2, ..., X_n]$ by *differentiation*

$$x_i \circ F = \frac{\partial F}{\partial X_i}$$

Theorem (Macaulay)

If A = R/I is a graded artinian algebra then

$$A = \bigoplus_{i=0}^{d} A_i \text{ is Gorenstein } \iff \exists F \in S_d \colon I = \operatorname{ann}_R(F)$$

The Lefschetz properties

Definition

The Lefschetz properties

Definition

1. A has the *Weak Lefschetz Property (WLP)* if $\exists \ell \in A_1$ such that

$$\times \ell \colon A_i \longrightarrow A_{i+1},$$

has maximal rank for all $i \ge 0$.

The Lefschetz properties

Definition

1. A has the *Weak Lefschetz Property (WLP)* if $\exists \ell \in A_1$ such that

$$\times \ell \colon A_i \longrightarrow A_{i+1},$$

has maximal rank for all $i \ge 0$.

2. A has the *Strong Lefschetz Property (SLP)* if $\exists \ell \in A_1$ such that

$$\times \ell^j \colon A_i \longrightarrow A_{i+j}$$

has maximal rank for all $i \ge 0$ and $j \ge 1$

Question

Question

Which classes of artinian Gorenstein algebras have the WLP or SLP?

▶ Not all! (1,13,12,13,1) (Stanley, 1978).

Question

- ▶ Not all! (1,13,12,13,1) (Stanley, 1978).
- Codimension 1 and 2 all have the SLP. (Briancon, 1972)

Question

- ▶ Not all! (1,13,12,13,1) (Stanley, 1978).
- Codimension 1 and 2 all have the SLP. (Briancon, 1972)
- Codimension 3 complete intersections all have the WLP (Harima, Migliore, Nagel and Watanabe, 2000)

Question

- Not all! (1,13,12,13,1) (Stanley, 1978).
- Codimension 1 and 2 all have the SLP. (Briancon, 1972)
- Codimension 3 complete intersections all have the WLP (Harima, Migliore, Nagel and Watanabe, 2000)
- Codemension 3 socle degree at most 6 all have the SLP (B, Migliore, Nagel, Miró-Roig and Zanello, 2013)

Question

- Not all! (1,13,12,13,1) (Stanley, 1978).
- Codimension 1 and 2 all have the SLP. (Briancon, 1972)
- Codimension 3 complete intersections all have the WLP (Harima, Migliore, Nagel and Watanabe, 2000)
- Codemension 3 socle degree at most 6 all have the SLP (B, Migliore, Nagel, Miró-Roig and Zanello, 2013)
- Codimension 3 and Sperner number at most 6 all have the SLP (Abdallah, Altafi, Iarrobino, Seceleanu and Yameogo, 2023)

Failure of WLP

Example (Stanley 1978)

Trivial extension of $B = k[x, y, z]/(x, y, z)^4$ with canonical module $A = B \ltimes \omega_B$.

В	1	3	6	10	0
ω_B	0	10	6	3	1
$A = B \ltimes \omega_B$	1	13	12	13	1

Failure of WLP

Example

Stanley's construction works for $B = k[x, y]/(x, y)^d$ to give

which fails the WLP when $d \ge 3$.

Failure of WLP

Example

We can do this in codimension 4 to get

В	1	2	3		i -	- 1	i+2	2		2 <i>i</i>		. 4	4	2	0
ω_B	0	2	4		2	<u>2</u> i	2 <i>i</i> – ⁻	1	. i	·+1		. (3	2	1
$B \ltimes \omega_B$	1	4	7		d-	+2	d+2	2	. C	1+2			7	4	1
if $i = (d+1)/3 \in \mathbb{Z}$.															
<i>d</i> =	= 5	1	4	7	7	4	1								
d =	= 7	1	4	7	9	9	7	4	1						
d =	= 8	1	4	7	10	10	10	7	4	1					
d =	= 9	1	4	7	10	11	11	10	7	4	1				
d =	10	1	4	7	10	12	12	12	10	7	4	1			
d =	11	1	4	7	10	13	13	13	13	10	7	4	1		

Main result

These examples turn out to be minimal in the following sense.

Definition

The *Sperner number* of *A* is $\max_i h_i(A)$.

Theorem (B., Migliore, Miró-Roig, Nagel 2024)

Any artinian Gorenstein algebra A of socle degree d and Sperner number $\leq d+1$ satisfies the WLP.

An illustrative example

Example

If *A* has *h*-vector (1,6,6,6,6,1) and fails the WLP we must have that $\times \ell : [A]_i \longrightarrow [A]_{i+1}$ has rank 5 for i = 1,2,3.

$$B = A/(0:\ell) \cong (\ell)$$
 $C = A/(\ell)$

B(−1):	0	1	5	5	5	1
A :	1	6	6	6	6	1
<i>C</i> :	1	5	1	1	1	0

The short exact sequence

$$0 \longrightarrow B(-1) \longrightarrow A \longrightarrow C \longrightarrow 0$$

and the Snake Lemma show that B has to fail the WLP.

More generally

Example

If A has has socle degree 2m + 1, fails the WLP and $h_{m-1} = h_m = h_{m+1} = h_{m+2} = s$

$$B = A/(0:\ell) \cong (\ell)$$
 $C = A/(\ell)$

The short exact sequence

$$0 \longrightarrow B(-1) \longrightarrow A \longrightarrow C \longrightarrow 0$$

and the Snake Lemma show that B has to fail the WLP.

More generally

Example

If A has has socle degree 2m + 1, fails the WLP and $h_{m-1} = h_{m+2} = s - 1$, $h_m = h_{m+1} = s$

$$B = A/(0:\ell) \cong (\ell)$$
 $C = A/(\ell)$

The short exact sequence

$$0 \longrightarrow B(-1) \longrightarrow A \longrightarrow C \longrightarrow 0$$

and the Snake Lemma show that B has to fail the WLP.

Three remaining cases

▶ When the socle degree *d* is even or if d = 2m+1 with $h_m - h_{m-1} \le 1$, we can argue by induction.

Three remaining cases

- ▶ When the socle degree *d* is even or if d = 2m+1 with $h_m h_{m-1} \le 1$, we can argue by induction.
- We are left with socle degree d = 2m + 1 and *h*-vector

1.
$$(1,3,5,7,9,\ldots,2m+1,2m+1,\ldots,9,7,5,3,1)$$

- 2. $(1,3,6,8,10,\ldots,2m+2,2m+2,\ldots,10,8,6,3,1)$
- 3. $(1,4,6,8,10,\ldots,2m+2,2m+2,\ldots,10,8,6,4,1)$

Example

If *A* has *h*-vector (1,4,6,6,4,1) and there is $H = \langle \ell_1.\ell_2, \ell_3 \rangle \subseteq [A]_1$ with dim_K $H^2 = 6$. Then

Example

If *A* has *h*-vector (1,4,6,6,4,1) and there is $H = \langle \ell_1.\ell_2,\ell_3 \rangle \subseteq [A]_1$ with dim_K $H^2 = 6$. Then

• $B = \mathbb{K}[\ell_1, \ell_2, \ell_2] \subseteq A$ has *h*-vector (1,3,6,6,4,1), and

Example

If A has *h*-vector (1,4,6,6,4,1) and there is $H = \langle \ell_1.\ell_2,\ell_3 \rangle \subseteq [A]_1$ with dim_K $H^2 = 6$. Then

- ▶ $B = \mathbb{K}[\ell_1, \ell_2, \ell_2] \subseteq A$ has *h*-vector (1,3,6,6,4,1), and
- ► *B* has an artinian Gorenstein quotient *C* with *h*-vector (1,3,6,6,3,1).

Example

If *A* has *h*-vector (1,4,6,6,4,1) and there is $H = \langle \ell_1.\ell_2, \ell_3 \rangle \subseteq [A]_1$ with dim_K $H^2 = 6$. Then

- ▶ $B = \mathbb{K}[\ell_1, \ell_2, \ell_2] \subseteq A$ has *h*-vector (1,3,6,6,4,1), and
- ► B has an artinian Gorenstein quotient C with h-vector (1,3,6,6,3,1).
- ► We can deduce WLP for A from WLP for C.

Example

If *A* has *h*-vector (1,4,6,6,4,1) and there is $H = \langle \ell_1.\ell_2, \ell_3 \rangle \subseteq [A]_1$ with dim_K $H^2 = 6$. Then

- ▶ $B = \mathbb{K}[\ell_1, \ell_2, \ell_2] \subseteq A$ has *h*-vector (1,3,6,6,4,1), and
- ► B has an artinian Gorenstein quotient C with h-vector (1,3,6,6,3,1).
- ► We can deduce WLP for *A* from WLP for *C*.
- If A = R/I has is no such subalgebra, the generic initial monimials wrt the lexicographic order of [I]₂ are

$$x_1^2, x_1x_2, x_1x_3, x_2^2$$

Otherwise

Theorem

$$\begin{array}{l} \textit{If } I = (f_1, f_2, f_3, f_4) \subset R = K[x_1, \ldots, x_4] \textit{ is generated by quadrics} \\ \textit{and } gin_{\textit{lex}}(I) \supseteq \{x_1^2, x_1 x_2, x_1 x_3, x_2^2\}, \textit{ then up to isomorphism,} \\ (i) \quad I = (x_1 x_3, x_1 x_4, x_2 x_3, x_2 x_4); \\ (ii) \quad I = (x_1^2, x_2^2, x_3^2, x_1 x_2 + x_1 x_3 + x_2 x_3); \\ (iii) \quad I = (x_1^2, x_2^2, x_3^2, x_1 x_3 + x_2 x_3); \\ (iv) \quad I = (x_1^2, x_1 x_2, x_1 x_3 - x_2^2, x_3^2); \\ (v) \quad I = (x_1^2, x_1 x_2, x_1 x_3 - x_2^2, x_2 x_3); \\ (vi) \quad I = (x_1^2, x_1 x_2, x_1 x_3, x_2^2, x_2 x_3); \\ (vii) \quad I = (x_1^2, x_1 x_2, x_1 x_3, x_2 x_3); \\ (viii) \quad I = (x_1^2, x_1 x_2, x_2^2, q), \textit{ where } q = x_3 x_4, q = x_3^2 + x_2 x_4 \textit{ or } q = x_3^2. \\ (ix) \quad I = (x_1^2, x_1 x_2, x_2^2, x_1 x_4 - x_2 x_3); \\ (x) \quad I = (x_1^2, x_1 x_2, x_2^2, x_1 x_4 - x_2 x_3); \\ (x) \quad I = (x_1^2, x_1 x_2, x_2^2, x_1 x_3). \end{array}$$

Remark

The Hilbert function of I is

- ► (1,4,6,6,6,...) in cases (ii), (iii), (iv) and (viii),
- ► (1,4,6,7,8,9,...) in cases (v) and (vi), and
- ► (1,4,6,8,10,...) in cases (*i*), (*vii*), (*ix*) and (*x*).

Hence only (i), (vii), (ix) and (x) can occur for socle degree seven and higher. $(m \ge 3)$

► For each case in our list, we can prove the WLP.

- For each case in our list, we can prove the WLP.
- ► When the Hilbert function is (1,4,6,6,6,...) we can use a non-zero divisor on R/I as the Lefschetz element.

- For each case in our list, we can prove the WLP.
- ► When the Hilbert function is (1,4,6,6,6,...) we can use a non-zero divisor on R/I as the Lefschetz element.
- In case (i), we have two skew lines, and A is the connected sum of two codimension two algebras.

- For each case in our list, we can prove the WLP.
- ► When the Hilbert function is (1,4,6,6,6,...) we can use a non-zero divisor on R/I as the Lefschetz element.
- In case (i), we have two skew lines, and A is the connected sum of two codimension two algebras.
- ► For the remaining cases, we can use explicit calculations with *catalecticant* matrices and *higher hessian* matrices.

In proving Theorem 3, we use the existence of a rational map

$$\Phi: \mathbb{P}^3 = \mathbb{P}([R]_1) \longrightarrow \mathbb{P}^3 = \mathbb{P}([I]_2).$$
$$H \mapsto q_H$$

In proving Theorem 3, we use the existence of a rational map

$$\Phi \colon \mathbb{P}^3 = \mathbb{P}([R]_1) \longrightarrow \mathbb{P}^3 = \mathbb{P}([I]_2).$$

 $H \mapsto q_H$

where $\langle q_H \rangle = H^2 \cap [I]_2$.

• The rank of q_H is at most three.

In proving Theorem 3, we use the existence of a rational map

$$\Phi \colon \mathbb{P}^3 = \mathbb{P}([R]_1) \longrightarrow \mathbb{P}^3 = \mathbb{P}([I]_2).$$

 $H \mapsto q_H$

- The rank of q_H is at most three.
- The rank of q_H cannot be generically three.

In proving Theorem 3, we use the existence of a rational map

$$\Phi \colon \mathbb{P}^3 = \mathbb{P}([R]_1) \longrightarrow \mathbb{P}^3 = \mathbb{P}([I]_2).$$
$$H \mapsto q_H$$

- The rank of q_H is at most three.
- The rank of q_H cannot be generically three.
- If the rank of *q_H* is generically two the image of Φ is a surface of degree two or three, and we either have the ideal of two skew lines, or a cone.

In proving Theorem 3, we use the existence of a rational map

$$\Phi \colon \mathbb{P}^3 = \mathbb{P}([R]_1) \longrightarrow \mathbb{P}^3 = \mathbb{P}([I]_2).$$
$$H \mapsto q_H$$

- The rank of q_H is at most three.
- The rank of q_H cannot be generically three.
- If the rank of *q_H* is generically two the image of Φ is a surface of degree two or three, and we either have the ideal of two skew lines, or a cone.
- If the rank of *q_H* is generically one the image is a plane conic and the ideal contains ⟨ℓ₁, ℓ₂⟩².

