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Artinian Gorenstein algebras

A graded artinian K-algebra A is Gorenstein if it has a perfect
pairing

A,‘ X Ad,,' — Ad, Vi

Macualay’s Inverse Systems describe them. R =K][xq, Xz, ..., Xp]
acts on S =K[X1,X,...,X,] by differentiation
JF

Theorem (Macaulay)

If A= R/l is a graded artinian algebra then

d
A=(PA, is Gorenstein <= 3IF € Sy: | =annp(F)
i=0
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1. A has the Weak Lefschetz Property (WLP) if 3¢ € Ay such
that
X A,' — A,'+1 9
has maximal rank for all / > 0.

2. A has the Strong Lefschetz Property (SLP) if 3¢ € A; such

that _
x A,‘ — AI'Jrj

has maximal rank for all i >0 and j > 1
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General problem

Which classes of artinian Gorenstein algebras have the WLP or
SLP?

» Not all! (1,13,12,13,1) (Stanley, 1978).
» Codimension 1 and 2 all have the SLP. (Briancon, 1972)

» Codimension 3 complete intersections all have the WLP
(Harima, Migliore, Nagel and Watanabe, 2000)

» Codemension 3 socle degree at most 6 all have the SLP (B,
Migliore, Nagel, Mir6-Roig and Zanello, 2013)

» Codimension 3 and Sperner number at most 6 all have the
SLP (Abdallah, Altafi, larrobino, Seceleanu and Yameogo,
2023)



Failure of WLP

Example (Stanley 1978)

Trivial extension of B = k|[x, y,z]/(x,y,z)* with canonical module
A=Bx wpB.

B 0 10 6 3
A:waB“ 13 12 13

B 13 6 10 O
1
1



Failure of WLP

Stanley’s construction works for B = k[x, y]/(x, y)? to give

B 1 2 3 4 ..o d—1 d 0
wp 0 d d-1 d-2 ... 3 2 1
Bxwg|1 d+2 d+2 d+2 ... d+2 d+2 1

which fails the WLP when d > 3.



Failure of WLP

We can do this in codimension 4 to get

B |1 23 ... i+l i+2 .. 2i .. 420
wg |0 2 4 .. 2 2—1 .. i+1 .. 3 2 1
Bxag|1 4 7 d+2 d+2 .. d+2 7 4 1
if i=(d+1)/3 €.

d=5|1 47 7 4 1

d=71 47 9 9 7 4 1
d=8|1 4 7 10 10 10 7 4 1
d=9|1 4 7 10 11 11 10 7 4 1
d=10|1 4 7 10 12 12 12 10 7 4 f
d=11|1 4 7 10 13 13 13 13 10 7 4 1




Main result

These examples turn out to be minimal in the following sense.

The Sperner number of A is max; h;(A).

Theorem (B., Migliore,Mir6-Roig, Nagel 2024)

Any artinian Gorenstein algebra A of socle degree d and
Sperner number < d + 1 satisfies the WLP,



An illustrative example

If A has h-vector (1,6,6,6,6,1) and fails the WLP we must have
that x/¢: [A]; — [A]i+1 has rank 5 for i =1,2,3.

B=A/(0:0)= () C=A/)

A:
C:

The short exact sequence

B(-1): 0 1 5
16 6
15 1

—- O O
—- O O
O = =

0—B(-1)—A—C—0

and the Snake Lemma show that B has to fail the WLP.



More generally

If A has has socle degree 2m+ 1, fails the WLP and
hmf1 =hm = hm+1 = hm+2 =S

B=A/(0:0)=(0) C=A/)

deg [m—1 m m+1 m+2

B(-1)|s—a s—1 s—1 s-—1
A S S S S
C a 1 1 1

The short exact sequence

0—B(-1)—A—C—0

and the Snake Lemma show that B has to fail the WLP.



More generally
If A has has socle degree 2m+ 1, fails the WLP and

Pm—1 :hm+2:3_1, hm:hm—H =S
B=A/(0:0)=() C=A/()

deg | m-1 m m+1 m+2
B(-1)|s—a—-1 s—1 s-1 s-—1
A s—1 S 5 s—1
C a 1 1 0

The short exact sequence
0—B(-1)—A—C—0

and the Snake Lemma show that B has to fail the WLP.
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» When the socle degree d is even or if d =2m+ 1 with
hm—hm_1 <1, we can argue by induction.



Three remaining cases

» When the socle degree d is even or if d =2m+ 1 with
hm—hm_1 <1, we can argue by induction.
» We are left with socle degree d =2m+ 1 and h-vector
1. (1,3,5,7,9,....2m+1,2m+1,...,9,7,5,3,1)
2. (1,3,6,8,10,....2m+2,2m+2,...,10,8,6,3,1)
3. (1,4,6,8,10,....2m+22m+2,...,10,8,6,4,1)
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Subalgebra argument

If A has h-vector (1,4,6,6,4,1) and there is H = (¢1.02,03) C [A]4
with dimg H2 = 6. Then
» B=K][l,ls,05] C Ahas h-vector (1,3,6,6,4,1), and
» B has an artinian Gorenstein quotient C with h-vector
(1,3,6,6,3,1).
» We can deduce WLP for A from WLP for C.

» If A= R/l has is no such subalgebra, the generic inititial
monimials wrt the lexicographic order of [/, are

2 2
X1, X1 X2, X1X3, X5



Otherwise

Ifl=(fi,h,f3,f4) C R=K][xq,...,Xs] iS generated by quadrics
and ginex () 2 {x2,x1x2,X1x3,X5}, then up to isomorphism,

(') I = (X1 X3, X1 X4, X2X3, XpX4);
x1,x2,x3,x1x2+x1x3+x2x3)'
x1 ,x2,x3,x1x3 + XoX3);

, X1 X0, X1 X3 — X2,X3),
X2, X1 X2, X1 X3 — X2, XoX3);

X1 ;X1 X2, X1 X3, X2X3);
_ — o 2
1,x1x2,x2,q) where q = X3Xa, Q = X5 + XoX4 OF Q = X3.
X1

=(

=(

=(xf

=(

= (X2, X1 X3, X2, X2X3);
=(

=(

=( ,x1x2,x2,x1x4—x2x3) or
= (xf



The Hilbert function of /is

» (1,4,6,6,6,...) in cases (i), (i), (iv) and (viii),

» (1,4,6,7,8,9,...) in cases (v) and (vi), and

» (1,4,6,8,10,...) in cases (i), (vii), (ix) and (x).
Hence only (i), (vii), (ix) and (x) can occur for socle degree
seven and higher. (m > 3)
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The ten cases — one by one

» For each case in our list, we can prove the WLP.

» When the Hilbert function is (1,4,6,6,6,...) we can use a
non-zero divisor on R/l as the Lefschetz element.

» In case (i), we have two skew lines, and A is the connected
sum of two codimension two algebras.

» For the remaining cases, we can use explicit calculations
with catalecticant matrices and higher hessian matrices.
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Geometry of the quadrics

In proving Theorem 3, we use the existence of a rational map

®:P° = P([Rl) — P° = P([l2)
H =  gH

where (gy) = H?>N[/]..

>

>

>

The rank of qy is at most three.
The rank of gy cannot be generically three.

If the rank of gy is generically two the image of ¢ is a
surface of degree two or three, and we either have the ideal
of two skew lines, or a cone.

If the rank of gy is generically one the image is a plane
conic and the ideal contains (¢4, /,)2.






