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Artinian Gorenstein algebras
Definition
A graded artinian K-algebra A is Gorenstein if it has a perfect
pairing

Ai ×Ad−i −→ Ad , ∀i

Macualay’s Inverse Systems describe them. R = K[x1,x2, . . . ,xn]
acts on S = K[X1,X2, . . . ,Xn] by differentiation

xi ◦F =
∂F
∂Xi

Theorem (Macaulay)

If A = R/I is a graded artinian algebra then

A =
d⊕

i=0

AI is Gorenstein ⇐⇒ ∃F ∈ Sd : I = annR(F )



The Lefschetz properties

Definition

1. A has the Weak Lefschetz Property (WLP) if ∃` ∈ A1 such
that

×` : Ai −→ Ai+1,

has maximal rank for all i ≥ 0.
2. A has the Strong Lefschetz Property (SLP) if ∃` ∈ A1 such

that
×`j : Ai −→ Ai+j

has maximal rank for all i ≥ 0 and j ≥ 1
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General problem

Question
Which classes of artinian Gorenstein algebras have the WLP or
SLP?

I Not all! (1,13,12,13,1) (Stanley, 1978).
I Codimension 1 and 2 all have the SLP. (Briancon, 1972)
I Codimension 3 complete intersections all have the WLP

(Harima, Migliore, Nagel and Watanabe, 2000)
I Codemension 3 socle degree at most 6 all have the SLP (B,

Migliore, Nagel, Miró-Roig and Zanello, 2013)
I Codimension 3 and Sperner number at most 6 all have the

SLP (Abdallah, Altafi, Iarrobino, Seceleanu and Yameogo,
2023)
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Failure of WLP

Example (Stanley 1978)

Trivial extension of B = k [x ,y ,z]/(x ,y ,z)4 with canonical module
A = BnωB.

B 1 3 6 10 0
ωB 0 10 6 3 1
A = BnωB 1 13 12 13 1



Failure of WLP

Example

Stanley’s construction works for B = k [x ,y ]/(x ,y)d to give

B 1 2 3 4 . . . d −1 d 0
ωB 0 d d −1 d −2 . . . 3 2 1

BnωB 1 d + 2 d + 2 d + 2 . . . d + 2 d + 2 1

which fails the WLP when d ≥ 3.



Failure of WLP

Example

We can do this in codimension 4 to get

B 1 2 3 . . . i + 1 i + 2 . . . 2i . . . 4 2 0
ωB 0 2 4 . . . 2i 2i−1 . . . i + 1 . . . 3 2 1

BnωB 1 4 7 . . . d + 2 d + 2 . . . d + 2 . . . 7 4 1

if i = (d + 1)/3 ∈ Z.

d = 5 1 4 7 7 4 1
d = 7 1 4 7 9 9 7 4 1
d = 8 1 4 7 10 10 10 7 4 1
d = 9 1 4 7 10 11 11 10 7 4 1

d = 10 1 4 7 10 12 12 12 10 7 4 1
d = 11 1 4 7 10 13 13 13 13 10 7 4 1



Main result

These examples turn out to be minimal in the following sense.

Definition
The Sperner number of A is maxi hi(A).

Theorem (B., Migliore,Miró-Roig, Nagel 2024)

Any artinian Gorenstein algebra A of socle degree d and
Sperner number ≤ d + 1 satisfies the WLP.



An illustrative example

Example

If A has h-vector (1,6,6,6,6,1) and fails the WLP we must have
that ×` : [A]i −→ [A]i+1 has rank 5 for i = 1,2,3.

B = A/(0 : `)∼= (`) C = A/(`)

B(−1) : 0 1 5 5 5 1
A : 1 6 6 6 6 1
C : 1 5 1 1 1 0

The short exact sequence

0−→ B(−1)−→ A−→ C −→ 0

and the Snake Lemma show that B has to fail the WLP.



More generally

Example

If A has has socle degree 2m + 1, fails the WLP and
hm−1 = hm = hm+1 = hm+2 = s

B = A/(0 : `)∼= (`) C = A/(`)

deg m−1 m m + 1 m + 2
B(−1) s−a s−1 s−1 s−1

A s s s s
C a 1 1 1

The short exact sequence

0−→ B(−1)−→ A−→ C −→ 0

and the Snake Lemma show that B has to fail the WLP.
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Three remaining cases

I When the socle degree d is even or if d = 2m + 1 with
hm−hm−1 ≤ 1, we can argue by induction.

I We are left with socle degree d = 2m + 1 and h-vector
1. (1,3,5,7,9, . . . ,2m + 1,2m + 1, . . . ,9,7,5,3,1)
2. (1,3,6,8,10, . . . ,2m + 2,2m + 2, . . . ,10,8,6,3,1)
3. (1,4,6,8,10, . . . ,2m + 2,2m + 2, . . . ,10,8,6,4,1)
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Subalgebra argument

Example

If A has h-vector (1,4,6,6,4,1) and there is H = 〈`1.`2, `3〉 ⊆ [A]1
with dimKH2 = 6. Then

I B = K[`1, `2, `2]⊆ A has h-vector (1,3,6,6,4,1), and
I B has an artinian Gorenstein quotient C with h-vector

(1,3,6,6,3,1).
I We can deduce WLP for A from WLP for C.
I If A = R/I has is no such subalgebra, the generic inititial

monimials wrt the lexicographic order of [I]2 are

x2
1 ,x1x2,x1x3,x2

2
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Otherwise

Theorem
If I = (f1, f2, f3, f4)⊂ R = K [x1, . . . ,x4] is generated by quadrics
and ginlex (I)⊇ {x2

1 ,x1x2,x1x3,x2
2}, then up to isomorphism,

(i) I = (x1x3,x1x4,x2x3,x2x4);
(ii) I = (x2

1 ,x
2
2 ,x

2
3 ,x1x2 + x1x3 + x2x3);

(iii) I = (x2
1 ,x

2
2 ,x

2
3 ,x1x3 + x2x3);

(iv) I = (x2
1 ,x1x2,x1x3−x2

2 ,x
2
3 );

(v) I = (x2
1 ,x1x2,x1x3−x2

2 ,x2x3);
(vi) I = (x2

1 ,x1x3,x2
2 ,x2x3);

(vii) I = (x2
1 ,x1x2,x1x3,x2x3);

(viii) I = (x2
1 ,x1x2,x2

2 ,q), where q = x3x4, q = x2
3 + x2x4 or q = x2

3 .
(ix) I = (x2

1 ,x1x2,x2
2 ,x1x4−x2x3); or

(x) I = (x2
1 ,x1x2,x2

2 ,x1x3).



Remark
The Hilbert function of I is

I (1,4,6,6,6, . . .) in cases (ii), (iii), (iv) and (viii),
I (1,4,6,7,8,9, . . .) in cases (v) and (vi), and
I (1,4,6,8,10, . . .) in cases (i), (vii), (ix) and (x).

Hence only (i), (vii), (ix) and (x) can occur for socle degree
seven and higher. (m ≥ 3)



The ten cases – one by one

I For each case in our list, we can prove the WLP.

I When the Hilbert function is (1,4,6,6,6, . . .) we can use a
non-zero divisor on R/I as the Lefschetz element.

I In case (i), we have two skew lines, and A is the connected
sum of two codimension two algebras.

I For the remaining cases, we can use explicit calculations
with catalecticant matrices and higher hessian matrices.
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Geometry of the quadrics

In proving Theorem 3, we use the existence of a rational map

Φ: P3 = P([R]1) −→ P3 = P([I]2).
H 7→ qH

where 〈qH〉= H2∩ [I]2.

I The rank of qH is at most three.
I The rank of qH cannot be generically three.
I If the rank of qH is generically two the image of Φ is a

surface of degree two or three, and we either have the ideal
of two skew lines, or a cone.

I If the rank of qH is generically one the image is a plane
conic and the ideal contains 〈`1, `2〉2.
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