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» Cohomology rings of projective varieties have a natural graded
Artinian ring structure.

» Unfortunately, in most cases the ring is non-commutative.

» Objective: Study Lefschetz-type properties of these rings and
certain commutative subrings.

» We will give an example of a smooth, projective variety such
that the weak Lefschetz property fails, although Poincaré
duality holds (making the cohomology ring Gorenstein).

» We will observe that WLP and SLP are both open and closed
properties in smooth, projective families.

» The commutative subring (consisting of Hodge classes) will
satisfy WLP and SLP for all smooth, projective varieties.

> We also study the smooth, quasi-projective case.

> We end with some questions.
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X a non-singular quasi-projective variety

Cohomology of X: HX(X,Z) = cel)c<>asgg /f-_;grrr?qqss gr?))(<

Example: Take X = C".

By Poincaré lemma (closed forms on contractible spaces are
exact), observe that for k > 0, every closed differential k-form
is exact.

Z ifk=0
0 otherwise

Hk(C", 7)) = {
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We have an exact sequence:

... = H'(P",C") = H(P") — H'(C") — HY(P",C") — ...
> Thom isomorphism: H/(P",C") = Hy,_i(Y) £2 HI=2(Y).
» Recursion: Take n=1. Then, Hi(Pl) =0 fori> 2,
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Consider a hyperplane Y = {z, = 0}. Observe P"\Y = C".
> We have an exact sequence:

. = H'(P",C") — H'(P") — H'(C") — HY(P",C") — ...
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Consider a hyperplane Y = {z, = 0}. Observe P"\Y = C".

> We have an exact sequence:
... = H(P",C") = H'(P") = H'(C") — HY{(P",C") — ...
» Thom isomorphism: H(P",C") 2 Hyp,_i(Y) 2, H=2(Y).

» Recursion: Take n=1. Then, H'(P') =0 for i > 2,

» Y isa point = H/(Y) =0 forall i #0.
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Example: P”

» Consider a hyperplane Y = {z, = 0}. Observe P"\Y = C".

> We have an exact sequence:
. = H'(P",C") — H'(P") — H'(C") — HY(P",C") — ...

» Thom isomorphism: H(P",C") 2 Hyp,_i(Y) D, HI=2(Y).

» Recursion: Take n=1. Then, H'(P') =0 for i > 2,

» Y isa point = H/(Y) =0 forall i #0.

> HO(P,Z) =~ HO(CL,Z) = Z

> HY(P!) =0 and H?(P!) = HO(Y).

. VANE i/2 ifi
» Recursively, H'(P",Z) = {0[ ] Itlheveh
otherwise
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Cohomology ring
» Recall, wedge product of differential forms
(p-form) A (g-form) — (p+qg-form).

» Wedge product of closed forms is closed.

» The wedge product on the differential forms induce a
cup-product map:

U: HP(X,Z) ® HI(X,Z) — HPT9(X,Z)

» Recall, if dimc(X) = n, then dim H'(X,Z) = 0 for all i > 2n
and dim H'(X, Q) is finite dimensional for all i > 0.
» Therefore, the cohomology ring
H*(X,Q) = D H'(X,Q)
>0

has a natural graded Artinian ring structure with
multiplication operator given by cup-product.
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> H(C",Q)=Q
» The natural map:
Q[t]/(t"th) — H*(P",Q) with t — [Y]
is an isomorphism, where Y C P” is a hyperplane.

> Let X be a smooth, projective curve of genus g. Then,

v/ ifi=0
Hi(X,2)={7%%€ ifi=1
Z if i =2

» HY(X,Q) is a symplectic vector space under cup-product (i.e.,
vector space equipped with a non-degenerate alternating
bilinear form).

» We can find a symplectic basis ey, e, ..., &2, of H}(X,Q) i.e.,
ejUei g = —f, and eUe; =0 for j # i+g and f € H*(X,Z)

is a positive generator.
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Examples: Contd...

» In this case,

Q[th t17 t2a ceey t2g]
(titirg + to, titj, t3)’

forall1<i<g, j#i+g 0<j<g.

H* (X, Q) —

» The isomorphism is as direct sum of vector spaces, not as
rings (cup-product on left hand side is non-commutative:
eUerg=—€1gU e,-).

» Example: Take P! x P!. Using Kiinneth decomposition,

H'(P* x P',Q) = P H/(P',Q) @ H' (P, Q).
j=0

» Hence, we have a ring isomorphism (H?(P!, Z) = Z{p}):
Qltr, 6]/, 88) = H*(B* x 1, Q), sending t; - {p} © 0

and t, — 0@ {p}, where p € P! is a closed point.
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» Let X be a (smooth) projective variety.

» We say that X satisfies the weak Lefschetz property if for a
general ¢ € HY(X,Q), the cup-product map

U¢ - H'(X,Q) — H™(X,Q) is of maximal rank V.
» Similarly, X is said to satisfy the strong Lefschetz property if
(UQ)? - H'(X,Q) — H™9(X,Q) is of maximal rank for all i, d.

» Example: Let C be a smooth, projective curve of genus at
least 1.

e For a general ( € H'(C,Q), the cup-product map:
U¢: HY(C,Q) — H*(C,Q) = Q

is surjective, hence of maximal rank.

e Therefore, C satisfies the strong Lefschetz property. In
particular, C satisfies the weak Lefschetz property.
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Counterexample to NC-WLP

» Theorem (-): Product of smooth, projective curves do not
always satisfy the weak Lefschetz property. In particular, take
a smooth rational curve X and a smooth curve Y of genus at
least 1. Then, X x Y does not satisfy the WLP.

» Idea of the proof: Denote by
p:XxY—=>Xand g: XxY =Y

the natural projection maps.
» By the Kiinneth decomposition, we have:

HYX x Y,Q) = ¢g*H}(Y,Q), and
H3(X x Y,Q) = p*H*(X,Q) & ¢"H*(Y,Q) = Q%2
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> Take ¢ € HY(X x Y, Q).
» There exists (' € H}(Y, Q) such that g*¢' = ¢

» Since g* commutes with cup-product, we have:

0 (U¢)

HY(Y,Q) H*(X,Q) & H*(Y,Q)
q* o~ ®) o P*@q*
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|dea of proof...

> Take ¢ € HY(X x Y, Q).
» There exists ¢’ € H(Y,Q) such that g*¢' = ¢

» Since g* commutes with cup-product, we have:

Hl(Y,Q) O © (UC/) H2(X7Q) D Hz(Y,Q)
qr|= O =Ip*aq
HY(X x Y,Q) e H*(X x Y, Q)

» Therefore, U(C is neither injective, nor surjective. So, X x Y
does not satisfy WLP.
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Question: How does the property WLP vary in (smooth)
families of projective varieties?

Theorem (-): Weak Lefschetz property is both an open and
closed property.

Idea of proof: Let A be a discrete valuation ring and

m: X — Spec(A)
be a smooth, projective morphism. Assume the fraction field
K and the residue field k of A are algebraically closed.
There is a direct sum of local system (i.e., locally constant
sheaf) on Spec(A)

H .= @Hi, where H' := R'7,Q

Restriction of H' to the closed (resp. generic point) is
canonically isomorphic to

H, = H'(Xk, Q) and Hi = H'(Xk, Q).
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>

Every element (o € H!(Xk) (resp. (gen € H*(Xk)) uniquely
extends to a section of ¢ € I(Rm.Q).

We have the following commutative diagrams for every i:

raay —2% o rry — 25 o
=~ o =~ o ~

Hi(X Q) 22 H(.0Q) Hi(Xk Q) 250 1+ (e, Q)

If U(p is injective (resp. surjective) then so is UC (use first
diagram).

Using the second diagram, this implies U(gen is injective (resp.
surjective).

So, if X satisfies WLP then so does Xk.

Similarly, if UCgen is injective (resp. surjective), then so is U¢g
e, Xk WLP = X, WLP.



Return to the commutative setup

> Let X be a smooth, projective variety.



Return to the commutative setup
> Let X be a smooth, projective variety.
» For i > 0, the cohomology group H'(X,C) has a Hodge
decomposition:

H'(X,C) = @ H>'P(X)

p=>0

such that HP=P(X) = Hi=Pp(X).



Return to the commutative setup
> Let X be a smooth, projective variety.
» For i > 0, the cohomology group H'(X,C) has a Hodge

decomposition:

H'(X,C) = @ H>'P(X)

p=>0

such that HP=P(X) = HI=P:P(X).
» Hodge classes are elements of the form

Hige(X) == H*(X,Q)n H"(X,C).



Return to the commutative setup
> Let X be a smooth, projective variety.
» For i > 0, the cohomology group H'(X,C) has a Hodge

decomposition:

H'(X,C) = @ H>'P(X)

p=>0
such that HP”'_P(X) =~ Hi=pP(X).
» Hodge classes are elements of the form
Hige(X) == H*(X,Q)n H"(X,C).

» Define, Hodge ring:

*
Hiiag (X) 1= €D Hilae (X

i>0



Return to the commutative setup
> Let X be a smooth, projective variety.

» For i > 0, the cohomology group H'(X,C) has a Hodge
decomposition:

H'(X,C) = @ H>'P(X)

p=>0
such that HP=P(X) = HI=P:P(X).
» Hodge classes are elements of the form
Hige(X) == H*(X,Q)n H"(X,C).
» Define, Hodge ring:

*
Hiiag (X) 1= €D Hilae (X

i>0

> Hiiq5(X) is a graded Artinian Q-algebra.



Return to the commutative setup
> Let X be a smooth, projective variety.
» For i > 0, the cohomology group H'(X,C) has a Hodge

decomposition:

H'(X,C) = @ H>'P(X)

p=>0
such that HP=P(X) = HI=P:P(X).
» Hodge classes are elements of the form
Hifag(X) == H¥(X, Q) N HY(X,C).
» Define, Hodge ring:
Hﬁdg @ Hdg
i>0
> Hiiq5(X) is a graded Artinian Q-algebra.
> Example: Hyj,, (P") = Q[t]/(t").
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Weak/Strong Hodge-Lefschetz property

> Let X be a projective variety.

» We say that X satisfies weak Hodge-Lefschetz property (resp.
strong Hodge-Lefschetz property) if Hjjy,(X) satisfies WLP
(resp. SLP).

» Using Hard Lefschetz theorem it is easy to check that every
smooth, projective variety satisfies weak and strong
Hodge-Lefschetz property.

» What happens in the quasi-projective setting?
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Quasi-projective case

> Lefschetz hyperplane theorem: Let Y be a smooth,
projective variety of dimension n and X C Y a very ample
non-singular divisor. Then, the natural restriction map

Hi(Y) = HI(X) is an iso.morphism for / #n—1
injective fori=n—1

» Theorem (-): Both Lefschetz hyperplane theorem and Hard
Lefschetz theorem fail, if Y is quasi-projective (for example,
Y = P"\{ one point}).

» Question: If X is a very ample non-singular divisor in a
quasi-projective variety, is it still possible that Hjj,,(X) satisfy
WLP or SLP?

P> Let's look at an example.....
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Failure of Lefschetz hyperplane theorem
» Consider the hypersurface X C P* defined by the equation
XZ + X+ X3 + X2
> Note that, X is a projective cone over a non-singular quadric
surface @ in P3.
» X is singular at xo :=[0:0:0:0:1]. Denote by U := X\xo.
» There is a natural projection: U — @ which makes U into an
Al-bundle over Q.

» This means, U is homotopic to Q.
= H*(U,Z) = H*(Q,Z) = Z&Z and H*(U,Z) = HY(Q,Z) = Z

> = H2A(PY) = H?(P*) — HY(P*\xo) — H2TH(P*) — ...
Thom isomorphism = Z =2 H¥(P*) = H?(P*\xg) for i = 1,2

» Hence, Lefschetz hyperplane theorem and Hard Lefschetz fail
for U — IP4\X0.
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What about WLP and SLP?

Q  ifi=0,4
» We computed: H'(U,Q) = { Q%2 ifi=2
0 otherwise

» Then, for a general ¢ € Hﬁdg(U),

ug¢: Hﬁdg(U) — Hﬁdg(U) is surjective
(U¢)? - Hﬁdg(U) — Hgdg(U) = 0 is trivially surjective
ug: Hfldg(U) — Hgdg(U) = 0 again, trivially surjective

> Hence, Hjjy,(U) satisfies WLP and SLP.
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What about variation of weak/strong Hodge-Lefschetz?
» More complicated than variation of weak/strong Lefschetz
property, due to jumping phenomenon of Hodge rings.
» Need to understand the geometry of the jumping locus.

» Fix integers d > 4,n > 1. Denote by Uy , the space
parameterizing smooth, degree d hypersurfaces in P27+,

» Noether-Lefschetz theorem: For a very general degree d
hypersurface X in P2"*1, HI’_‘Idg(IP’Q”“,Q) — Hiae(X, Q) is a
surjection.

» Noether-Lefschetz locus:
NLd,n = {U € Ud7n|HI>-kIdg(P2n+17Q) - Hﬁdg(xua(@) not Surj'}

» Ciliberto-Harris-Miranda showed that if n = 1, then the
Noether-Lefschetz locus is analytically as well as Zariski dense
in Ud71.
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Geometry of the Noether-Lefschetz locus

» Let L be an irreducible component of NLy ;. Then,

(d —3) < codim(L, Uy 1) < (d ; 1).

» If codim(L) is maximal, then L is called a general component.
Otherwise, L is called special.

» Irreducible components of the Noether-Lefschetz locus NLg ¢
arise from flag Hilbert schemes.

» Expectation: Special components of NLy ; are characterized
by low degree curves.

» Harris conjecture: There are only finitely many special
components.

» Theorem (-): If NLy; is equipped with the natural scheme
structure (as Hodge loci), then there are infinitely many
special components (of codimension 2d — 6) for all d > 6.
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Questions

» Question 1: Does the property of being weak / strong
Hodge-Lefschetz specialize i.e., given a DVR R and a
(smooth) family of projective varieties:

7w X — Spec(R),

if the generic fiber is weak / strong Hodge-Lefschetz, is the
special fiber also weak / strong Hodge-Lefschetz?

> We expect this to happen because if the generic fiber lies in
an irreducible component of the Noether-Lefschetz locus, then
so does the special fiber.

» Then, we use arguments similar to the specialization of the
weak / strong Lefschetz property mentioned earlier.

» Question 2: Let Y be a smooth, projective variety and
X C Y be a non-singular, very ample divisor in Y. If Y
satisfies weak / strong Lefschetz property, then does X satisfy
the same property? Conversely, if X satisfies weak / strong
Lefschetz property, then does Y satisfy the same property?
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Questions contd...

> Strategy: Take an element ¢y € H(Y, Q).
» Denote by (x € H*(X, Q) the image of Cy.

» We have the following commutative diagram:

Wy

H'(Y,Q) —=> H™(Y,Q)

O

Hi(x,Q) 2%

» If i # n— 1, then the two vertical arrows are isomorphism.

Hl+1(X Q)

» For such 7, the UCy is injective (resp. surjective) if and only if
U(x is injective (resp. surjective).

» Remaining to check for i = n— 1.



Thank you for your attention !
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