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Lemma (Ikeda, 1996)

(1) Suppose A is a graded Artinian algebra and (A, l) is SL.
Then (Ã = A[z]/(z2), l + z) is SL. (z is a new variable.)

Corollary

Suppose (A, l) is SL. Then

(2) (A[z1, . . . , zm]/(z
2
1, . . . , z

2
m), l + z1 + · · · + zm) is SL.

(3) (A[y]/(ym+1), l + y) is SL.

(4) Monomial ci (complete intersections) are SL.

Proof. (1) can be proved by a diagram chasing. (2) is immediate
from (1). (3) follows from (2) by Subring Thm:

A[y]/(ym+1) ↪→ A[z1, . . . , zm]/(z
2
1, . . . , z

2
m).

y 7→ z1 + · · · + zm

Both have the same socle degree. To prove (3) ⇒ (4) induct on n.
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We can extend this theorem as follows:

Proposition

Suppose A = K[x1, . . . , xn]/I is a complete intersection. Suppose
a power of a linear element can be a minimal basis of I. I.e.,

I = (f1, . . . , fn−1, l
m), l ∈ R1

Let z be the image of l in A. Then we have: A/(z) is SL ⇒ A is
SL. I.e., to prove SLP of A it is enough to prove SLP of A/(z).
z is the image of l in A.
Proof. We can use the flat extension theorem, because we have

the coexact sequence

K[y]/(ym) ↪→ A ↠ A/(z).

The flat extension theorem itself follows from

G = Gr(z)(A)
def
= A/(z)⊕ (z)/(z2)⊕ · · · ⊕ (zm−1)/(zm)

∼=
(
A/(z)

)
[y]/(ym).

G is SL by Ikeda’s Lemma.
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Theorem

(Harima–Watanabe 2007)

“A is at least as good as Gr(z)(A)”

Suppose A = ⊕c
i=0Ai is an Artinian Gorenstein ring. Suppose

z ∈ A1. If

G = Gr(z)(A) = A/(z)⊕ (z)/(z2)⊕ (z2)/(z3)⊕ · · · ⊕ (zm)/(zm+1)

has SLP, then A has SLP. Lefschetz element of G is L + z∗.
I am trying to find complete intersections A for which G = Gr(z)(A)

can be computed and prove that it has SLP.

Examples of ci in which a power of a linear element can be a
minimal basis of a ci:
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Examples: lk can be a basis element of I.

1. I = (xd11 , . . . , x
dn
n ).

2. I = (e1, . . . , en), ek the elementary symmetric polynomial.

3. I = (hd, hd1, . . . , hd+n−1). hk the complete symmetric polyno-
mial.

4. I = (e1(y), e2(y), . . . , en(y)), where (y1, . . . , yn) = (xs1, . . . , x
s
n).

5. I = (e1(y), e2(y), . . . , en−1(y), (x1 · · · xn)r), same ek(y) for k < n.

Proof. (1) l = xn.

(2) en can be replaced by xnn. I + xn = (e1, . . . , en−1, xn).

(3) hd+n−1 can be replaced by xd+n−1
n . I + xn = (hd, . . . , hd+n−2, xn).

(4) en(y) can be replaced by xsdn .

(5) Similar to (4).

In these examples we can induct on n and use flat extension thm.
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Generalize these examples

Drop the condition “lk can be a minimal basis element” in this
proposition but try to use the implication

G = Gr(z)(A) is SL ⇒ A is SL.

What condition do I need on A and ×z : A → A.
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To understand

G = Gz(A)
def
= A/(z)⊕ (z)/(z2)⊕ (z2)/(z3)⊕ · · ·

we have to understand the sequence

· · · ↪→ A/(0 : z3) ↪→ A/(0 : z2) ↪→ A/(0 : z) ↪→ A

because
A/(0 : z) ∼= (z)

A/(0 : z) : z = A/(0 : z2) ∼= (z2)

A/((0 : z) : z) : z = A/(0 : z3) ∼= (z3)
...
...

This sequence is close to

0 ⊂ (zm) ⊂ · · · ⊂ (z2) ⊂ (z) ⊂ A.

(There is a shift of degrees.) If we know the dimensions of
these vector spaces, we know the Jordan type of z : A → A.
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It is convenient to denote the short exact sequence

0 → R/(I : l) → R/I → R/(I + l) → 0

by the diagram:

I = I : l0

I : l I + l

A
def
= R/I

A/(0 : z) A/(z)
or

z is the image of l ∈ R in A.

We may think of nodes as ideals or Artinin algebras.
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In a general set up, we can obtain the Jordan type for

×z ∈ EndK(A)

by the diagram like this.
This depicts coloning by z and adding of z. Coloning by z the

ideal is strictly expanded, but they can be equal mod z. If Hilbert
seires is known for (I : lk) + l for all k ≥ 0,
Jordan type ×l : A → A is known.

The last red node = last black node.
Note (A/(0 : z)) [1] ∼= (z) and

H(A) = H(A/z) +H(A/0 : z)[T ]

So the diagram can be used to find the Hilbert series of A, if we
know the Hilbert series of A/((0 : zk) + z) for all k.
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We consider A = K[x1, x2, x3]/(x
3
1, x

3
2, x

4
3). B = K[x1, x2, x3]/(x

3
1, x

3
2, x

3
3),

z = x3.

H(A) =1 + 3T + 6T 2 + 8T 3 + 8T 4 + 6T 5 + 3T 6 + T 7 (1)

=(1 + 2T + 3T 2 + 2T 3 + T 4)(1 + T + T 2 + T 3) (2)

=1 + 2T + 3T 2 + 2T 3 + T 4 (3)

+ T + 2T 2 + 3T 3 + 2T 4 + T 5 (4)

+ T 2 + 2T 3 + 3T 4 + 2T 5 + T 6 (5)

+ T 3 + 2T 4 + 3T 5 + 2T 6 + T 7 (6)

H(B) = 1 + 3T + 6T 2 + 7T 3 + 6T 4 + 3T 5 + T 6.H(B) = 1 + 3T + 6T 2 + 7T 3 + 6T 4 + 3T 5 + T 6.

H(B/(x3)) = 1 + 2T + 3T 2 + 2T 3 + T 4.

H(B/(0 : x13) + x3) = 1 + 2T + 3T 2 + 2T 3 + T 4.

H(B/(0 : x23) + x3) = 1 + 2T + 3T 2 + 2T 3 + T 4.
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Generally, the Jordan type of ×z : A → A is

×z = J1 ⊕ J2 ⊕ · · · ⊕ Jr, Ji, a Jordan block.

In a flat extension the Jordan block for ×z is the conjugate of(
|A/(z)|, · · · , |A/(z)|︸ ︷︷ ︸

m

)
.

I.e., (
m,m, · · · ,m︸ ︷︷ ︸

|A/(z)|

)
.

The number of Jordan blocks is |A/(z)|, the size is m.

{1A, z, z2, · · · , zm−1} ⊂ A, is a Jordan block

A lift of an element in A/(z) behaves, more or less, in the same way,
but it will give us a smaller block.

In the next diagram we consider A = K[x1, x2, x3]/(x
3
1, x

3
2, x

3
3), z =

x2 + x3. It will be shown that the h-vector can be decomposed
adjusted at the middle.
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This depicts coloning by l and adding of l.

A = R/I, I = (x31, x
3
2, x

3
3), l = x2 + x3., z = l mod I.

A = R/I

(z) ∼= A/(0 : z)

(z2) ∼= A/(0 : z2)

(z3) ∼= A/(0 : z3)

(z4) ∼= A/(0 : z4)

A/(z)

A/((0 : z) + z)

A/((0 : z2) + z)

A/((0 : z3) + z)

A/((0 : z4) + z)

|A/(z)| = 9, |A/(0 : z) + z| = 6

This shows ×z : A → A has 9 blocks, ×z : A/(0 : z) → A/(0 : z) has 6
blocks. Hence ×z : A → A has 3 blocks of size 1. We can proceed by
induction.

|H(A/(0 : z2) + z)| = 6,

|H(A/((0 : z3) + z))| = |H(A/((0 : z3) + z))| = 3.
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So the Young diagram for this map ×z : A → A

A = R/I, I = (x31, x
3
2, x

3
3), l = x2 + x3., z = l mod I.

is
□ □ □ □ □
□ □ □ □ □
□ □ □ □ □
□ □ □
□ □ □
□ □ □
□
□
□

A = R/I

(z1) ∼= A/(0 : z)

(z2) ∼= A/(0 : z2)

(z3) ∼= A/(0 : z3)

(z4) ∼= A/(0 : z4)

|A/(z)| = 9

|A/((0 : z) + z)| = 6

|A/((0 : z2) + z)| = 6

|A/((0 : z3) + z)| = 3

|A/((0 : z4) + z)| = 3
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|A/(z)| = 9, |A/(0 : z) + z| = 6

This shows ×z : A → A has 9 blocks, ×z : A/(0 : z) → A/(0 : z) has 6
blocks. Hence ×z : A → A has 3 blocks of size 1. We can proceed by
induction.

|H(A/(0 : z2) + z)| = 6,

|H(A/((0 : z3) + z))| = |H(A/((0 : z3) + z))| = 3.
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Each box has a degree. So we can put its degree in each box.

0 1 2 3 4
1 2 3 4 5
2 3 4 6 6
1 2 3
2 3 4
3 4 5
2
3
4

0 1 2 3 4
1 2 3 4 5

2 3 4 6 6
1 2 3

2 3 4
3 4 5

2
3

4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 3 6 7 6 3 1

Proposition

It is possible to decompose the graded vector space A into
smaller spaces with symmetric h-vectors adjusted at the cen-
ter. (We need the assumption A has a symmetric h-vector.)
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What condition do I need to conclude A has SLP, provided we know
A/((0 : zjn) + zn) for all i = 0, 1, 2, · · · ?

Remark

All
(0 : zk) + z

(0 : zk−1) + z
for k = 0, 1, 2, . . .

are A/(z)-modules, symmetric h-vector. In general these are
not algebra, but sometimes they have an algebra structure!
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So this was a motivation for central simple modules. Let me ex-
plain the “central modules” for ×z : A → A.

Central simple modules for ×z : A → A

A block in the Jordan decomposition is an n1 × n1 matrix like
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

. (×z) = J1⊕J2⊕· · ·⊕Jr can be described as a list of sizes.

The Jordan type can be expressed as a decreasing sequence of
integers:

n1, . . . , n1︸ ︷︷ ︸
m1

, n2, . . . , n2︸ ︷︷ ︸
m2

, n3, . . . , n3︸ ︷︷ ︸
m3

, n4, . . . , n4︸ ︷︷ ︸
m4

,

where n1 > n2 > · · · > n4. A Young diagram

□□□□□□
□□□□□□
□□□

can be used to depict the map ×z : A → A. □ is a basis element of
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A and ×z sends a box to the next box on its right.
The number of blocks in the Jordan decomposition of ×z : A → A

is equal to |A/(z)| = |0 : z|.
So to find a Jordan decomposition, choose a1, . . . , ar ∈ A such that

A = ⟨a1, . . . , ar⟩ + (z), apply ×z to these elements and see when they
reach zero.

This is shown in the next picture.
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V1
def
= (0 : z) ∩ (zn1)

V2
def
=

(0 : z) ∩ (zn2)

(0 : z) ∩ (zn1)

V3
def
=

(0 : z) ∩ (zn3)

(0 : z) ∩ (zn2)
U3

def
=

(z) + (zn2)

(z) + (0 : zn3)

U4
def
=

(z) + (0 : zn3)

(z) + (0 : zn4)

U1

U2

U3

U4 V4
def
=

(0 : z) ∩ (zn4)

(0 : z) ∩ (zn3)

Central modules Uk
def
= V ∗

k =
(0 : znk) + (z)

(0 : znk−1) + (z)

A ⊋ 0 : zn4 ⊋ 0 : zn3 ⊋ 0 : zn2 ⊋ 0 : zn1 ⊋ (0)

A ⊋ (zn4) ⊋ (zn3) ⊋ (zn2) ⊋ (zn1) ⊋ (0)
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V1
def
= (0 : z) ∩ (zn1)U1 ⊗K[z]/(zn1)

V2
def
=

(0 : z) ∩ (zn2)

(0 : z) ∩ (zn1)
U2 ⊗K[z]/(zn2)

V3
def
=

(0 : z) ∩ (zn3)

(0 : z) ∩ (zn2)
U3 ⊗K[z]/(zn3)

V4
def
=

(0 : z) ∩ (zn4)

(0 : z) ∩ (zn3)

U1

U2

U3

U4

Central modules Uk
def
= V ∗

k =
(z) + (0 : znk−1)

(z) + (0 : znk)
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Theorem

Suppose A is a graded Gorenstein algebra. z ∈ A1. Pick up

non-zero terms from (0:zi−1)+z

(0:zi)+z
and Uj = (0:zi)+z

(0:zi−1)+z
, j = 1, . . . , s. If

all Uj have SLP, then Gr(z)(A) has the SLP.

Proof. Consider Gr(z)(A)
def
= A/(z)⊕ (z)/(2)⊕ (z2)/(z3) · · · ⊕ (zp)/(zp+1).

This is close to the sum ⊕
Uk ⊗K[z]/(z

ak
k ).

SLP of Gr(z)(A) follows from SLP of Uk.
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Before we state our main result, make two remarks.

Lemma

If I is a ci and if I : l is a ci for a linear form in R, then I + (l)
is a ci.
Proof. This is not quite obvious, but this can be proved.

Lemma

Suppose J/I is a principal module. Then (J/I) ∼= R/(I : f ) for
some f ∈ R.
Proof. J = I + f for some f . Hence J/I = (I + f )/I ∼= R/I : f .
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Definition(Tentative) “Bianry tree of ci’s”

1. F =
∪∞

ν=1Fν

2. Fν = {I ⊂ K[x1, . . . , xν] | I is an Artinian ci.}.
3. For I ∈ Fν, I : xν ∈ F as long as xν ̸∈ I.

4. For any I ∈ Fν there exists J ∈ Fν−1 such that I + xn =
JRν + xn.

5. All central modules Uj = (I:xkν)+(xν)

(I:xk−1
ν )+(xν)

are principal (so it is

isomorphic to Rν−1/J for some J ∈ Fν−1).

Theorem

All members of F have SLP.
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Remark

1. Simplify the definition. For example (5) may follow from
other conditions.

2. If F ′ and F ′′ satisfy (1)–(5). Then F ′∪F ′′ satisfy (1)–(5).
So what is the largest such F .

3. F2 consists of all ci in K[x1, x2].

4. F3 contains all ci I in K[x1, x2, x3] such that I : xk3 is a ci for
all k = 1, 2, . . ..

At least this gives us a new proof all ci in K[x1, x2] are SL.
For ν = 3, if I is a ci and if there is a linear element l ∈ R such

that I : lk is a ci for all k, then I has the SLP.
We can use the same picture.
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Consider this diagram for A = K[x1, x2]/(F1, F2). z is a linear element.
Coloning by z the ideal is a ci. (I : zk) + z is an principal ideal in
K[x].

The last red circle = last black circle.
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A ⊃ (0 : lp) ⊃ (0 : lp−1) ⊃ · · · (0 : l2) ⊃ (0 : l) ⊃ 0A.

Add l

A ⊃ (0 : lp) + l ⊃ (0 : lp−1) + l ⊃ · · · (0 : l2) + l ⊃ (0 : l) + l ⊃ (l).

Take quotient

(0 : lj) + (l)

(0 : lj−1) + (l)

Equivalently,

A ⊃ (l) ⊃ (l2) ⊃ (l3) ⊃ · · · ⊃ (lm) = (0A).

Intersect with 0 : l

(0 : l) ⊃ (l) ∩ (0 : l) ⊃ (l2) ∩ (0 : l) ⊃ (l3) ∩ (0 : l) ⊃ · · · ⊃ (lm) ∩ (0 : l) = (0).

Take quotient

(lj−1) ∩ (0 : l)

(lj) ∩ (0 : l)
=

(
(0 : lj) + l

(0 : lj−1) + l

)∗
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It remains to find examples where this theorem is applicable.
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(generalized) Newton’s identity

Newton’s identity consists of two parts.
f1
f2
f3
...
fn

 =


w1 0 0 · · · 0
f1 w2 0 · · · 0
f2 f1 w3 · · · 0
... . . . . . . ...

fn−1 fn−2 · · · f2 f1 wn




e1
−e2
e3
...

(−1)n−1en


fk =

n∑
j=1

(−1)j−1fk−jej, k > n.

Recall that

fk =

{∑n
j=1 x

k
j if w1, w2, · · · , wn = (1,2,3, . . . , n)∑

k1+···+kn=k x
k1
1 x

k2
2 · · · xknn if w1, w2, . . . , wn=(1,1, . . . , 1)

These are power sum and complete symmetric polynomials.
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Proposition

Suppose n = 3. Then (fd, fd+1, fd+2) : xk3 for all k = 0, 1, 2, · · · ,
(fd, fd+1, fd+2) : x

k
3 ∈ F3 for all k = 0, 1, 2, · · · , as long as it is not 0.

Proposition

Suppose n ≥ 4. If wi = 1−qi

1−q for some q ∈ K, then

(fd, fd+1, . . . , fd+n−1) : x
k
n for all k = 0, 1, 2, · · · , (fd, fd+1, . . . , fd+n−1) :

xkn ∈ Fn for all k = 0, 1, 2, · · · , as long as it is not 0.

Remark

If q = 0, then (w1, . . . , wn) = (1, 1, . . . , 1). If q = 1, then
(w1, . . . , wn) = (1, 2, . . . , n).
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Suppose fk satisfies (generalized) Newton’s identity with arbitrary
weights w = (w1, . . . , wn). w1w2 · · ·wn ̸= 0.

Theorem

If n = 3,

1. (fd, fd+1, fd+2) ∈ F3 for all d ≥ 2.

2. (x1x2, fd, fd+1) ∈ F3.

3. (x1 + x2, x1x2, fd) ∈ F3. (fd could be replaced by xd3.)

For n ≥ 4 it is not true that

(f1, . . . , fn) : x
k
n is a ci for all k.

But if w = (w1, . . . , wn) is of the form

(w1, . . . , wn) = (
1− q

1− q
,
1− q2

1− q
, . . . ,

1− qn−1

1− q
)

this is true and the above theorem generalizes.

(w1, w2, . . . , wn) = (1, 1, . . . , 1), (1, 2, . . . , n)
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Suppose fk satisfies the Newtons’s identity with weights w = (w1, . . . , wn).
ei is the elementary symmetric polynomial in x1, · · · , xn−1. We have
the following theorem.

Suppose n ≥ 4. (w1, . . . , wn) = (1, 1−q2

1−q , . . . ,
1−qi

1−q ).

Theorem

(0) (fd, fd+1, . . . , fd+n−1) ∈ Fn for all d ≥ 2.

(1) (en−1, fd, . . . , fd+n−2︸ ︷︷ ︸
n−1

) ∈ Fn.

(2) (en−2, en−1, fd, . . . , fd+n−2︸ ︷︷ ︸
n−2

) ∈ Fn.

(k) (en−k, · · · , en−1︸ ︷︷ ︸
k

, fd, fd+1, · · · , fd+n−k︸ ︷︷ ︸
n−k

) ∈ Fn.

(n-1) (e1, e2, · · · , en−1︸ ︷︷ ︸
n−1

, fd) ∈ Fn. (fd can be replaced by xdn.)

(n) (e1, e2, · · · , en−1, xn) ∈ Fn.

In particular (f1, . . . , fn) : x
k
n are ci for all k = 0, 1, 2, . . . ,.
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This is the end of my talk.

Thank you for listening.


