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Lemma (Ikeda, 1996)

(1) Suppose A is a graded Artinian algebra and (4,[) is SL.
Then (A = Az]/(2%),] + 2) is SL. (z is a new variable.)

Corollary
Suppose (A,l) is SL. Then
(2) (Alz1,- -5 2ml/(23, .., 22, + 21+ -+ 2,,) is SL.
(3) (Alyl/(y™*), 1 +y) is SL.

(4) Monomial ci (complete intersections) are SL.

Proof. (1) can be proved by a diagram chasing. (2) is immediate
from (1). (3) follows from (2) by Subring Thm:

Alyl/ (") = Alzr, -zl /(2 2):
Yy—z21+-+ 2z,
Both have the same socle degree. To prove (3) = (4) induct on n.



We can extend this theorem as follows:

Proposition

Suppose A = K|zy,...,x,]/I is a complete intersection. Suppose
a power of a linear element can be a minimal basis of /. I.e.,

I = (fla"')fn—lylm>7l S Rl

Let z be the image of | in A. Then we have: A/(z) is SL = A is
SL. L.e., to prove SLP of A it is enough to prove SLP of A/(z).

z is the image of [ in A.
Proof. We can use the flat extension theorem, because we have

the coexact sequence

Klyl/(y™) = A — A/(z).
The flat extension theorem itself follows from
def m— m
G=GCGr(A)= A/z) @ (2)/(Z) @@ (2" ) /(2"

= (A/(2) [/ (™).
(G is SL by Ikeda’s Lemma.
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Theorem

(Harima—Watanabe 2007)
“Ais at least as good as Gr(,)(A)”

Suppose A = ®&¢ ,A; is an Artinian Gorenstein ring. Suppose
ze Ay, If

G =Gr)(A) = A/ (2) ® (2)/(z°) ® () /(") @ - - @ () /(z")

has SLP, then A has SLP. Lefschetz element of G is L + z*.
I am trying to find complete intersections A for which G = Gr(,)(A)
can be computed and prove that it has SLP.

Examples of ci in which a power of a linear element can be a
minimal basis of a ci:



Examples: [* can be a basis element of I.

d
1. [ = (2", ..., 2.

2. [ =(eq,...,e,), ¢, the elementary symmetric polynomial.

3.1 = (hg,hays-..,hgin—1). h; the complete symmetric polyno-
mial.

4. I = (e1(y),ea(y),-..,enly)),  where (y1,...,y,) = (7,...,27).
5.1 =(e1(y),e2y),...,en1(y),(x1---z,)"), same e(y) for k < n.
Proof. (1) [ = x,,.

(2) e, can be replaced by x'. [ +x, = (€1,...,€,_1,%y)-

(3) hgin_1 can be replaced by x4~ I + 2, = (hq, ..., hitn_o,Tn)-

n

sd

n L]

(4) e,(y) can be replaced by z
(5) Similar to (4).

In these examples we can induct on n and use flat extension thm.



Generalize these examples

Drop the condition “/* can be a minimal basis element” in this

proposition but try to use the implication

G = GT(Z)(A) is SL = A is SL.

What condition do I need on A and xz: A — A.



To understand

G=G.(A)F Ao () e () (e
we have to understand the sequence

o AJ(0: ) = AJ(0:2) = AJ(0:2) = A

because

AJ0:2) 1 2=A/0: 2% = (27
AN((0:2):2) 2= A/0:2°) = (%)

This sequence is close to
0C (™) C---C(2°) C(2) C A

(There is a shift of degrees.) If we know the dimensions of
these vector spaces, we know the Jordan type of 2 : A — A.




It is convenient to denote the short exact sequence
0—=R/(I:])—>R/I—-R/(I+1)—0
by the diagram:

[=1:10° A R/T

T ,/.\. T+ A/(O:z)‘/.\. AJ(2)

z is the image of [ € R in A.

We may think of nodes as ideals or Artinin algebras.



In a general set up, we can obtain the Jordan type for

Xz &€ EndK(A)

by the diagram like this.

This depicts coloning by z and adding
ideal is strictly expanded, but they can ke e
seires is known for (I : [*) + [ for all k >
Jordan type x/: A — A is known.

~NColoning by z the
al mod z. If Hilbert

he last red node = last black node.
Note (A/(0: 2)) 1] = (z) and

H(A) = H(A/2) + H(AJO : 2)[T]

So the diagram can be used to find the Hilbert series of A, if we
know the Hilbert series of A/((0: 2*) + 2) for all k.
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We consider A = K[z, x9, 23]/ (27,23, 23). B = Klxy, 19, 23]/ (23, 23, 23),

z = I3.
H(A) =1+3T + 6T+ 8T* + 8T* +6T° + 3T° + T7 (1)
=(14+2T +3T° + 2T + TH(A + T + T + T°) (2)
=14+ 2T +37°% +21° + T* (3)
+ T +207% +37°% 4+ 2T 4+ T° (4)
7 T 4273 + 3T +27° + T° (5)
V + T3 42T+ 37° + 210 + T7 (6)
N% .

H(B)=1+3T+6T%+7T° + 6T*+ 3T° + T°.

<

y H(B/(z3)) =1+ 2T + 3T% + 273 + T,
N2 H(B/(0:2)+x3) =1+ 2T + 3T% + 273 + T4,
H(B/(0:a3) +x3) =1+42T +3T*+21° + T
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Generally, the Jordan type of xz: A — A is
Xz=J1 DS DD J,, J;, a Jordan block.

In a flat extension the Jordan block for xz is the conjugate of

m

I.e.,
(mm,- - m).

“/”

A/ (2)]
The number of Jordan blocks is |A/(z)|, the size is m.

{14,2,2°,---,2" Y C A, is a Jordan block

A lift of an element in A/(z) behaves, more or less, in the same way,
but it will give us a smaller block.

In the next diagram we consider A = Klxy, xo, x3]/(2], 23, 23), z =

r9 + x3. It will be shown that the h-vector can be decomposed
adjusted at the middle.



This depicts coloning by [ and adding of /.-

A=R/I, I=(x3},235,23), | =23+ x3., 2 =1 mod I.

(2) A/(z)
(2%) =2 A/(0: 2 A/((0:2)+ 2)
(%)= A/(0: 2 7A/((0: 22) + 2)

7A/((0: 2% + 2)

A/ ()| =9,|A/(0:2)+ 2| =6

This shows xz : A — A has 9 blocks, xz: A/(0:z) — A/(0: z) has 6
blocks. Hence xz: A — A has 3 blocks of size 1. We can proceed by

induction.
|[H(A/(0: 2°) + 2)| =6,

[H(A/((0:2%) + 2))| = [H(A/((0: =)

+2))| = 3.



1S

So the Young diagram for this map xz: A — A

A=R/I, I=(x3},235,23), | =23+ x3., 2 =1 mod I.

L] OO0 0O 0O 4

O] O OO O U

O O OO O

] O O

1 O O

L] OO O

[]

[]

- (1) = A/(0 A/()] = ¢

(2%) = A/(0: 24 IA/((0: 2)+2)| =6

(5 2 A/(0: 7 A\AJ(0: ) + 2)| = 6

A/((0: ) +2) =3
Z1A4/((0: 2 + ) =3

13
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A/ (2)] =9,14/(0: 2) + 2| = 6

This shows xz : A — A has 9 blocks, xz: A/(0:z2) — A/(0: z) has 6
blocks. Hence xz: A — A has 3 blocks of size 1. We can proceed by
induction.

H(A/(0: 2) +2)| =6,
HA/(0: 2% + 2))| = [H(A/((0: %) + 2))] = 3
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we can put its degree in each box.

0] [1] [2] [3] [4] o] (1] [2] [3] [4]
1] [2] [3] [4] [5] 1] (2] [3] [4] [5]
2] [3] [4] [6] [6] 2] (3] [4] [6] [6
1] [2] [3 1] (2] [3]
2] [3] [4 2] (3] [4]
3] [4] [5 3] [4] [5]
2] 2]
3] 3]
4]
1367631
Proposition

It is possible to decompose the graded vector space A into
smaller spaces with symmetric h-vectors adjusted at the cen-
ter. (We need the assumption A has a symmetric h-vector.)
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What condition do I need to conclude A has SLP, provided we know
A/((0:2))+ z,) for all  =0,1,2,---7

All

Remark

(0:2F) + 2

for £=0,1,2,...
(0: 281 + 2 o T

are A/(z)-modules, symmetric h-vector. In general these are
not algebra, but sometimes they have an algebra structure!
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So this was a motivation for central simple modules. Let me ex-
plain the “central modules” for xz: A — A.

Central simple modules for xz: A — A

block in the Jordan decomposition is an n; X n; matrix like

. (X2)=J1®o®--- D J. can be described as a list of sizes.

©©©©>

o O O

C
00
10
01
00
The Jordan type can be expressed as a decreasing sequence of

integers:
@1,...,nl,pg,...,ng,pg,...,n;)},@%...,né,

4 >4
Ve Vg Vg V.

mi m m3 myq

where ny > ny > --- > ny. A Young diagram

N [
N [
Lot

can be used to depict the map xz: A — A. U is a basis element of
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A and xz sends a box to the next box on its right.

The number of blocks in the Jordan decomposition of xz: A — A
is equal to |A/(z)| =10 z|.

So to find a Jordan decomposition, choose a1, ...,a, € A such that
A= {ay,...,a,) + (2), apply xz to these elements and see when they
reach zero.

This 1s shown in the next picture.



def (O ) Z) M (Zn2>

=0 A e

def (%) + (2™) def (01 2) N (2")
s = (2) 4+ (0 : 2m3) Vs = (0:2) N (2m2)
def (2) +(0: 2"™) def (0 2) N (2")
R P () R (F IeT ey

def (0: 2"™) + (2)

Central modules| U, = V" = 0 2 + (=)

AD0:2"20:2"20:2"20: 2" 2D (0)
A2 (M) 2(2%) 2 (27) 2 (2") 2 (0)

19



Uy

Central modules

20
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all U; have SLP, then G,

non-zero terms from ((EOZ Z)HZ and U,

Theorem

Suppose A is a graded Gorenstein algebra. z € Aj.

(0 1— 1)+Z j )
)(A) has the SLP.

Pick up
s If

Proof. Consider Gr(,)(A) det Al/2)@ (2)/C) @ (22)/(2?) - -

P Uk ® K[2]/ (")

SLP of Gr(,(A) follows from SLP of U;.

This is close to the sum

@ (2)/ ().



Before we state our main result, make two remarks.

Lemma

If [ isaciand if [ :[ is a ci for a linear form in R, then [ + (])
is a cl.

Proof. This is not quite obvious, but this can be proved.

Lemma

Suppose J/I is a principal module. Then (J/I) = R/(I : f) for
some [ € R.

Proof. J =1+ f for some f. Hence J/I = (I + f)/I = R/I : f.

22



- W N =

. All central modules U; =

Definition(Tentative) “Bianry tree of ci’s”

F=U_F

. F,={1 C K[zy,...,2,] | I is an Artinian ci.}.

.For I € F,,[:x,€ F as long as z, € I.

. For any I € F, there exists J € F,_; such that [ + z, =

JR, + x,.

(L:zp)+(z)
(I:xlﬁ_l)+(:{:,/)
isomorphic to R, ;/J for some J € F, ;).

are principal (so it is

Theorem

All members of F have SLP.

23
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Remark

1. Simplify the definition. For example (5) may follow from
other conditions.

2. If 7' and F” satisfy (1)—(5). Then F'|JF”" satisfy (1)—(5).
So what is the largest such F.

3. F, comsists of all ci in K|z, x9].

4. F3 contains all ci I in K[z, 2o, 73] such that I : 2% is a ci for
all k=1,2,....

At least this gives us a new proof all ci in K|z, 25| are SL.
For v = 3, if [ is a ci and if there is a linear element [ € R such
that [ :[* is a ci for all k, then I has the SLP.

We can use the same picture.
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Consider this diagram for A = K|xy, x5]/(F1, F3). 2z is a linear element.
Coloning by z the ideal is a ci. (I : z¥) + z is an cipal ideal In
K|x].

he last red circle = last black circle.



ADO: ) D0: " HD---(0:1*)D(0:1) D04
Add |
ADO: )Y +ID0: P H+1D--(0:)+ID0:D)+1>D().
Take quotient
(0: 1)+ (1)
(0:17=1) + (1)

Equivalently,
ADD) D)D) DD =(04).
Intersect with 0 :/
O:D>ONO:D>FNO:D>E)NO0:D)D---2>I™N0:1)=0).
Take quotient

E=Hn©:1) (Ozlﬂ')+l>*
NnoO:1) ((0:1ﬁ—1)+l

26



It remains to find examples where this theorem is applicable.
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(generalized) Newton’s identity

Newton’s identity consists of two parts.

( g\

7./

Recal] that
no_k
Je = 217
Zk1+-~-+kn=k¢
These are power

f3 ] =

{1})11 0 0 0\( e \

wy 0 --- 0 —€
f2 fl wg -+ 0 €3

ot fos oo fiown) \(—1) e, )

n

fr=3 (1Y fije;, k>n.

J=1

if wy,wy, - ,w, = (1,2,3, ..., n)

k1, ko kn,

ritay? - if wy,wo, L w,=(1,1, ..y 1)

sum and complete symmetric polynomials.

28



Proposition

Suppose n = 3. Then (fi, fir1, fae2) : 25 for all k = 0,1,2,---,

(f4, fas1, fare) s 25 € Fs for all k =0,1,2,--- , as long as it is not 0.
Proposition
Suppose n > 4. If w, = 11__22 for some ¢ € K, then
(fd7 fd-|-17 SR fd-l—n—l) : ZCﬁ for all k£ = 07 1727 Tty <fd7 fd—l—la R fd—l—n—l) :
vk e F, for all k=0,1,2,---, as long as it is not 0.
Remark

If ¢ = 0, then (wy,...,w,) = (1,1,...,1). If ¢ = 1, then
(wy, ..., wp) =(1,2,...,n).

29
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Suppose f; satisfies (generalized) Newton’s identity with arbitrary

weights w = (w1, ..., w,). wws---w, # 0.

If n =3,

2. (x129, fa, fa11) € Fs.

Theorem

1. (fd; fd+17 fd+2> € F3 for all d > 2.

3. (z1 + 29, 1129, f1) € F3. (fs could be replaced by 24.)

For n > 4 it is not true that

(fi,..., fs): 2F is a ci for all k.

But if w = (wy,...,w,) is of the form
1—q1—q2 1—q”_1
(wy, ..., wy) = ( : e, ————)
l—q¢ 1—¢q 1 —q

this is true and the above theorem generalizes.

<w17w27 I 7wn)

—(1,1,...

1), (1,2, ...

)
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Suppose f; satisfies the Newtons’s identity with weights w = (wy, ...,
e; is the elementary symmetric polynomial in z,--- ,2,_1. We have
the following theorem.

Suppose n > 4. (wy,...,w,) = (1, 11—qu, L 11__‘2)
Theorem

(O) <fd7 fd+1, Ce fd+n—1> e F, for all d > 2.
(1) <én—17fd7 T fd+n—g> < Fn

n—1
(2) (En—27€n—1,fd7 S fd—l-n—g) € Fn.
n—2
(k) @nts s €1, Ja, far1,  , farn—t) € Fu
) n—k

(n-1) (&1,€, " , €1, fa) € Fn. (f4 can be replaced by 2.)

ntl

(n) <€17€27 N 7En—laxn> S F .

In particular (fi,..., f,): 2" are ci for all k=0,1,2,.....



This 1s the end of my talk.
Thank you for listening.
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