Binary Trees of ideals

June 28, 2024, Krakow–Poland Junzo Watanabe

Joint work with T.Harima and S.Isogawa

Revised Thuesday, 20 June, 2024

1

Lemma (Ikeda, 1996)

(1) Suppose A is a graded Artinian algebra and (A, l) is SL. Then $(\tilde{A} = A[z]/(z^2), l+z)$ is SL. (z is a new variable.)

Corollary

Suppose (A, l) is SL. Then

(2)
$$(A[z_1, \ldots, z_m]/(z_1^2, \ldots, z_m^2), l + z_1 + \cdots + z_m)$$
 is SL.

(3) $(A[y]/(y^{m+1}), l+y)$ is SL.

(4) Monomial ci (complete intersections) are SL.

Proof. (1) can be proved by a diagram chasing. (2) is immediate from (1). (3) follows from (2) by Subring Thm:

$$A[y]/(y^{m+1}) \hookrightarrow A[z_1,\ldots,z_m]/(z_1^2,\ldots,z_m^2).$$

 $y \mapsto z_1 + \cdots + z_m$

Both have the same socle degree. To prove $(3) \Rightarrow (4)$ induct on n.

We can extend this theorem as follows:

Proposition

Suppose $A = K[x_1, ..., x_n]/I$ is a complete intersection. Suppose a power of a linear element can be a minimal basis of *I*. I.e.,

$$I = (f_1, \ldots, f_{n-1}, l^m), l \in R_1$$

Let z be the image of l in A. Then we have: A/(z) is $SL \Rightarrow A$ is SL. I.e., to prove SLP of A it is enough to prove SLP of A/(z). z is the image of l in A.

Proof. We can use the flat extension theorem, because we have the coexact sequence

$$K[y]/(y^m) \hookrightarrow A \twoheadrightarrow A/(z).$$

The flat extension theorem itself follows from

$$G = Gr_{(z)}(A) \stackrel{\text{def}}{=} A/(z) \oplus (z)/(z^2) \oplus \dots \oplus (z^{m-1})/(z^m)$$
$$\cong (A/(z))[y]/(y^m).$$

G is SL by Ikeda's Lemma.

Theorem

(Harima–Watanabe 2007)

"A is at least as good as $Gr_{(z)}(A)$ "

Suppose $A = \bigoplus_{i=0}^{c} A_i$ is an Artinian Gorenstein ring. Suppose $z \in A_1$. If

$$G = Gr_{(z)}(A) = A/(z) \oplus (z)/(z^2) \oplus (z^2)/(z^3) \oplus \dots \oplus (z^m)/(z^{m+1})$$

has SLP, then A has SLP. Lefschetz element of G is $\overline{L} + z^*$. I am trying to find complete intersections A for which $G = Gr_{(z)}(A)$ can be computed and prove that it has SLP.

Examples of ci in which a power of a linear element can be a minimal basis of a ci:

Examples:
$$l^k$$
 can be a basis element of I .
1. $I = (x_1^{d_1}, \ldots, x_n^{d_n})$.
2. $I = (e_1, \ldots, e_n)$, e_k the elementary symmetric polynomial.
3. $I = (h_d, h_{d_1}, \ldots, h_{d+n-1})$. h_k the complete symmetric polynomial.
4. $I = (e_1(y), e_2(y), \ldots, e_n(y))$, where $(y_1, \ldots, y_n) = (x_1^s, \ldots, x_n^s)$.
5. $I = (e_1(y), e_2(y), \ldots, e_{n-1}(y), (x_1 \cdots x_n)^r)$, same $e_k(y)$ for $k < n$.
Proof. (1) $l = x_n$.

(2) e_n can be replaced by xⁿ_n. I + x_n = (ē₁,..., ē_{n-1}, x_n).
(3) h_{d+n-1} can be replaced by x^{d+n-1}_n. I + x_n = (h
d_d,..., h
d_{d+n-2}, x_n).
(4) e_n(y) can be replaced by x^{sd}_n.
(5) Similar to (4).

In these examples we can induct on n and use flat extension thm.

Generalize these examples

Drop the condition " l^k can be a minimal basis element" in this proposition but try to use the implication

 $G = Gr_{(z)}(A)$ is $SL \Rightarrow A$ is SL.

What condition do I need on A and $\times z : A \to A$.

To understand

$$G = G_z(A) \stackrel{\text{def}}{=} A/(z) \oplus (z)/(z^2) \oplus (z^2)/(z^3) \oplus \cdots$$

we have to understand the sequence

$$\cdots \hookrightarrow A/(0:z^3) \hookrightarrow A/(0:z^2) \hookrightarrow A/(0:z) \hookrightarrow A$$

because

$$A/(0:z) \cong (z)$$

$$A/(0:z): z = A/(0:z^2) \cong (z^2)$$

$$A/((0:z):z): z = A/(0:z^3) \cong (z^3)$$
:
:

This sequence is close to

$$0 \subset (z^m) \subset \cdots \subset (z^2) \subset (z) \subset A.$$

(There is a shift of degrees.) If we know the dimensions of these vector spaces, we know the Jordan type of $z : A \to A$.

It is convenient to denote the short exact sequence

$$0 \to R/(I:l) \to R/I \to R/(I+l) \to 0$$

by the diagram:

z is the image of $l \in R$ in A.

٠

We may think of nodes as ideals or Artinin algebras.

In a general set up, we can obtain the Jordan type for

$$\times z \in \operatorname{End}_K(A)$$

by the diagram like this.

This depicts coloning by z and adding of z. Coloning by z the ideal is strictly expanded, but they can be equal mod z. If Hilbert seires is known for $(I : l^k) + l$ for all $k \ge 0$, Jordan type $\times l : A \to A$ is known.

 $\mathbf{F} he \text{ last red node} = \text{last black node}.$

Note $(A/(0:z))[1] \cong (z)$ and

$$H(A) = H(A/z) + H(A/0:z)[T]$$

So the diagram can be used to find the Hilbert series of A, if we know the Hilbert series of $A/((0 : z^k) + z)$ for all k.

We consider $A = K[x_1, x_2, x_3]/(x_1^3, x_2^3, x_3^4)$. $B = K[x_1, x_2, x_3]/(x_1^3, x_2^3, x_3^3)$, $z = x_3$.

$$H(A) = 1 + 3T + 6T^{2} + 8T^{3} + 8T^{4} + 6T^{5} + 3T^{6} + T^{7}$$
(1)
$$-(1 + 2T + 2T^{2} + 2T^{3} + T^{4})(1 + T + T^{2} + T^{3})$$
(2)

$$=(1+2T+3T^{2}+2T^{3}+T^{4})(1+T+T+T)$$
(2)
$$=1+2T+3T^{2}+2T^{3}+T^{4}$$
(3)

$$+T + 2T^{2} + 3T^{3} + 2T^{4} + T^{5}$$

$$+T^{2} + 2T^{3} + 3T^{4} + 2T^{5} + T^{6}$$

$$+T^{3} + 2T^{4} + 3T^{5} + 2T^{6} + T^{7}$$

$$(6$$

 $H(B) = 1 + 3T + 6T^2 + 7T^3 + 6T^4 + 3T^5 + T^6.$

 $H(B/(x_3)) = 1 + 2T + 3T^2 + 2T^3 + T^4.$ $H(B/(0:x_3^1) + x_3) = 1 + 2T + 3T^2 + 2T^3 + T^4.$ $H(B/(0:x_3^2) + x_3) = 1 + 2T + 3T^2 + 2T^3 + T^4.$ Generally, the Jordan type of $\times z : A \to A$ is

 $\times z = J_1 \oplus J_2 \oplus \cdots \oplus J_r, \quad J_i$, a Jordan block.

In a flat extension the Jordan block for $\times z$ is the conjugate of

$$(\underbrace{|A/(z)|,\cdots,|A/(z)|}_{m}).$$

I.e.,

$$(\underbrace{m,m,\cdots,m}_{|A/(z)|}).$$

The number of Jordan blocks is |A/(z)|, the size is m.

 $\{1_A, z, z^2, \cdots, z^{m-1}\} \subset A$, is a Jordan block

A lift of an element in A/(z) behaves, more or less, in the same way, but it will give us a smaller block.

In the next diagram we consider $A = K[x_1, x_2, x_3]/(x_1^3, x_2^3, x_3^3)$, $z = x_2 + x_3$. It will be shown that the h-vector can be decomposed adjusted at the middle.

This depicts coloning by l and adding of l.

$$A = R/I, I = (x_1^3, x_2^3, x_3^3), l = x_2 + x_3, z = l \mod I.$$

$$|A/(z)| = 9, |A/(0:z) + z| = 6$$

This shows $\times z : A \to A$ has 9 blocks, $\times z : A/(0 : z) \to A/(0 : z)$ has 6 blocks. Hence $\times z : A \to A$ has 3 blocks of size 1. We can proceed by induction.

$$|H(A/(0:z^2) + z)| = 6,$$

$$|H(A/((0:z^3) + z))| = |H(A/((0:z^3) + z))| = 3.$$

So the Young diagram for this map $\times z : A \to A$

$$|A/(z)| = 9, |A/(0:z) + z| = 6$$

This shows $\times z : A \to A$ has 9 blocks, $\times z : A/(0 : z) \to A/(0 : z)$ has 6 blocks. Hence $\times z : A \to A$ has 3 blocks of size 1. We can proceed by induction.

$$|H(A/(0:z^2) + z)| = 6,$$

$$|H(A/((0:z^3) + z))| = |H(A/((0:z^3) + z))| = 3.$$

Each box has a degree. So we can put its degree in each box.

1 3 0 7 0 3 1

Proposition

It is possible to decompose the graded vector space A into smaller spaces with symmetric h-vectors adjusted at the center. (We need the assumption A has a symmetric h-vector.) What condition do I need to conclude A has SLP, provided we know $A/((0:z_n^j) + z_n)$ for all $i = 0, 1, 2, \dots$?

not algebra, but sometimes they have an algebra structure!

So this was a motivation for central simple modules. Let me explain the "central modules" for $\times z : A \to A$.

Central simple modules for $\times z : A \to A$

A block in the Jordan decomposition is an $n_1 \times n_1$ matrix like $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. $(\times z) = J_1 \oplus J_2 \oplus \cdots \oplus J_r$ can be described as a list of sizes.

The Jordan type can be expressed as a decreasing sequence of integers:

$$\underbrace{n_1,\ldots,n_1}_{m_1},\underbrace{n_2,\ldots,n_2}_{m_2},\underbrace{n_3,\ldots,n_3}_{m_3},\underbrace{n_4,\ldots,n_4}_{m_4},$$

where $n_1 > n_2 > \cdots > n_4$. A Young diagram

can be used to depict the map $\times z : A \to A$. \Box is a basis element of

A and $\times z$ sends a box to the next box on its right.

The number of blocks in the Jordan decomposition of $\times z : A \to A$ is equal to |A/(z)| = |0:z|.

So to find a Jordan decomposition, choose $a_1, \ldots, a_r \in A$ such that $A = \langle a_1, \ldots, a_r \rangle + \langle z \rangle$, apply $\times z$ to these elements and see when they reach zero.

This is shown in the next picture.

Theorem

Suppose A is a graded Gorenstein algebra. $z \in A_1$. Pick up non-zero terms from $\frac{(0:z^{i-1})+z}{(0:z^i)+z}$ and $U_j = \frac{(0:z^i)+z}{(0:z^{i-1})+z}$, $j = 1, \ldots, s$. If all U_j have SLP, then $Gr_{(z)}(A)$ has the SLP.

Proof. Consider $Gr_{(z)}(A) \stackrel{\text{def}}{=} A/(z) \oplus (z)/(^2) \oplus (z^2)/(z^3) \cdots \oplus (z^p)/(z^{p+1})$. This is close to the sum

$$\bigoplus U_k \otimes K[z]/(z_k^{a_k}).$$

SLP of $Gr_{(z)}(A)$ follows from SLP of U_k .

Before we state our main result, make two remarks.

Lemma

If *I* is a ci and if I : l is a ci for a linear form in *R*, then I + (l) is a ci.

Proof. This is not quite obvious, but this can be proved.

Lemma

Suppose J/I is a principal module. Then $(J/I) \cong R/(I : f)$ for some $f \in R$.

Proof. J = I + f for some f. Hence $J/I = (I + f)/I \cong R/I : f$.

Definition(Tentative) "Bianry tree of ci's"
1.
$$\mathcal{F} = \bigcup_{\nu=1}^{\infty} \mathcal{F}_{\nu}$$

2. $\mathcal{F}_{\nu} = \{I \subset K[x_1, \dots, x_{\nu}] \mid I \text{ is an Artinian ci.}\}.$
3. For $I \in \mathcal{F}_{\nu}$, $I : x_{\nu} \in \mathcal{F}$ as long as $x_{\nu} \notin I$.
4. For any $I \in \mathcal{F}_{\nu}$ there exists $J \in \mathcal{F}_{\nu-1}$ such that $I + x_n = JR_{\nu} + x_n$.
5. All central modules $U_j = \frac{(I:x_{\nu}^k) + (x_{\nu})}{(I:x_{\nu}^{k-1}) + (x_{\nu})}$ are principal (so it is isomorphic to $R_{\nu-1}/J$ for some $J \in \mathcal{F}_{\nu-1}$).
Theorem
All members of \mathcal{F} have SLP.

Remark

- 1. Simplify the definition. For example (5) may follow from other conditions.
- 2. If \mathcal{F}' and \mathcal{F}'' satisfy (1)–(5). Then $\mathcal{F}' \bigcup \mathcal{F}''$ satisfy (1)–(5). So what is the largest such \mathcal{F} .
- **3.** \mathcal{F}_2 consists of all ci in $K[x_1, x_2]$.
- 4. \mathcal{F}_3 contains all ci I in $K[x_1, x_2, x_3]$ such that $I : x_3^k$ is a ci for all $k = 1, 2, \ldots$

At least this gives us a new proof all ci in $K[x_1, x_2]$ are SL. For $\nu = 3$, if I is a ci and if there is a linear element $l \in R$ such that $I : l^k$ is a ci for all k, then I has the SLP.

We can use the same picture.

Consider this diagram for $A = K[x_1, x_2]/(F_1, F_2)$. z is a linear element. Coloning by z the ideal is a ci. $(I : z^k) + z$ is an principal ideal in K[x].

$$A \supset (0:l^p) \supset (0:l^{p-1}) \supset \cdots (0:l^2) \supset (0:l) \supset 0_A.$$

$$\mathbf{Add} \ l$$

$$A \supset (0:l^p) + l \supset (0:l^{p-1}) + l \supset \cdots (0:l^2) + l \supset (0:l) + l \supset (l).$$

$$\mathbf{Take \ quotient}$$

$$\frac{(0:l^j) + (l)}{(0:l^{j-1}) + (l)}$$

Equivalently,

$$A \supset (l) \supset (l^2) \supset (l^3) \supset \cdots \supset (l^m) = (0_A).$$

Intersect with 0:l

 $(0:l) \supset (l) \cap (0:l) \supset (l^2) \cap (0:l) \supset (l^3) \cap (0:l) \supset \cdots \supset (l^m) \cap (0:l) = (0).$

Take quotient

$$\frac{(l^{j-1}) \cap (0:l)}{(l^j) \cap (0:l)} = \left(\frac{(0:l^j) + l}{(0:l^{j-1}) + l}\right)^*$$

It remains to find examples where this theorem is applicable.

(generalized) Newton's identity

Newton's identity consists of two parts.

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} w_1 & 0 & 0 & \cdots & 0 \\ f_1 & w_2 & 0 & \cdots & 0 \\ f_2 & f_1 & w_3 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \cdots & f_2 & f_1 & w_n \end{pmatrix} \begin{pmatrix} e_1 \\ -e_2 \\ e_3 \\ \vdots \\ (-1)^{n-1}e_n \end{pmatrix}$$

$$f_k = \sum_{j=1}^n (-1)^{j-1} f_{k-j} e_j, \quad k > n.$$

Recall that

$$f_{k} = \begin{cases} \sum_{j=1}^{n} x_{j}^{k} & \text{if } w_{1}, w_{2}, \cdots, w_{n} = (1, 2, 3, \dots, n) \\ \sum_{k_{1} + \dots + k_{n} = k} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}} & \text{if } w_{1}, w_{2}, \dots, w_{n} = (1, 1, \dots, 1) \end{cases}$$
The set of t

These are power sum and complete symmetric polynomials.

Proposition

Suppose n = 3. Then $(f_d, f_{d+1}, f_{d+2}) : x_3^k$ for all $k = 0, 1, 2, \cdots$, $(f_d, f_{d+1}, f_{d+2}) : x_3^k \in \mathcal{F}_3$ for all $k = 0, 1, 2, \cdots$, as long as it is not 0.

Proposition

Suppose $n \geq 4$. If $w_i = \frac{1-q^i}{1-q}$ for some $q \in K$, then $(f_d, f_{d+1}, \ldots, f_{d+n-1}) : x_n^k$ for all $k = 0, 1, 2, \cdots, (f_d, f_{d+1}, \ldots, f_{d+n-1}) : x_n^k \in \mathcal{F}_n$ for all $k = 0, 1, 2, \cdots$, as long as it is not 0.

Remark

If q = 0, then $(w_1, \ldots, w_n) = (1, 1, \ldots, 1)$. If q = 1, then $(w_1, \ldots, w_n) = (1, 2, \ldots, n)$.

Suppose f_k satisfies (generalized) Newton's identity with arbitrary weights $w = (w_1, \ldots, w_n)$. $w_1 w_2 \cdots w_n \neq 0$.

Theorem

If n = 3, 1. $(f_d, f_{d+1}, f_{d+2}) \in \mathcal{F}_3$ for all $d \ge 2$. 2. $(x_1x_2, f_d, f_{d+1}) \in \mathcal{F}_3$. 3. $(x_1 + x_2, x_1x_2, f_d) \in \mathcal{F}_3$. (f_d could be replaced by x_3^d .) For $n \ge 4$ it is not true that

 (f_1,\ldots,f_n) : x_n^k is a ci for all k.

But if $w = (w_1, \ldots, w_n)$ is of the form

$$(w_1, \dots, w_n) = (\frac{1-q}{1-q}, \frac{1-q^2}{1-q}, \dots, \frac{1-q^{n-1}}{1-q})$$

this is true and the above theorem generalizes.

$$(w_1, w_2, \dots, w_n) = (1, 1, \dots, 1), (1, 2, \dots, n)$$

Suppose f_k satisfies the Newtons's identity with weights $w = (w_1, \ldots, \overline{e_i})$ is the elementary symmetric polynomial in x_1, \cdots, x_{n-1} . We have the following theorem.

Suppose $n \ge 4$. $(w_1, \ldots, w_n) = (1, \frac{1-q^2}{1-q}, \ldots, \frac{1-q^i}{1-q})$.

Theorem

(0)
$$(f_d, f_{d+1}, \dots, f_{d+n-1}) \in \mathcal{F}_n$$
 for all $d \ge 2$.
(1) $(\overline{e}_{n-1}, \underbrace{f_d, \dots, f_{d+n-2}}_{n-1}) \in \mathcal{F}_n$.
(2) $(\overline{e}_{n-2}, \overline{e}_{n-1}, \underbrace{f_d, \dots, f_{d+n-2}}_{n-2}) \in \mathcal{F}_n$.
(k) $(\underbrace{\overline{e}_{n-k}, \dots, \overline{e}_{n-1}}_{k}, \underbrace{f_d, f_{d+1}, \dots, f_{d+n-k}}_{n-k}) \in \mathcal{F}_n$.
(n-1) $(\underbrace{\overline{e}_1, \overline{e}_2, \dots, \overline{e}_{n-1}}_{n-1}, f_d) \in \mathcal{F}_n$. (f_d can be replaced by x_n^d .)
(n) $(\overline{e}_1, \overline{e}_2, \dots, \overline{e}_{n-1}, x_n) \in \mathcal{F}_n$.
In particular $(f_1, \dots, f_n) : x_n^k$ are ci for all $k = 0, 1, 2, \dots$,

This is the end of my talk. Thank you for listening.