Graphs giving algebras with the SLP

Filip Jonsson Kling June 24, 2024

Stockholm University

Let G be a finite simple graph on n vertices labelled $\{1, \ldots, n\}$ having edge set E(G).

Associated algebra $A(G) = k[x_1, \dots, x_n]/(I(G) + (x_1^2, \dots, x_n^2))$ where $I(G) = (x_i x_j | \{i, j\} \in E(G))$ and k is some field. Let G be a finite simple graph on n vertices labelled $\{1, \ldots, n\}$ having edge set E(G).

Associated algebra $A(G) = k[x_1, \ldots, x_n]/(I(G) + (x_1^2, \ldots, x_n^2))$ where $I(G) = (x_i x_j | \{i, j\} \in E(G))$ and k is some field.

Question

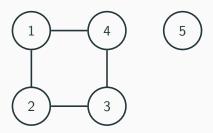
Given some numbers *n* of vertices and μ of edges that are possible for a simple graph, is there a simple graph *G* with that many vertices and edges such that A(G) has the SLP? Let G be a finite simple graph on n vertices labelled $\{1, \ldots, n\}$ having edge set E(G).

Associated algebra $A(G) = k[x_1, \ldots, x_n]/(I(G) + (x_1^2, \ldots, x_n^2))$ where $I(G) = (x_i x_j | \{i, j\} \in E(G))$ and k is some field.

Question

Given some numbers *n* of vertices and μ of edges that are possible for a simple graph, is there a simple graph *G* with that many vertices and edges such that A(G) has the SLP?

Altafi and Lundqvist classified all cases for which WLP is forced.



Here

 $A(G) = k[x_1, x_2, x_3, x_4, x_5] / (x_1^2, x_2^2, x_3^2, x_4^2, x_5^2, x_1x_2, x_2x_3, x_3x_4, x_1x_4)$ has the SLP.

1-2-3-4-5-6-7

Here $A(P_7) = k[x_1, ..., x_7]/(x_1^2, ..., x_7^2, I(P_7))$ has the SLP.

1-2-3-4-5-6-7

Here $A(P_7) = k[x_1, ..., x_7]/(x_1^2, ..., x_7^2, I(P_7))$ has the SLP.

1-2-3-4-5-6-7-8

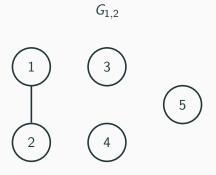
But $A(P_8) = k[x_1, \dots, x_8]/(x_1^2, \dots, x_8^2, I(P_8))$ fails the WLP.

Definition

Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.

Definition

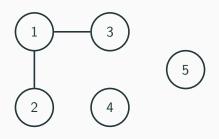
Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.



Definition

Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.

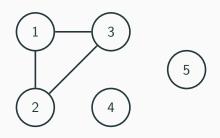
 $G_{1,3}$



Definition

Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.

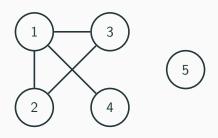
G_{2,3}



Definition

Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.

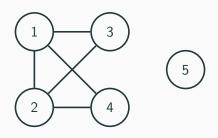
 $G_{1,4}$



Definition

Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.

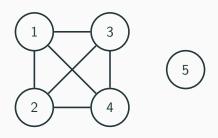
G_{2,4}



Definition

Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.

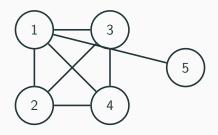
 $G_{3,4}$



Definition

Fix a number of vertices n. The graph $G_{i,j}$ is then obtained as a complete graph on j - 1 vertices connected to an additional vertex with i extra edges.

 $G_{1,5}$



Theorem

Let k be a field of characteristic zero. For any $1 \le i < j \le n$, $A(G_{i,j})$ has the SLP.

Theorem

Let k be a field of characteristic zero. For any $1 \le i < j \le n$, $A(G_{i,j})$ has the SLP.

Works also for k with characteristic larger than n.

Theorem

Let k be a field of characteristic zero. For any $1 \le i < j \le n$, $A(G_{i,j})$ has the SLP.

Works also for k with characteristic larger than n.

Corollary

For any n, μ , possible numbers of vertices and edges of a finite simple graph, there is a simple graph G with that many vertices and edges such that A(G) has the SLP.

Proposition

The Hilbert series of $A(G_{i,j})$ is given by

$$HS(A(G_{i,j});t) = (1+t)^{n-j}(1+jt+(j-i-1)t^2).$$

Proposition

The Hilbert series of $A(G_{i,j})$ is given by

$$\mathrm{HS}(A(G_{i,j});t) = (1+t)^{n-j}(1+jt+(j-i-1)t^2).$$

Corollary

The Hilbert series $HS(A(G_{i,j}); t)$ is a real-rooted polynomial. In particular, its coefficients form a log-concave and unimodal sequence.

Definition

A sequence of positive integers $(a_i)_{i=0}^n$ is *mid-heavy* if for $0 \le i < j \le n$, we have $a_i \le a_j$ gives $a_{i-1} \le a_{j+1}$ and $a_i \ge a_j$ gives $a_{i-1} \ge a_{j+1}$.

Definition

A sequence of positive integers $(a_i)_{i=0}^n$ is *mid-heavy* if for $0 \le i < j \le n$, we have $a_i \le a_j$ gives $a_{i-1} \le a_{j+1}$ and $a_i \ge a_j$ gives $a_{i-1} \ge a_{j+1}$.

Definition

Let *D* be the socle degree of an artinian algebra *A*. We say that $HS(A; t) = \sum_{i=0}^{D} h_i t^i$ is in the class \mathcal{H} if $h_{i-1} \leq h_{D-i} \leq h_i$ for all $1 \leq i \leq D/2$ or $h_{D-i+1} \leq h_i \leq h_{D-i}$ for all $1 \leq i \leq D/2$.

Definition

A sequence of positive integers $(a_i)_{i=0}^n$ is *mid-heavy* if for $0 \le i < j \le n$, we have $a_i \le a_j$ gives $a_{i-1} \le a_{j+1}$ and $a_i \ge a_j$ gives $a_{i-1} \ge a_{j+1}$.

Definition

Let *D* be the socle degree of an artinian algebra *A*. We say that $HS(A; t) = \sum_{i=0}^{D} h_i t^i$ is in the class \mathcal{H} if $h_{i-1} \leq h_{D-i} \leq h_i$ for all $1 \leq i \leq D/2$ or $h_{D-i+1} \leq h_i \leq h_{D-i}$ for all $1 \leq i \leq D/2$.

 $A = k[x_1, \ldots, x_n]/(x_1^2, \ldots, x_n^2)$ is both, but $k[x]/(x^3)$ is only of class \mathcal{H} .

Theorem (Lindsey, 11)

Let A be an algebra over a field k of characteristic zero with the SLP. Then HS(A; t) is in the class \mathcal{H} if and only if $A \otimes_k k[y]/(y^m)$ has the SLP for all $m \ge 0$.

Theorem (Lindsey, 11)

Let A be an algebra over a field k of characteristic zero with the SLP. Then HS(A; t) is in the class \mathcal{H} if and only if $A \otimes_k k[y]/(y^m)$ has the SLP for all $m \ge 0$.

Lemma

If $HS(A; t) = \sum_{i=0}^{D} a_i t^i$ with (a_i) mid-heavy, then HS(A; t) is in the class \mathcal{H} .

Theorem (Lindsey, 11)

Let A be an algebra over a field k of characteristic zero with the SLP. Then HS(A; t) is in the class \mathcal{H} if and only if $A \otimes_k k[y]/(y^m)$ has the SLP for all $m \ge 0$.

Lemma

If $\text{HS}(A; t) = \sum_{i=0}^{D} a_i t^i$ with (a_i) mid-heavy, then HS(A; t) is in the class \mathcal{H} .

Lemma

If p(t) is the generating function of a mid-heavy sequence, then so is (1 + t)p(t).

The proof

Corollary

The Hilbert series

$$HS(A(G_{i,j});t) = (1+t)^{n-j}(1+jt+(j-1-i)t^2)$$

is in the class \mathcal{H} .

]

The proof

Corollary

The Hilbert series

$$HS(A(G_{i,j});t) = (1+t)^{n-j}(1+jt+(j-1-i)t^2)$$

is in the class \mathcal{H} .

]

Theorem

 $A(G_{i,j})$ has the SLP.

The proof

Corollary

The Hilbert series

$$HS(A(G_{i,j});t) = (1+t)^{n-j}(1+jt+(j-1-i)t^2)$$

is in the class \mathcal{H} .

Theorem

 $A(G_{i,j})$ has the SLP.

Proof.

True if j = n. Else $\overline{A} = A(G_{i,j} \setminus \{n\})$ is another graph in our family. Then \overline{A} has the SLP and a Hilbert series of class \mathcal{H} . Hence $\overline{A} \otimes_k k[x_n]/(x_n^2) \cong A(G_{i,j})$ has the SLP.

Conjecture

Fix $n, d \ge 3$ and μ in the interval $[n, \binom{n+d-1}{d}]$. Then there is a monomial ideal I of $k[x_1, \ldots, x_n]$ minimally generated by μ monomials of degree d such that R/I has the SLP.

Thank you for listening!