The Strong Lefschetz Property for Modules over Clements-Lindström Rings

Bek Chase

Purdue University

Lefschetz Properties in Algebra, Geometry, Topology, and Combinatorics Krakow, June 2024

- Let k be a field of characteristic zero.
- $S = k[x_1, \ldots, x_n]$ standard graded polynomial ring
- $A = S/I = \bigoplus_{i=0}^{c} A_i$ standard graded Artinian k-algebra
- $M = \bigoplus_{i=a}^{b} M_i$ finitely generated A-module
- We denote the Hilbert function of M by $i \mapsto h_i := \dim_k(M)$ and the Hilbert series by $H_M(t)$

The Lefschetz Properties (for Modules)

Definition

M has the weak Lefschetz property (WLP) if there exists a linear form $\ell \in A_1$ such that the multiplication map

$$\times \ell \colon M_i \to M_{i+1}$$

has maximal rank for all *i*.

Definition

M has the **strong Lefschetz property** (SLP) if there exists a linear form $\ell \in A_1$ such that the multiplication map

$$\times \ell^d \colon M_i \to M_{i+d}$$

has maximal rank for all d > 0 and all *i*.

Modules over Rings with the WLP or SLP

- Much less is known about the Lefschetz properties for modules than for algebras. Are there interesting classes of modules which do or do not have the WLP or SLP?
- If A = S/I is an Artinian *k*-algebra which has the WLP or SLP, which *A*-modules have the WLP or SLP?
- The first case we consider for modules is that of ideals in Clements-Lindström rings in two variables. A **Clements-Lindström** ring has of the form $S/(x_1^{a_1}, \ldots, x_n^{a_n})$ with $a_1 \leq \cdots \leq a_n \leq \infty$ (where $x_i^{\infty} = 0$). In this context, we may assume all Clements-Lindström rings are Artinian, i.e., complete intersections.
- Question: Given a monomial ideal *I* ⊂ *S*/*J*, where *S* = *k*[*x*, *y*] and *J* = (*x^a*, *y^b*), does *I* have the SLP as an *S*/*J*-module? Equivalently, does *I*/*J* have the SLP as an *S*-module?

Even in codimension two, where any k-algebra A is guaranteed to have the SLP, the WLP can fail for A-modules which are monomial ideals in A.

Example

Let $J = (x^5, y^5)$ be an ideal in S = k[x, y]. Consider the generic initial ideal in degree reverse lexicographic order, gin $(J) = \text{Lex}(J) = (x^5, x^4y, x^3y^3, x^2y^5, xy^7, y^9)$. Then S/gin(J) has the SLP. However, every monomial ideal I which does not contain x or y fails the SLP as an S/gin(J)-module. On the other hand, I does have the SLP as an S/J module (we prove this later).

Additionally, tools used to prove the WLP/SLP for k-algebras can fail when we attempt to use them for modules (or just don't apply).

The Lindström-Gessel-Viennot Lemma gives a combinatorial interpretation for the determinant of a matrix of binomial coefficients as a count of non-intersecting lattice paths.

In two variables, the matrix representing the map of multiplication by $\times(x + y)$ on any k[x, y]-module is a matrix of binomial coefficients.

Corollary (Gessel-Viennot, 1985)

Let $a_1 < a_2 < \cdots < a_k$ and $b_1 < b_2 < \cdots < b_k$ be two sets of integers. Then the determinant of the matrix $C = (c_{ij})$ of binomial coefficients $c_{ij} = \begin{pmatrix} a_i \\ b_j \end{pmatrix}$ is nonzero if and only if $\begin{pmatrix} a_i \\ b_i \end{pmatrix} \neq 0$ for each *i*.

Theorem

Let I be a monomial ideal in S = k[x, y] and $J = (x^a, y^b)$ an Artinian ideal in S such that $J \subset I$. Then I/J has the SLP as a k[x, y]-module

The proof relies on the LGV Lemma. As an immediate corollary, we get the useful result:

Corollary

Let $I = (x^{\alpha}, y^{\beta})$ and $J = (x^{a}, y^{b})$ be ideals in S where $0 \le \alpha \le a$ and $0 \le \beta \le b$. Then I/J has the SLP as a k[x, y]-module.

In Which We Put the Lemma to Good Use

Sketch of proof: Matrix representing the multiplication map $\times (x + y)^d : S_i \rightarrow S_{i+d}$ (transposed):

			$x^{i+d-2}y^2$					
x ⁱ	$\begin{bmatrix} d \\ 0 \end{bmatrix}$	$\binom{d}{1}$	$\binom{d}{2}$		$\binom{d}{d}$	0		ړ ٥
$x^{i-1}y$	0	$\binom{d}{0}$	$\binom{d}{1}$		$\binom{d}{d-1}$	$\binom{d}{d}$		0
÷	:	•	$\begin{pmatrix} d \\ 2 \end{pmatrix} \begin{pmatrix} d \\ 1 \end{pmatrix}$	÷	÷	•	÷	:
y ⁱ	0	0	0		$\binom{d}{d-i}$	$\binom{d}{d-i+1}$		$\binom{d}{d}$

Deleting columns corresponding to monomials in J and rows corresponding to monomials not in I gives a matrix representing $\times (x + y)^d : [I/J]_i \rightarrow [I/J]_{i+d}$ where the *n*th row is of the form

$$\begin{bmatrix} \begin{pmatrix} d \\ k_n \end{pmatrix} & \begin{pmatrix} d \\ k_n+1 \end{pmatrix} & \dots & \begin{pmatrix} d \\ k_n+c-1 \end{pmatrix} \end{bmatrix}.$$

Then doing a series of iterative column operations relying on the recursive relation of binomial coefficients, we finally get a matrix of the form

$$\begin{bmatrix} \binom{d+c-1}{k_1+c-1} & \binom{d+c-2}{k_1+c-1} & \cdots & \binom{d}{k_1+c-1} \\ \binom{d+c-1}{k_2+c-2} & \binom{d+c-2}{k_2+c-2} & \cdots & \binom{d}{k_2+c-2} \\ \vdots & \vdots & \vdots & \vdots \\ \binom{d+c-1}{k_s+c-1} & \binom{d+c-2}{k_s+c-1} & \cdots & \binom{d}{k_s+c-1} \end{bmatrix}$$

Based on our hypotheses on I and J, the fact that S and S/J have the SLP and that S/J is Gorenstein, we can prove that at least the binomial coefficients on the main diagonal of a particular maximal minor of are nonzero.

Applying the corollary of the LGV Lemma, this implies maximal rank of the original matrix for I/J, hence I/J has the strong Lefschetz property.

Modules over k[x,y,z]

It is not necessarily true that similar modules in three variables have the SLP. For example, the k[x, y, z]-module I/J where $I = (x^2, y^2, z^2)$ and $J = (x^3, y^3, z^3)$ fails the WLP and SLP.

However, we can consider tensor product extensions using the following:

Theorem (Lindsey, 2011)

For $M = \bigoplus_{j=p}^{q} M_i$ a graded Artinian S-module with the SLP, $M \otimes_k k[z]/(z^c)$ has the SLP for all $c \ge 0$ if and only if the Hilbert series of M is almost centered, i.e., $h_{p+i-1} \le h_{q-i} \le h_{p+i}$ for all $1 \le i \le \lfloor \frac{q-p}{2} \rfloor$ or $h_{q-i+1} \le h_{p+i} \le h_{q-i}$ for all $1 \le i \le \lfloor \frac{q-p}{2} \rfloor$.

Theorem

Let $M = (x^{\alpha}, y^{\beta})/(x^{a}, y^{b}, z^{c})$ be a k[x, y, z]-module where $0 \le \alpha \le a$ and $0 \le \beta \le b$. Then M has the SLP for all $c \ge 0$ if $\alpha \ne \beta$ and $max\{\alpha, \beta\} \le 2$ or $max\{\alpha, \beta\} = min\{\alpha + \beta, a, b\}$.

Central Simple Modules

• Let A be a standard graded Artinian k-algebra, $\ell \in A$ a linear form with r the smallest positive integer for which $\ell^p = 0$. Harima and Watanabe defined the **ith central simple module** of A with respect to ℓ as the nonzero quotients of the form

$$V_{i,\ell} = rac{(0:\ell^{f_i}) + (\ell)}{(0:\ell^{f_i-1}) + (\ell)}.$$

where $r \ge f_i > f_{i+1} \ge 1$ for all *i*.

• Harima and Watanabe (2007) gave an equivalent condition for a graded Artinian *k*-algebra with a symmetric Hilbert series having the SLP in terms of central simple modules. A weaker version is true even for non-symmetric Hilbert series:

Theorem

Let A be a graded Artinian k-algebra with a Hilbert series that is not necessarily symmetric. Then A has the SLP if there exists a linear form $\ell \in A_1$ such that $\widetilde{V}_{\ell} = \oplus(V_{i,\ell} \otimes k[t]/(t^{f_i}))$ has the SLP.

Codimension 3 k-algebras of type 2

 Boij, Migliore, Miró-Roig, Nagel, and Zanello proved that level monomial algebras of type two in codimension 3 have the WLP. In the non-level case, Cook and Nagel completely characterized when such algebras as

$$A = k[x, y, z]/(x^{a}, y^{b}, z^{c}, x^{\alpha}z^{\gamma}, y^{\beta}z^{\gamma})$$

have the WLP. Their combinatorial method of proof involved lattice paths, perfect matchings, and lozenge tilings of triangular regions. But this method cannot also be used to study the SLP.

• However, the central simple modules of A (with respect to z) are of the form

$$V_{1,z} = \frac{(0:z^{c}) + (z)}{(0:z^{c-1}) + (z)} \cong \frac{k[x,y]}{(x^{\alpha},y^{\beta})}$$
$$V_{2,z} = \frac{(0:z^{\gamma}) + (z)}{(0:z^{\gamma-1}) + (z)} \cong \frac{(x^{\alpha},y^{\beta})}{(x^{a},y^{b})}.$$

Notice that $V_{2,z}$ has the SLP by the previous corollary (and $V_{1,z}$ has the SLP since it is a monomial complete intersection)!

Codimension 3 k-algebras of type 2

Tensoring $V_{1,z}$ with $k[z]/(z^c)$ gives another monomial complete intersection with the SLP, and

$$\mathcal{W}_{2,z}\otimes k[z]/(z^{\delta})\cong rac{(x^{lpha},y^{eta})}{(x^{a},y^{b},z^{\gamma})}$$

which we saw (using Lindsey's result) also has the SLP in some cases. By looking at the Hilbert series of the above modules, we can study when the direct sum \tilde{V}_{ℓ} , and hence A, has the SLP:

Theorem

Let $I = (x^a, y^b, z^c, x^{\alpha}z^{\gamma}, y^{\beta}z^{\gamma})$ be an Artinian monomial ideal in S = k[x, y, z]where $0 < \alpha < a$, $0 < \beta < b$, and $0 < \gamma < c$. Then S/I has the strong Lefschetz property if any of the following conditions hold:

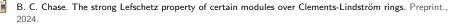
1.
$$\alpha + \beta - 1 \le a + b - c \le \alpha + \beta + 1;$$

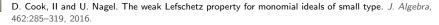
2.
$$min\{\alpha, \beta\} \neq max\{\alpha, \beta\} = min\{\alpha + \beta, a, b\}$$
 and
 $max\{\alpha, \beta\} - \gamma - 1 \le a + b - c \le max\{\alpha, \beta\} - \gamma + 1;$

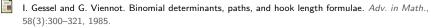
3. $min\{\alpha, \beta\} < max\{\alpha, \beta\} \le 2$ and $a + b + \gamma \le c + 2$.

References

M. Boij, J. C. Migliore, R. M. Miró-Roig, U. Nagel, and F. Zanello. On the shape of a pure *O*-sequence. *Mem. Amer. Math. Soc.*, 218(1024):viii+78, 2012.







T. Harima and J. Watanabe. The central simple modules of Artinian Gorenstein algebras. J. Pure Appl. Algebra, 210(2):447–463, 2007.

T. Harima and J. Watanabe. The strong Lefschetz property for Artinian algebras with non-standard grading. J. Algebra, 311(2):511–537, 2007.

M. Lindsey. A class of Hilbert series and the strong Lefschetz property. *Proc. Amer. Math. Soc.*, 139(1):79–92, 2011.

B. Lindström. On the vector representations of induced matroids. *Bull. London Math. Soc.*, 5:85–90, 1973.