ARTINIAN COX-GORENSTEIN ALGEBRAS

William D. Montoya Universidade Estadual de Campinas (UNICAMP), Brazil Università degli Studi di Ferrara (UNIFE), Italia

This is work in progress with:

Ugo Bruzzo, Rodrigo Gondim and Rafael Holanda

Kraków, Poland - 2024

Let (G, +) be an Abelian group, possibly with torsion.

Definition. Let A be a \Bbbk -algebra, a G-grading in A is a decomposition of A into \Bbbk -vector spaces parameterized by G, i.e.,

$$A = \bigoplus_{g \in G} A_g$$

such that the product in A satisfies $A_g A_h \subseteq A_{g+h}$. We always consider $A_0 = \mathbb{k}$ and any element in A_g for some $g \in G$ we call it homogeneous of degree g.

Example. Set $A = \Bbbk[x, y]$ with deg(x) = (1, 0) and deg(y) = (0, 1). These induce a \mathbb{Z}^2 -grading on A. Let \Bbbk be an algebraic closed field with characteristic zero.

Definition. Let Z be a complete normal variety with finitely generated Class group. The Cox ring of Z is the Cl(Z)-graded ring

$$\operatorname{Cox}(Z) := \bigoplus_{[D] \in \operatorname{Cl}(Z)} H^0(\mathcal{O}_Z(D)).$$

Theorem[Berchtold and Hausen 2003]. Let Z be a normal variety A_2 -maximal (e.g., projective) with $\mathcal{O}_Z(Z) = \Bbbk$ and finitely generated class group. Then Z is a toric variety if and only if Cox(Z) is a polynomial ring.

Definition. A *G*-graded algebra *A* isomorphic to the quotient of the Cox ring of a toric variety (polynomial ring) by a homogeneous ideal is a Cox Algebra.

We know that any finitely generated Artinian (*G*-graded) \Bbbk -algebra *A* has finite dimension over \Bbbk , therefore it is finitely graded and every graded piece is a finite-dimensional \Bbbk -vector space and we set $h_g = \dim A_g$. The Hilbert function of *A*:

$$\mathsf{HF}_A: G \to \mathbb{Z}_+$$

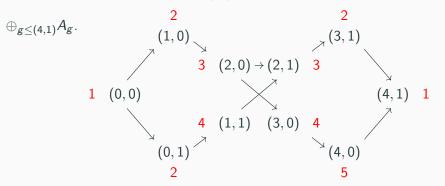
is defined by $HF_A(g) = h_g$. Now, let $(G, +, \preceq)$ be a partially ordered Abelian group. In order to properly encode the structural information contained in the Hilbert function we introduce the Hasse-Hilbert diagram of A defined as a vertex-weighted directed graph structure over the covering graph of G where the weight of a vertex g is the Hilbert function h_g . By definition of the covering graph of a partial order, the vertex set is the POSET, in our case all $g \in G$ such that $A_g \neq 0$, and two vertices $g, h \in G$ are connected if they are immediate neighbors, that is, they are comparable and there is no other comparable element between them. As usual, a maximal element in G is an element $g \in G$ for which $h \in G$ such that $g \leq h$ does not exist, with $g \neq h$. We say that a maximal element $g \in G$ is the greatest element in G if $h \leq g$ for all $g \in G$.

Remark. We are interested in the case when G is equal to the class group Cl(Z) of a toric variety Z, in this case we have a natural partial order:

For $\alpha, \beta \in Cl(Z)$, $\alpha \leq \beta$ if and only if $\beta - \alpha$ is an effective divisor.

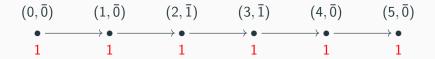
Example

Let $S = \mathbb{k}[x, y, u, v]$ be \mathbb{Z}^2 -graded by deg(x) = deg(y) = (1, 0) and deg(u) = deg(v) = (0, 1). We consider $G = \mathbb{Z}^2$ with the partial order $(a, b) \leq (c, d)$ if and only if $a \leq c$ and $b \leq d$. Let $I = (S_{(0,2)}, S_{(5,0)}, x^2u - y^2v, x^2v, y^2u) \subset S$, the quotient A = S/I is an Artinian \mathbb{Z}^2 -graded algebra. The Hasse-Hilbert diagram has $A_{(4,1)}$ as the greatest element. In fact A = S



Let $S = \Bbbk[x, y, z]$ be the polynomial ring with a $G = \mathbb{Z} \oplus \mathbb{Z}_2$ -grading given by deg $(x) = (1, \overline{1})$, deg $(y) = (1, \overline{0})$ and deg $(z) = (2, \overline{1})$. We consider Gwith the order $(a, \overline{b}) \preceq (c, \overline{d})$ if and only if $a \leq c$. Let $I = (x, y^2, z^3) \subset S$ and A = S/I. It is easy to see that A is an Artinian G-graded algebra. The Hasse-Hilbert diagram of A is linear and we can write

$$A = A_{(0,\overline{0})} \oplus A_{(1,\overline{0})} \oplus A_{(2,\overline{1})} \oplus A_{(3,\overline{1})} \oplus A_{(4,\overline{0})} \oplus A_{(5,\overline{0})}.$$



Artinian Cox-Gorenstein Algebras

Definition. Let $A = \Bbbk[X_1, \ldots, X_n]/I = \bigoplus_{g \in G} A_g$ be an Artinian *G*-graded \Bbbk -algebra and let $\mathfrak{m} := (\overline{X_1}, \ldots, \overline{X_n}) \subset A$. We say that *A* is **Cox-Gorenstein** if there exists $\omega \in G$ such that $\operatorname{soc}(A) := (0 : \mathfrak{m}) = A_{\omega} \simeq \Bbbk$. In this case, ω is called the socle degree of *A* and *I* a **Cox-Gorenstein** ideal.

Theorem. Let $A = \bigoplus_{g \in G} A_g$ be an Artinian *G*-graded k-algebra. *A* is Cox-Gorenstein if and only if *A* has the Poincaré duality.

Theorem. Let Z be a d-dimensional projective toric orbifold, and assume that $f_i \in S_{\beta_i} = H^0(\mathcal{O}_Z(\beta_i))$ for i = 0, ..., d where $\beta_i \in Cl(Z)$ is an ample class and the f_i don't vanish simultaneously on Z then

 $(S/(f_0,\ldots,f_d))_\omega\simeq\mathbb{C}$

for $\omega = \sum_{i=0}^d \beta_i - \beta_0$ where β_0 is the anticanonical class of Z. Moreover, for each variable x_i ,

$$x_i \cdot S_\omega \in (f_0, \ldots f_d).$$

Artinian Cox-Gorenstein Algebras

Corollary. If Z has Picard rank 1 then $A = S/(f_0, \ldots, f_d)$ is an Artinian Cox-Gorenstein algebra with socle degree ω .

Toric varieties with Picard rank one are weighted projective spaces and fake projective spaces.

The assumption on the Picard rank is essential.

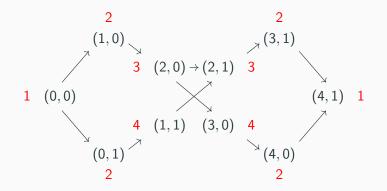
Example. For $\mathbb{P}^1 \times \mathbb{P}^1$ with coordinates (x, y, u, v) we consider $(f_0, f_1, f_2) = (x^2u - y^2v, x^2v, y^2u)$ then $A = S/(x^2u - y^2v, x^2v, y^2u)$ is non-Artinian.

Corollary. If Z has Picard rank bigger than 1 there exists a minimal Artinian Cox-Gorenstein ideal with socle degree ω containing (f_0, \ldots, f_d) .

We mean minimal in the sense that we can consider a natural Artinian Cox-Gorenstein reduction, preserving the configuration of the Hasse-Hilbert diagram and preserving the pairings which were already perfect.

Example: Minimal Artinian Cox-Gorenstein reduction

The Artinian minimal reduction of $I = (x^2u - y^2v, x^2v, y^2u)$ is $I_A = (S_{(0,2)}, S_{(5,0)}, x^2u - y^2v, x^2v, y^2u)$ and its Gorenstein minimal reduction is $I_G = (I_A, x^4, x^2y^2, y^4)$ and its Hasse-Hilbert diagram is:



A Lefschetz type theorem for toric varieties

[Batyrev and Cox 1994] Let X be a quasi-smooth ample Theorem. hypersurface in a d-dimensional projective toric orbifold Z with X cut off by $f \in S_{\beta}$, then the natural map $i^* : H^i(Z) \to H^i(X)$ is an isomorphism for i < d - 1 and an injection for i = d - 1. Moreover i^* is a morphism of Hodge structures.

Definition. The primitive cohomology group $H^{d-1}_{prim}(X)$ is defined by the exact sequence

$$0
ightarrow H^{d-1}(Z)
ightarrow H^{d-1}(X)
ightarrow H^{d-1}_{ ext{prim}}(X)
ightarrow 0.$$

We denote by $H^{p,d-1-p}_{\text{prim}}(X,\mathbb{Q})$ the Hodge components of the primitive cohomology with rational coefficients. Then by the Noether-Lefschetz theorem for toric varieties on a very general hypersurface in a (2k + 1)dimensional projective toric orbifold with degree β such that $\beta - \beta_0$ is nef, we have that $H^{k,k}_{\text{prim}}(X,\mathbb{Q}) = 0.$

Artinian Cox-Gorenstein Algebras William D. Montoya (UNICAMP/UNIFE)

Theorem. [Batyrev and Cox 1994] Let Z be a d-dimensional projective toric orbifold, and let $X \subset Z$ be a quasi-smooth ample hypersurface cut off by $f \in S_{\beta}$. If R(f) is the Jacobian ring of f, then for $p \neq d/2 - 1$, there is a canonical isomorphism

$$R(f)_{(d-p)\beta-\beta_0}\cong H^{p,d-1-p}_{\mathrm{prim}}(X).$$

Proposition. There exists a Cl(Z)-graded Artinian Cox-Gorenstein ideal E containing R(f).

This *E* appears naturally in the study of the deformation of Hodge classes, i.e., deformation of cohomology classes of type (k, k) for some $k \in \mathbb{N}$. For example on \mathbb{P}^n in Noether-Lefschetz Locus and a Special Case of the Variational Hodge Conjecture: Using Elementary Techniques by A. Dan. Let Z be a (2k + 1)-dimensional projective toric orbifold.

Definition. [Noether-Lefschetz locus]

 $NL_{\beta} = \{X \text{ a quasi-smooth hypersurface with deg}(X) = \beta \mid H_{\text{prim}}^{k,k}(X, \mathbb{Q}) \neq 0\}.$ **Example.** For $Z = \mathbb{P}^3$ and $\beta - 4 \geq 0$, i.e., the classical Noether-Lefschetz locus, NL_{β} is equal to the locus of smooth surfaces with degree

 $\beta \in \operatorname{Pic}(\mathbb{P}^3) \simeq \mathbb{Z}$ and Picard rank strictly bigger than 1.

Theorem. $T_{[f]}(NL_{\beta}) \cong E_{\beta}$, where

$$\mathsf{E} = \{ \mathsf{K} \in \mathsf{S}_{\bullet} \mid \sum_{i=1}^{h_{2k}(X,\mathbb{Q})} \lambda_i \int_{\mathsf{Tub}\,\gamma_i} \frac{\mathsf{K} \mathsf{R} \Omega_0}{f^{k+1}} = 0 \text{ for all } \mathsf{R} \in \mathsf{S}_{\omega-\bullet} \},$$

 $\omega = (k+1)\beta - \beta_0$ and Tub(-) is the adjoint of the residue map.

Let *G* be an Abelian group and let $S = \mathbb{k}[x_1, \ldots, x_s]$ be the polynomial ring with a *G*-grading. Let $Q = \mathbb{k}[X_1, \ldots, X_s]$ be the ring of differential operators associated to *S*, that is, $X_i = \frac{\partial}{\partial x_i}$, and *S* has a natural structure of *Q*-module given by differentiation $X_i(x_j) = \delta_{ij}$. The *G*-grading on *S* induces a *G*-grading on *Q* by defining deg $(X_i) = \text{deg}(x_i) \in G$. **Theorem.** We have a bijective correspondence

 $\begin{array}{rcl} \{G\text{-homogeneous ideals } I \subset Q\} & \leftrightarrow & \{G\text{-graded Q-submodules of } S\} \\ & I & \mapsto & I^{-1} := \{f \in S \mid \alpha(f) = 0 \ \forall \alpha \in I\} \\ \{\alpha \in Q \mid \alpha(f) = 0 \ \forall f \in M\} =: Ann(M) & \leftarrow & M \end{array}$

Under this correspondence, $M = I^{-1}$ is finitely generated as an S-module if and only if A = Q/I is Artinian. Moreover, A is Artinian Cox-Gorenstein if and only if $M = Q \cdot f$ is a cyclic module. Let $A = Q/I = \bigoplus_{g \in G} A_g$ be a Cox algebra and let $\mathcal{L} = \langle X_1, \ldots, X_s \rangle \subseteq A$ be the k-linear subspace generated by the class of the variables in Q. We say that any homogeneous element $L \in \mathcal{L}$ is linear.

Also we say that two graded pieces of A, A_g and A_h , are :

- linearly consecutive if $g \leq h$ and $\mathcal{L}_{h-g} \neq 0$;
- linearly comparable if g ≤ h and there is L ∈ L_I such that h = g + kI for some k ∈ Z₊.

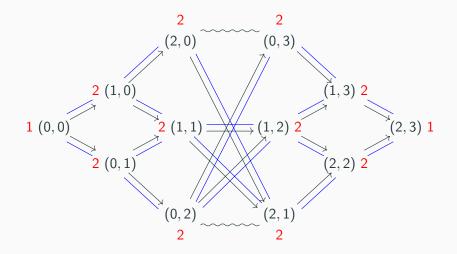
Example. Consider $Q = \Bbbk[X, Y, U, V]$ and $G = \mathbb{Z}^2$ with the partial order $(a, b) \preceq (c, d)$ if and only if $a \leq c$ and $b \leq d$, and the *G*-grading given by $\deg(X) = \deg(Y) = (1, 0)$ and $\deg(U) = \deg(V) = (0, 1)$. Then (0, 0) is linearly comparable with (1, 1) but not linearly consecutive.

Remark. The \Bbbk -linear subspace \mathcal{L} has a natural disjoint decomposition.

Definition. Let A be an Artinian Cox algebra. We say that A has the Toric Weak Lefschetz property (TWLP) if for every linearly consecutive summands of A, A_g and A_h , there is a linear element $L \in \mathcal{L}_{h-g}$ such that the k-linear multiplication map $\bullet L : A_g \to A_h$ has maximal rank.

Example. Consider $S = \Bbbk[x, y, u, v]$ and $G = \mathbb{Z}^2$ and a G-grading given by $\deg(x) = \deg(y) = (1,0)$ and $\deg(u) = \deg(v) = (0,1)$. Let $f \in S_{(2,3)}$ be given by $f = x^2 u^3 + y^2 v^3$. Let $Q = \Bbbk[X, Y, U, V]$ be the ring of differential operators acting on S and let $I = Ann(f) \in Q$ be the Artinian Cox-Gorenstein ideal producing A = Q/I and the generators of the linear elements $\mathcal{L}_{(1,0)} = \langle X, Y \rangle$ and $\mathcal{L}_{(0,1)} = \langle U, V \rangle$. We have that $\mathcal{L}_{(0,1)} = \langle U, V \rangle$ U + V or $L_{(1,0)} = X + Y$ are linear elements. Moreover, for every linearly consecutive degrees h and g with $g \leq h$, h - g = (0, 1) or h - g = (1, 0)and the multiplication maps $\bullet L_{(0,1)}$ or $\bullet L_{(1,0)}$ have maximal rank.

Example: Toric Weak Lefschetz Property



Hasse-Hilbert diagram and linear comparability

Artinian Cox-Gorenstein Algebras

Definition. Let A be an Artinian Cox algebra. We say that A has the Toric Strong Lefschetz property (TSLP) if for every linearly comparable summands A_g and A_h of A, there is a linear element $L \in \mathcal{L}_I$ with h = g + kI such that the k-linear multiplication map $\bullet L^k : A_g \to A_h$ has maximal rank. **Example.** Let $S = \Bbbk[x, y, z]$ be \mathbb{Z} -graded by deg(x) = deg(y) = 1 and deg(z) = 2. Let $f \in S_4$ given by $f = x^4 + y^4 + z^2$. In the dual $Q = \Bbbk[X, Y, Z]$ we obtain

Ann
$$(f) = (XY, XZ, YZ, X^5, Y^5, Z^3, X^4 - Y^4, X^4 - Z^2).$$

Let A = Q/I be the Cox-Gorenstein algebra associated with f. We have $A = A_0 \oplus A_1 \oplus A_2 \oplus A_3 \oplus A_4$ with $A_1 = \langle X, Y \rangle$, $A_2 = \langle X^2, Y^2, Z \rangle$, $A_3 = \langle X^3, Y^3 \rangle$, and $A_4 = \langle X^4 \rangle \simeq \langle Y^4 \rangle \simeq \langle Z^2 \rangle$. It is easy to verify that A has the TSLP with the linear element L = X + Y.

Toric Hessian Criterion

Definition. Let $\mathcal{B} = \{\beta_1, \dots, \beta_s\}$ and $\mathcal{C} = \{\gamma_1, \dots, \gamma_t\}$ be k-basis of A_g and $A_{g'}$ respectively. The toric mixed Hessian of $f \in S$ with mixed order (β, γ) is $Hess_f^{(\mathcal{B}, \mathcal{C})} := [\beta_i \circ \gamma_j(f)].$

A linear element L is ϕ -linear if there exists $\phi \in \operatorname{Hom}_{\mathbb{Z}}(G, \mathbb{Q})$ such that $\phi(\operatorname{deg}(L)) = 1$.

Theorem. Let A = Q/I with I = Ann(f) be an Artinian Cox-Gorenstein *G*-graded k-algebra. Let A_g and A_h be two linearly comparable graded pieces of *A* such that h = g + kI, and let $L = a_1X_1 + \ldots + a_mX_m \in \mathcal{L}_I$ be a ϕ -linear element such that $\phi(\deg(f)) \in \mathbb{Z}_+$. Then the matrix of the k-linear map $\bullet L^k : A_g \to A_h$ with respect to bases \mathcal{B} and \mathcal{C} can be given by:

$$\left[\bullet L^k\right]_{\mathcal{B}}^{\mathcal{C}} = k! \cdot Hess_f^{(\mathcal{C}^*,\mathcal{B})}(a) \quad \text{where} \quad a = (a_1,\ldots,a_m,0,\ldots,0).$$

Artinian Cox-Gorenstein Algebras William D. Montoya (UNICAMP/UNIFE) Kraków, Poland - 2024 18 / 20

Thank you for the attention!

Artinian Cox-Gorenstein Algebras

William D. Montoya (UNICAMP/UNIFE)

Kraków, Poland - 2024 19 / 20

Some References

- Berchtold, F. and Hausen, J., *Cox rings and combinatorics*, Transactions of the American Mathematical Society, 2003.
- Bruzzo, U. and Montoya, W., On the Hodge conjecture for quasi-smooth intersections in toric varieties, São Paulo J. Math. Sci., 2021.
- Cox, D., Little, J. and Shenck H., *Toric Varieties* Graduate studies in mathematics. American Mathematical Society, 2011.
- Dan, A., Noether-Lefschetz Locus and a Special Case of the Variational Hodge Conjecture: Using Elementary Techniques, Analytic and Algebraic Geometry, Springer Singapore, 2017.
- Gondim R. and Zappalà G., *On mixed Hessians and the Lefschetz properties* J. Pure Appl. Algebra 223, 10, 2019.
- Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A. and Watanabe, J., *The Lefschetz Properties*, Springer Berlin Heidelberg, 2013. Artinian Cox-Gorenstein Algebras William D. Montoya (UNICAMP/UNIFE) Kraków, Poland - 2024 20 / 20