

Instrukcja obsługi

Oscyloskopy cyfrowe serii PDS

Przenośny kolorowy oscyloskop cyfrowy

- PDS5022S
- PDS6042S
- PDS6062S
- PDS6062T
- PDS7062T
- PDS7102T

Bezpieczeństwo obsługi

Aby uniknąć uszkodzenia oscyloskopu lub innych urządzeń do niego dołączonych należy bezwzględnie przestrzegać poniższych środków ostrożności. Aby uniknąć niebezpieczeństwa porażenia prądem elektrycznym, należy użytkować niniejszy oscyloskop wyłącznie zgodnie z jego przeznaczeniem.

Procedury serwisowe mogą być wykonywane tylko przez osoby w tym celu przeszkolone.

Aby uniknąć ryzyka pożaru lub obrażeń

Do zasilania oscyloskopu należy używać wyłącznie kabla sieciowego dostarczonego przez producenta oscyloskopu lub równoważnego spełniającego wymagania podane w danych technicznych oscyloskopu i mającego atest dopuszczający do użytku w danym kraju.

Dołączanie i odłączanie elementów wyposażenia.

Nie należy dołączać ani odłączać od oscyloskopu sond oraz przewodów pomiarowych w sytuacjach, gdy są one jednocześnie dołączone do źródła napięcia.

Uziemianie oscyloskopu.

Niniejszy oscyloskop jest uziemiony za pośrednictwem przewodu ochronnego kabla sieciowego (zasilającego). Aby uniknąć niebezpieczeństwa porażenia prądem elektrycznym, przewód uziemiający musi być dołączony do uziemienia pomieszczenia, w którym pracuje oscyloskop. Przed dołączeniem jakichkolwiek urządzeń do gniazd wejściowych oscyloskopu należy go poprawnie uziemić.

Poprawnie dołączyć sondy.

Masa sond znajduje się na potencjale ziemi. Nie należy łączyć masy sond z wyższymi potencjałami napięciowymi. Przestrzegać wszystkich granicznych wartości znamionowych

Aby uniknąć niebezpieczeństwa porażenia prądem elektrycznym, należy przestrzegać wszystkich granicznych wartości znamionowych oraz symboli ostrzegawczych umieszczonych na obudowie oscyloskopu. Przed wykonaniem jakichkolwiek dołączeń do oscyloskopu należy zapoznać się z informacjami dodatkowymi podanymi w instrukcji obsługi na temat wartości granicznych.

Nie należy używać oscyloskopu ze zdjętą obudową.

Stosować wyłącznie bezpieczniki o parametrach znamionowych wyspecyfikowanych dla tego wyrobu. Nie należy obsługiwać oscyloskopu w sytuacjach, gdy istnieje podejrzenie, że nie działa on poprawnie.

Należy zapewnić właściwą wentylację.

Nie należy obsługiwać oscyloskopu w środowisku wilgotnym i mokrym

Terminy i symbole bezpieczeństwa

Terminy w niniejszej instrukcji obsługi. Poniższe terminy mogą pojawić się w niniejszej instrukcji obsługi.

NIEBEZPIECZNIE Instrukcje ostrzegawcze pozwalające zidentyfikować warunki i czynności, które mogą spowodować utratę zdrowia lub życia przez użytkownika

OSTROŻNIE Instrukcje ostrzegawcze pozwalające zidentyfikować warunki i czynności, które mogą spowodować uszkodzenie oscyloskopu lub dołączonych do niego urządzeń

Terminy. Na obudowie niniejszego wyrobu mogą wystąpić poniższe napisy ostrzegawcze

NIEBEZPIECZEŃSTWO: Sygnalizuje niebezpieczeństwo porażenia prądem elektrycznym występuje w momencie odczytania tego napisu.

NIEBEZPIECZNE: Sygnalizuje niebezpieczeństwo porażenia prądem elektrycznym występujące w momencie odczytania tego napisu.

OSTROŻNIE: Sygnalizuje niebezpieczeństwo uszkodzenia oscyloskopu

Symbole na produkcie. Poniższe symbole mogą pojawić się na obudowie niniejszego produktu:

Â	\land			
NIEBEZPIECZEŃSTWO Wysokie napięcie	UWAGA Patrz Instrukcja obsługi	Wyprowadzenie przewodu ochronnego	Wyprowadzenie ramy i chassis	Wyprowadzenie uziemienia

Ogólna charakterystyka oscyloskopów serii PDS:

Model	Pasmo	Współczynnik próbkowania
PDS5022S	25MHz	100MS/s
PDS6042S	40MHz	250MS/s
PDS6062S	60MHz	250MS/s
PDS6062T	60MHz	250MS/s
PDS7062T	60MHz	500MS/s
PDS7102T	100MHz	500MS/s

- Długość rekordu z 5000 pkt. na każdy kanał,
- Reading-out z kursorem,
- 20 automatycznych funkcji pomiarowych,
- Funkcja auto skalowania,
- Kolorowy wyświetlacz ciekłokrystaliczny o wysokiej rozdzielczości i dużym kontraście,
- Przechowywanie i przywoływanie sygnałów,
- Funkcja automatycznego ustawiania umożliwia szybkie wczytywanie ustawień,
- Funkcja kalkulacji multi-sygnałowej,
- Wbudowany FFT,
- Wykrywanie wartości średniej i szczytowej,
- Oscyloskop cyfrowy pracujący w czasie rzeczywistym,
- Funkcje wyzwalania zboczem, video oraz alternatywnego,
- Komunikacja poprzez port RS232 lub USB,
- Różny czas wyświetlania ciągłego,
- Wielojęzyczny interfejs użytkownika.

- 20 Automatycznych pomiarów:

Vpp,Vavg,RMS,Frequency,Period,Vmax,Vmin,Vtop,Vbase,Width, Overshoot,

- Preshoot, Risetime, Falltime, +Width, -Width, +Duty, -Duty, Delay A>B ?Delay A>B
- Pełne automatyczne pomiary
- Nowe oprogramowanie umożliwiające odtwarzanie i rejestracje przebiegów.

Płyta czołowa

Jedną z pierwszych czynności jakie należy wykonać przed rozpoczęciem obsługi oscyloskopu, jest zapoznanie się z panelem oscyloskopu. Do tego celu przeznaczyliśmy w tym rozdziale szereg ćwiczeń ułatwiających zapoznanie się z niektórymi z elementów obsługi oscyloskopu.

Na płycie czołowej znajdują się pokrętła i przyciski. Kolumna 5 przycisków po prawej stronie wyświetlacza obsługuje menu (przyciskom przyporządkowano nazwy od F1 do F5). Używając wymienionych klawiszy można wybierać opcje z menu. Pozostałe przyciski są przyciskami funkcyjnymi, które obsługują pozostałe funkcje lub umożliwiają korzystanie z innych dostępnych funkcji.

Rys. 1 panel przedni oscyloskopu PDS.

Rys. 2 Opis podziału klawiszy z panelu przedniego oscyloskopów serii PDS.

Rys. 3 Interfejs użytkownika

1. Wyzwalanie:

AUTO: automatyczny tryb wyzwalania

Trig'd: Oscyloskop wykrywa sygnał wyzwalający i następnie rejestruje dane Ready: dane przed ustawieniem wyzwalania zostają zarejestrowane a oscyloskop jest gotowy do wyzwalania Scan: Oscyloskop rejestruje i wyświetla przebiegi w sposób ciągły w trybie skan Stop: przerwanie akwizycji danych

- 2. Obszar wyświetlania przebiegu
- **3.** Purpurowa wskazówka umożliwia ustawienie poziomej pozycji wyzwalania, poziom może być ustawiony pokrętłem pionowej pozycji (Vertical Control).
- **4.** Wskazanie czasu odchylania między pionową pozycją wyzwalania a środkową linią na wyświetlaczu, która równa się 0.
- 5. Wskazanie czasu odchylania między pionową pozycją wyzwalania a środkową linią okna, wartości linii środkowej wynosi 0.
- 6. Wskazanie aktualnych funkcji menu
- 7. Wskazanie dostępnych opcji, ustawień dla danej funkcji
- 8. Purpurowy wskaźnik pokazuje poziom wyzwalania
- 9. Wartość poziomu wyzwalania
- **10.** Wskazanie źródła wyzwalania
- 11. Wskazanie wybranego trybu wyzwalania

ſ	Narastające zbocze wyzwalania
l	Opadające zbocze wyzwalania

- 12. Okno ustawień wartości ustawień podstawy czasu
- 13. Główna wartość ustawień podstawy czasu
- 14. Dwie żółte linie wskazują rozmiar okna
- 15. Ikona wskazuje tryb sprzężenia kanału CH2
- "–" wskazanie bezpośredniego sprzężenia
- "~" wskazanie sprzężenia AC
- 16. Pionowy zakres napięcia kanału CH2
- 17. Ikona wskazuje tryb sprzężenia kanału CH2

- "–" wskazanie bezpośredniego sprzężenia
- "~" wskazanie sprzężenia AC
- 18. Pionowy zakres napięcia kanału CH1
- 19. Wskazanie punktu zero kanałów CH1 i CH2
- **20.** Przerywana linia pomiarowa

Przed użyciem oscyloskopu należy sprawdzić:

- 1. Czy oscyloskop nie posiada widocznych uszkodzeń powstałych podczas transportu,
- 2. Należy sprawdzić dołączone akcesoria,
- 3. Należy sprawdzić poprawność działania.

W przypadku wystąpienia jakichkolwiek wątpliwości, niezgodności należy skontaktować się z dystrybutorem.

Obsługa

1. Podłącz oscyloskop do sieci i wciśnij przycisk "Power Switch".

Na wyświetlaczu pojawi się informacja "Press any Key Enter the Operating Mode". Wciśnięcie przycisku **"UTILITY"** z panelu przedniego umożliwi dostęp do "FUNCTION" menu oscyloskopu. Wciśnięcie przycisku F2 z menu umożliwi dostęp do **"Recall Factory".** Domyślny współczynnik tłumienia ustawiony na sondzie wynosi x10 przedstawiono na rys 4.

Rys. 4 Włączanie zasilania oscyloskopu

2. Ustaw przełącznik na sondzie oscyloskopowej w pozycji 10X, następnie podłącz sondę do kanału CH1 Należy założyć sondę na wejście BNC – kanał 1 - CH1, następnie obrócić w prawą stronę. Następnie podłącz końcówkę sondy do uziemienia , jak pokazano na rys. 5.

Probe comp

Rys. 5 Podłączenie sondy

3. Wciśnij przycisk AUTOSET

Zostanie wyświetlony przebieg prostokątny o częstotliwości 1kHz oraz amplitudzie 5V pp. Pokazano na rysunku 6.

Rys. 6. Autoset

Następnie należy sprawdzić kanał CH2 wg. Schematu jak dla kanału CH1

Kompensacja sondy

Jeżeli po raz pierwszy podłączymy sondę do wejścia oscyloskopu, należy dopasować sondę do wejścia oscyloskopu. Jeżeli nie skompensujemy sondy wynik pomiaru będzie obarczony błędem. Aby poprawnie skompensować sondę należy wykonać poniższe operacje.

- 1. Współczynnik tłumienia w menu oscyloskopu ustawiony jest na 10x , należy ustawić taki sam współczynnik 10x na sondzie oscyloskopowej, następnie podłączyć sondę z wejściem CH1. Po podłączeniu sondy z wejściem CH1 należy podłączyć końcówkę sondy do "PROBE COMP" oraz uziemienia. Następnie należy wcisnąć przycisk AUTOSET
- 2. Należy sprawdzić wyświetlany przebieg na wyświetlaczu i zastosować się do ilustracji przedstawionych poniżej (Rys. 7, 8).

3. Przebieg należy dostroić, jak pokazano poniżej.

Rys. 8 Dopasowanie sondy

Dopasowanie tłumienia sondy

Jeżeli wymagane jest ustawienie tłumienia sondy należy wejść do menu oscyloskopu i dopasować tłumienie z tłumieniem sondy

Ustawienia tłumienia sondy 1x, 10x (Rys. 9)

Rys. 9. Przełącznik tłumienia sondy

Bezpieczne używanie sond

Bezpieczne używanie sond umożliwia zastosowana osłona na dole sondy, która zabezpiecza przed porażeniem elektrycznym.

Rys. 10. Ochrona przed porażeniem (na sondzie)

Ustawienia odchylania pionowego

Na rys. 11 pokazano przyciski i pokrętła z panelu przedniego umożliwiające sterowanie pionową.

Rys. 11. Pokrętła sterowania pionowego

1. Pokrętłem "Vertical Position" wypośrodkować przebieg wyświetlony na ekranie oscyloskopu.

Pokrętło "Vertical Position" służy do przesuwania wyświetlonego przebiegu w kierunku pionowym i jest ono skalibrowane. Należy zwrócić uwagę, że gdy kręci się pokrętłem "Vertical Position", to na krótką chwilę jest wyświetlana wartość napięcia, co wskazuje jak daleko od środka ekranu znajduje się masa odniesienia. Należy też zwrócić uwagę, że symbol masy (ziemi) wyświetlony po lewej stronie ekranu przesuwa się zgodnie z przebiegiem przesuwanym pokrętłem "Vertical Position".

Uwagi odnośnie wykonania pomiarów

Jeśli jako typ doprowadzonego sygnału wybierze się sygnał stały DC, to można szybko zmierzyć składową stałą DC doprowadzonego sygnału, notując po porostu jej odległość od symbolu masy ziemi.

Jeśli natomiast jako typ doprowadzonego sygnału wybierze się sygnał przemienny AC, to składowa stała DC doprowadzonego sygnału jest blokowana, co przy wyświetlaniu składowej przemiennej sygnału AC pozwala na uzyskanie większej czułości.

2. Zmienić nastawę czułości i zauważyć, że każda w różny sposób wpływa na wskazania paska stanu

Można szybko określić ustawienie czułości, korzystając z wyświetlonego na ekranie paska stanu.

- Pokrętłem "VOLT/DIV" można zmienić wartość czułości i zauważyć, że powoduje to zmianę paska stanu.
- Po naciśnięciu przycisku "CH1 MENU" "CH2 MENU" oraz " MATH MENU" na wyświetlaczu pokazane zostaną wszystkie informacje odpowiadające danemu kanałowi.

Ustalenia bloku odchylania poziomego

Na rysunku 12 przedstawiono przycisk menu oraz pokrętła położenia i skali należące do bloku odchylania poziomego. Poniższe ćwiczenie pozwoli użytkownikowi zaznajomić się szybko z działaniem tego przycisku, pokrętłami oraz paskiem stanu.

Rys. 12. Panel odchylania poziomego

1. Kręcenie pokrętłem "SEC/DIV" powoduje zmiany wartości czasu w sekwencji skoków 1-2-5, a wybrana wartość jest wyświetlana na pasku stanu. Podzakresy podstawy czasu są następujące od 5ns do 5s w kolejności 1=2=5.

2. Kręcenie pokrętłem "Horizontal Position" w kierunku poziomym wyregulować położenie wyświetlonego przebiegu wzdłuż osi poziomej. Pokrętło "Horizontal Position" umożliwia kontrolę wyzwalania sygnału lub wykorzystanie dodatkowych aplikacji.

3. Po wciśnięciu przycisku "Horozontal Menu" mamy dostęp do ustawień Window Expansion.

Wstęp do wyzwalania

Na rysunku 13 przedstawiono elementy obsługowe obszaru (bloku) wyzwalania na płycie czołowej.

Rys. 13 Blok wyzwalania

- 1. Po wciśnięciu przycisku "TRIG MENU" wywołane zostanie menu wyzwalania. Ustawienia menu umożliwią wykorzystanie 5 dostępnych ustawień wyzwalania.
- 2. Przycisk "LEVEL" umożliwi zmianę poziomu wyzwalania.
- 3. Wciśnięcie przycisku "SET TO%50" Przycisk ten jest przyciskiem akcji. Za każdym naciśnięciem przycisku 50% oscyloskop ustawia poziom wyzwalania na środek sygnału.
- 4. Przycisk "FORCE TRIG" rozpoczyna akwizycję danych pomiarowych niezależnie od tego, czy sygnał wyzwalania ma odpowiednią wartość. Przycisk ten nie ma żadnego wpływu, jeśli proces akwizycji już zatrzymano.
- 5. Przycisk "TRIG VIEW" używany jest do kasowania wyzwalania poziomego.

Rozdział 2 Obsługa oscyloskopu

W tym rozdziale zawarto krótkie opisy przeznaczenia grup przycisków: odchylania pionowego (VERTICAL), odchylania poziomego (HORIZONTAL) i wyzwalania (TRIGGER) znajdujących się na płycie czołowej oscyloskopu. Zawarto w nim też informacje, jak określić ustawienia oscyloskopu na podstawie obserwacji paska stanu.

W rozdziale tym zostaną omówione następujące zagadnienia:

- Blok odchylania pionowego
- Blok odchylania poziomego
- Układ wyzwalania
- Wybór szybkości próbkowania
- Konfigurowanie parametrów wyświetlania
- Zapis i odczyt przebiegów i zestawów nastaw
- Konfigurowanie funkcji użytkowych
- Pomiar automatyczny
- Pomiar z użyciem kursorów
- Przycisk natychmiastowego dostępu

Blok odchylania pionowego

Panel odchylania pionowego zawiera trzy przyciski menu takie jak **Menu CH1, Menu CH2** oraz **MATH MENU (menu funkcji matematycznych)**, oraz pokrętła **VERTICAL POSITION** (pozycja pionowa), **VOLT/DIV** (volt/działka, pokrętła występują oddzielnie dla każdego z kanałów).

Ustawienia kanałów CH1 oraz CH2

Każdy kanał posiada niezależne menu ustawień pionowych

Po wciśnięciu przycisku menu odpowiednio dla kanału CH1 lub CH2 na wyświetlaczu pojawi się menu rys. 14.

Rys. 14 Menu ustawień kanału

Poniżej przedstawiono opis ustawień menu kanału:

Funkcja menu	Ustawienia	Opis
Coupling (sprzężenie)	AC	Blokowanie składowej AC sygnału wejściowego.
	DC	Odblokowanie składowych AC oraz DC sygnału
		wejściowego.
Chanel (kanał)	OFF	Wyłączenie kanału pomiarowego.
	ON	Włączenie kanału pomiarowego.
Probe (sonda)	1X	Należy wybrać odpowiedni współczynnik tłumienia aby
	10X	uzyskać odpowiednią dokładność odczytu
	100X	
	1000X	
Inverted (inwersja)	OFF	Przebieg wyświetlany normalnie.
	ON	Przebieg odwrócony

1. Ustawienia sprzężenia kanału

Wybierając przykładowo kanał CH1, doprowadzić do wejścia tego kanału sygnał prostokątny zawierający składową stałą.

Nacisnąć kolejno CH1 -> F1 -> Coupling -> AC aby wybrać typ sygnału a.c. Przy tego typu ustawieniu blokuje to skłądową stałą d.c. sygnału wejściowego.

Rys.16. Oscylogram sprzężenia AC.

Naciskając kolejno CH1 -> Coupling -> DC –aby wybrać typ sygnału d.c. Przy tego typu ustawieniu obie składowe przemienna (a.c.) i stała (d.c.) sygnału wejściowego wchodzą bez przeszkód na wejście układu pomiarowego oscyloskopu.

Rys.16. Oscylogram sprzężenia DC.

2. Ustawienia kanału ON/OFF

Aby wyłączyć kanał należy kolejno wcisnąć CH1 Menu -> F2 i wybrać OFF. Aby włączyć kanał należy wybrać ON.

3. Ustawienie tłumienia sondy

Jeżeli do pomiarów stosuje się sondę to oscyloskop pozwala wprowadzić wartość współczynnika tłumienia tej sondy. Powoduje to zmianę pionowego skalowania oscyloskopu, tak że wynik pomiaru odzwierciedla aktualny poziom napięcia na końcu sondy.

Dla przykładu współczynnik tłumienia sondy ustawiony jest na 1:1 aby zmienić tłumienie w menu oscyloskopu należy kolejno:

Wcisnąć CH1 Menu -> F3 -> wybrać 1X (dla ustawień sondy 1:1). Przedstawiono na rys 17.

Rys. 17. Ustawienie tłumienia sondy

Lista ustawień tłumienia sondy do ustawień w menu oscyloskopu

1:1	1x
10:1	10x
100:1	100x
1000:1	1000x

4. Ustawienia inwersji przebiegu.

CH1 Menu -> F4 -> Inverted ON (odwrócenie przebiegu włączone) Aby wyłączyć odwrócenie przebiegu należy z menu wybrać OFF.

Rys.18. Sygnał nie odwrócony.

Rys.19. Sygnał odwrócony.

Funkcje Matematyczne

Funkcje matematyczne umożliwiają dodawanie lub odejmowanie między kanałami CH1 oraz CH2.

Funkcja dodawania między dwoma kanałami CH1 i CH2:

- 1. Wciśnij przycisk **MATH MENU** i wywołaj **WAVE MATH** menu
- 2. Wciśnij F3 i wybierz CH1+CH2. Wyświetlony zostanie przebieg M w kolorze zielonym. Ponowne wciśnięcie F3 wyłączy przebieg M. (rys.20).

Rys.20. Sygnał otrzymany w wyniku zsumowania przebiegów z kanału 1 i 2 (CH1 + CH2).

Pozostałe operacje między kanałami:

Ustawienie	Opis
CH1 – CH2	Odejmuje wartość sygnału w kanale 2 od sygnału w
	kanale 1
CH2 – CH1	Odejmuje wartość sygnału w kanale 1 od sygnału w
	kanale 2
CH1 + CH2	Dodaje sygnał z kanału 1 do sygnału w kanale 2
FFT	Kształt sygnału po wykonaniu operacji FFT

Stosowanie funkcji FFT (szybkiej transformaty Fourier'a):

Dzięki FFT mamy możliwość rozłożenia sygnału do częstotliwości składowych, które następnie wyświetlane zostają na oscyloskopie w postaci wykresu widmowego. Istnieje możliwość dopasowania częstotliwości do wartości znanych w danym systemie np. systemy zegarowe, oscylatory kwarcowe, źródła zasilania.

Menu Funkcji	Ustawienie	Instrukcja	
ггт	ON	Włącza funkcję FFT	
FFI	OFF	Wyłącza funkcję FFT	
Źródła	CH1	Ustawia kanał 1 jako źródło FFT	
210010	CH2	Ustawia kanał 2 jako źródło FFT	
	Prostokątne		
Okno	Blackmana	Wubár akas EET	
OKIIO	Hanninga	WYDDI OKIIA FFI	
	Hamminga		
Format	dB	Wyświetlanie w dB	
FUIIIat	Vrms	Wyświetlanie w Vrms	
	*1	Ustawia mnożnik *1	
Dowiekszonie	*2	Ustawia mnożnik *2	
POwiększenie	*5	Ustawia mnożnik *5	
	*10	Ustawia mnożnik *10	

Opis menu FFT:

Przykładowe kroki postępowania używając FFT:

- 1. Wciśnij przycisk **MATH MENU** aby przywołać menu funkcji matematycznych.
- 2. Wciśnij F4 aby wybrać FFT.
- 3. Wciśnij **F1** aby włączyć/wyłączyć FFT przed wejściem do menu FFT. Należy rozważyć, że FFT jest zabronione w trybie ustawień wyświetlacza. Po dokonaniu obliczeń wyświetlony zostaje zielony znacznik F.
- 4. W celu przełączania źródła sygnału z kanału 1 na 2 i odwrotnie, używaj przycisku F2.
- 5. Wybór okna jest dostępny pod przyciskiem F3.
- 6. Przyciskając F4 wybierz format wyświetlania wyniku.
- 7. Wyboru mnożnika przybliżenia dokonać za pomocą przycisku F5.
- 8. Za pomocą pokrętła odchylenia poziomego "Horizontal" przesuń sygnał tak, by właściwa częstotliwość znajdowała się dokładnie w środku.
- 9. Wciśnij **F1** aby wyłączyć funkcję FFT i wciskając **MATH MENU**, by powrócić do drugiego ekrany funkcji matematycznych.

Tabela z opisem dostępnych okien:

Тур	Opis	Okno
Prostokątne	Najlepsze okno do rozbijania częstotliwości, które są zbliżone do siebie wartościami, jednak najgorsze ze względu na pomiar amplitudy tych częstotliwości. Jest to najlepszy sposób pomiaru spektrum częstotliwości sygnałów nieokresowych i częstotliwości zbliżonych do DC. Okno to stosuje się w pomiarach sygnałów krótkotrwałych i impulsowych, jeżeli poziom sygnału przed i po zajściu zdarzenia jest zbliżony do siebie. Ma ono zastosowanie również dla sygnałów sinusoidalnych o różnych amplitudach, jednak o zbliżonych częstotliwościach oraz dla losowych, wolnozmiennych, zakłóceń szerokopasmowych.	
Blackamana	Najlepsze okno do wyznaczania amplitudy, jednak najgorsze do rozbijania częstotliwości. Aby wyznaczyć wyższe harmoniczne w sygnale z dominującym sygnałem sinusoidalnym o określonej częstotliwości, zastosować należ okno Blackmana-Harris'a	

Hanninga	Bardzo dobre okno to wyznaczania z odpowiednią dokładnością amplitudy sygnałów składowych, jednak gorsze ze względu na rozbijania częstotliwości. Okno stosuje się dla pomiarów sygnałów sinusoidalnych, periodycznych i zakłóceń losowych o wąskim paśmie. Okno to działa krótkotrwale lub impulsowo, gdy poziom sygnału przed i po zdarzeniu znacząco różni się od siebie.	
Hamminga	Bardzo dobre okno do rozbijania częstotliwości zbliżonych do siebie, jednocześnie ze zwiększoną dokładnością wyznaczenia amplitudy (w porównaniu do okna prostokątnego). Posiada ponadto większą dokładność wyznaczania częstotliwości niż okno Hanninga. Okno stosuje się dla pomiarów sygnałów sinusoidalnych, periodycznych i zakłóceń losowych o wąskim paśmie. Okno to działa krótkotrwale lub impulsowo, gdy poziom sygnału przed i po zdarzeniu znacząco różni się od siebie.	

Rys.21,22,23,24 przedstawiają okna dostępne w oscyloskopie.

Rys.21. Okno Blackmana.

Rys.22. Okno Hamminga.

Rys.23. Okno Prostokątne.

	owo	N		STOP	🔵 м р	os:1.0	30KHz				FFT
			-		· · · · · · · · · · · · · · · · · · ·	Ţ		-	· · · · · · · · · · · · · · · · · · ·		FFT
	· · · ·										ON
										· · · · · · · · ·	Source
	- 					4-					CH1
P	- - 			: 		Д.					Window
					heined	JL.				4.00	Hanning
				an tagan an							Format
											dB
	СН1	20 dB				50H	z/DIV	(5K	5/s)	HI: 1.029	93KHz

Rys.24. Okno Hanninga.

Wskazówki

- Gdy zajdzie potrzeba, użyć funkcji ZOOM, aby powiększyć uzyskane FFT funkcji.
- Aby zobaczyć spektrum częstotliwości o różnych amplitudach, użyj skali domyślnej dBV RMS, aby zobaczyć ogólny obraz częstotliwości do porównań, użyj skali liniowej RMS.
- Sygnały posiadające składową DC lub offset, powodują pojawianie się nieprawidłowych części FFT. Aby zminimalizować ten efekt, wybrać należy AC Coupling na źródle sygnału signalCoupling.
- By zredukować losowe szumy, lub składowe aliasingowe, należy ustawić oscyloskop w tryb pozyskiwania średniej.

Określenia terminów

Częstotliwość Nyquist'a – największa częstotliwość, jaką może zmierzyć bez błędów jakikolwiek cyfrowy oscyloskop (pomiar w czasie rzeczywistym), równa połowie częstotliwości próbkowania. Jeżeli w trakcie pomiaru, częstotliwość sygnału będzie większa od częstotliwości Nyquist'a, pojawi się "False Wave". Należy więc bacznie zwracać uwagę na częstotliwość sygnału mierzonego i częstotliwość próbkowania.

Z trybie FFT zabronione są poniższe ustawienia:

- Ustawienia Wyświetlacza,
- Zmiana źródła sygnału (w menu ustawień CH1 lub CH2),
- Format XY w DISPLAY SET,
- "SET 50%" w ustawieniach wyzwalania,
- Auto skalowanie.

Zastosowanie odchylania pionowego VERTICAL POSITION oraz pokrętła VOLT/DIV.

- 1. Odchylanie pionowe VERTICAL POSITION umożliwia dopasowanie pionowego odchylania przebiegów dla wszystkich kanałów.
- 2. Pokrętło VOLT/DIV używane jest do zmiany pionowej rozdzielczości przebiegów na wszystkich kanałach, dodatkowo można regulować czułość oscyloskopu w sekwencji 1-2-5. Czułość wzrasta gdy kręcimy pokrętłem zgodnie z ruchem wskazówek zegara.
- 3. Po ustawieniu powyższych parametrów informacja o odchylaniu pionowym wyświetlona zostanie w dolnym lewym roku wyświetlacza. (rys. 21)

Rys.25. Informacje o pozycji pionowej.

Ustawienia poziome

Kontrola pozioma obejmuje przyciski Horizontal Menu (Menu ustawień poziomych), pokrętło regulacji poziomej oraz SEC/DIV.

- 1. Pokrętło regulacji poziomej: dostosowuje położenie poziome sygnałów ze wszystkich kanałów (łącznie z wynikami obliczeń matematycznych) rozwiązanie analityczne jak w przypadku zmiany podstawy czasu.
- 2. Pokrętło SEC/DIV ustawia poziom współczynnika skalowania głównej podstawy czasu.
- 3. Horizontal Menu wciśnięcie tego przycisku spowoduje pojawienie się następującego ekranu manu.

Rys.26. Menu trybu podstawy czasu.

Menu funkcji	Ustawienie	Opis
Podstawa czasu		Ustalenie poziomu podstawy czasu pozwala na
		wyświetlenie sygnału.
Menu wyświetlacza		Obszar ograniczony dwoma kursorami
Okno powiększenia		Ograniczony obszar wyświetlony w trybie
		pełnoekranowym

Podstawa czasu

Wciśnij F1 i wybierz **Main Time Base**. W tym przypadku Odchylanie poziome oraz pokrętło SEC/DIV używane są do dopasowania do głównego okna (wyświetlacza). Pokazano na rys. 26.

Rys.27. Podstawa czasu.

Ustawienia okna wyświetlacza

Należy wcisnąć F2 aby ustawić okno. Na wyświetlaczy pokazany zostanie obszar oznaczony przez dwa kursory. Obszar wyświetlania ustawi się poprzez użycie Horizontal Position oraz pokrętła SEC/DIV.

Rys.28. Ustawienia wyświetlacza.

Przybliżanie

Wciśnij F3 aby wybrać okno obszaru. W wyniku tej operacji zaznaczony obszar pomiędzy znacznikami zostanie rozszerzony na cały wyświetlacz.

Rys.29. Okno obszaru.

Ustawienia wyzwalania

Funkcja wyzwalania określa, kiedy oscyloskop rozpocznie zbierać dane pomiarowe i wyświetlać je w postaci przebiegu. Gdy wartość wyzwalania ustawi się właściwie to pozwoli to przetworzyć wyświetlony niestabilny przebieg lub czyste pole w przebieg użyteczny.

Gdy oscyloskop zaczyna pobierać sygnał, to zbiera on wystarczająco dużo danych, tak aby wykreślić przebieg na lewo od punktu wyzwalania. Oscyloskop kontynuuje zbieranie danych oczekując jednocześnie na to, aby spełniły się warunki wyzwalania. Gdy wykryje on sygnał wyzwalający, nadal zbiera dane, dzięki czemu może wyświetlić na prawo od punktu wyzwalania.

W obszarze wyzwalania dostępne są : pokrętło oraz 4 przyciski funkcyjne

LEVEL: Nastawa poziomu wyzwalania

50%: Umożliwia poziom wyzwalania na środek linii pionowej między wartościami ekstremalnymi sygnału wyzwalania. **FORCE TRIG:** Rozpoczyna akwizycję danych pomiarowych niezależnie od adekwatnego sygnału wyzwalania. Przycisk nie działa gdy akwizycja jest zatrzymana.

TRIG VIEW: wykasowanie poziomego odchylania

TRIG MENU: Menu sterowania wyzwalaniem.

Kontrola wyzwalania

Występują dwa typy wyzwalania: Wyzwalanie zboczem oraz wyzwalanie sygnałem video. Zmiana wyzwalania możliwa jest po wciśnięciu klawisza F1. Edge Trier: wyzwalanie zboczem

Video trier: wyzwalanie sygnałem TV

Wyzwalanie zboczem

Po wybraniu wyzwalania zboczem wyzwalanie pojawi się na zboczu opadającym lub narastającym sygnału wejściowego. Menu wyzwalania zboczem pokazano na rys. 27.

Rys.30. Menu wyzwalania zboczem.

Poniżej opisano menu wyzwalania zboczem:

Funkcja menu	Ustawienia	Opis
Slong zhocza	Narastające	Ustawienie wyzwalania na zbocze narastające
Slope - zbocze	Opadające	Ustawienie wyzwalania na zbocze opadające
	CH1	Kanał 1 jako źródło wyzwalania
Sourco źródło	CH2	Kanał 2 jako źródło wyzwalania
3001CE - 210010	EXT	Zewnętrzny sygnał wyzwalania
	EXT/5	Zewnętrzny sygnał wyzwalania podzielony na 5
	Auto	Pobieranie próbek sygnału nawet jeśli wyzwalanie nie jest
		ustawione.
Mode – tryb	Normal	Pobieranie próbek sygnału tylko gdy jest wyzwolenie.
wode tryb	Single	Pobieranie próbek fali w momencie wyzwolenia i
		zatrzymanie zbierania próbek.
	DC	Blokowanie składowej DC
	AC	Odblokowanie wszystkich składowych
Coupling -	HF Rjc	Blokowanie sygnału o wysokiej częstotliwości,
sprzężenie		odblokowanie składowych wysokiej częstotliwości.
		Blokowanie sygnału o niskiej częstotliwości, odblokowanie
	LF Rjc	składowych niekiej częstotliwości.
		Do następnego ekranu menu.
1/2		
		Do poprzedniego ekranu menu.
2/2		
HoldOff	100 ns ~10 ns	Ustawia przedział czasu przed kolejnym wyzwoleniem.
Holdoff		Reset czasu zatrzymania do 100 ns
Reset		

Rys.31. Sygnał otrzymany podczas wyzwalania zboczem.

Rys.31. sygnał otrzymany przy błędnym wyzwalaniu zboczem.

Wyzwalanie Video

Po wybraniu "Video Trigger" możliwe jest wybranie sygnałów video NTSC, PAL, SECAM.

Rys.33. Menu wyzwalania video.

Funkcja menu	Ustawienia	Opis
Polaryzacja	Normalna	
	Odwrócona	
Source - źródło	CH1	Kanał 1 jako źródło wyzwalania
	CH2	Kanał 2 jako źródło wyzwalania
	EXT	Zewnętrzny sygnał wyzwalania
	EXT/5	Zewnętrzny sygnał wyzwalania podzielony na 5
Sync	Line	Synchronizacja wyzwalania w linii video
	Field	Synchronizacja wyzwalania w polu video
	Odd field	Wyzwalanie synchroniczne w nieparzystym polu video
	Even Field	Wyzwalanie synchroniczne w parzystym polu video
	Designer Line	Wyzwalanie synchroniczne w linii projekcji
1/2		Do następnego ekranu menu.
2/2		Do poprzedniego ekranu menu.
HoldOff	100 ns ~10 ns	Ustawia przedział czasu przed kolejnym wyzwoleniem.
Holdoff Reset		Reset czasu zatrzymania do 100 ns

Rys.34. Sygnał wyzwalania linii video.

Ustawienia wyzwalania w PDS7062T, PDS7102T

Wyzwalanie pojedyncze: używanie poziomu wyzwalania do przechwytywania sygnałów w obu kanałach jednocześnie. **Wyzwalanie alternatywne:** stopniowe wyzwalanie sygnałów nieokresowych.

TRIG MODE	TRIG MODE	TRIG MODE
Туре		
Single	2/3	3/3
Source	Trig mode	HoldOff
CH1	Auto	100ns
Туре	Coupling	HoldOff
Edge	DC	Reset
Slope	Sensitivity	
Rising	0.2div	
-	-	
1/3	2/3	

Rys.35. Menu wyzwalania zboczem.

Menu wyzwalania	Ustawienia	Opis		
	CH1	Kanał 1 jako źródło wyzwalania		
Source árádia	CH2	Kanał 2 jako źródło wyzwalania		
Source - 210010	EXT	Zewnętrzny sygnał wyzwalania		
	EXT/5	Zewnętrzny sygnał wyzwalania podzielony na 5		
Тур	Zbocze	Ustawia pionowe wyzwalanie kanału zboczem		
Slope zbecze	Narastające	Ustawienie wyzwalania na zbocze narastające		
310pe - 200cze	Opadające	Ustawienie wyzwalania na zbocze opadające		
	Auto	Pobieranie próbek sygnału nawet jeśli wyzwalanie nie jest ustawione.		
		Pobieranie próbek sygnału tylko gdy jest wyzwolenie.		
Mode – tryb	Normal	Pobieranie próbek fali w momencie wyzwolenia i zatrzymanie zbierania		
	Single	próbek.		
	DC	Blokowanie składowej DC		
	AC	Odblokowanie wszystkich składowych		
Coupling entrotopio	HF Rjc	Blokowanie sygnału o wysokiej częstotliwości, odblokowanie składowych		
Coupling - sprzężenie		wysokiej częstotliwości.		
	LF Rjc	Blokowanie sygnału o niskiej częstotliwości, odblokowanie składowych		
		niekiej częstotliwości.		
Czułość	0.2div~1.0div	Ustawia czułość wyzwalania		
HoldOff	100 ns ~10 ns	Ustawia przedział czasu przed kolejnym wyzwoleniem.		
Holdoff		Reset czasu zatrzymania do 100 ns		
Reset				

Rys.36 sygnał przy wywalaniu zboczem.

Wyzwalanie Video

TRIG MODE	TRIG MODE
Туре	
Single	2/2
Source	Modulation
CH1	NTSC
Туре	HoldOff
Video	100ns
Sync	HoldOff
Line	Reset
-	
1/2	

Rys.37. Menu wywalania video.

Menu wyzwalania	Ustawienia	Opis	
	CH1	Kanał 1 jako źródło wyzwalania	
Source árádio	CH2	Kanał 2 jako źródło wyzwalania	
300102 - 210010	EXT	Zewnętrzny sygnał wyzwalania	
	EXT/5	Zewnętrzny sygnał wyzwalania podzielony na 5	
Тур	Video	Ustawia pionowe wyzwalanie kanału sygnałem video	
Slope zbecze	Narastające	Ustawienie wyzwalania na zbocze narastające	
Slope - zbocze	Opadające	Ustawienie wyzwalania na zbocze opadające	
	Line	Synchronizacja wyzwalania w linii video	
	Field	Synchronizacja wyzwalania w polu video	
Sync	Odd field	Wyzwalanie synchroniczne w nieparzystym polu video	
	Even Field	Wyzwalanie synchroniczne w parzystym polu video	
	Designer Line	Wyzwalanie synchroniczne w linii projekcji	
Madulasia	NTSC	Synchronizacja wg standardu video	
iviodulacja	PAL/SECAM		
HoldOff	100 ns ~10 ns	Ustawia przedział czasu przed kolejnym wyzwoleniem.	
Holdoff		Reset czasu zatrzymania do 100 ns	
Reset			

Rys. 38. Sygnał wyzwalany polem video.

Rys. 39. Sygnał wyzwalany linią video.

Wyzwalanie alternatywne

TRIG MODE	TRIG MODE
Туре	
Alternating	2/2
CH SEL	Coupling
CH1	DC
Туре	Sensitivity
Edge	0.2div
Slope	HoldOff
Rising	100ns
	HoldOff
1/2	Reset

Rys.40. Menu alternatywnego wyzwalania zboczem.

Rys.41. Menu alternatywnego wyzwalania video.

Rys.42. Sygnały przy wyzwalaniu alternatywnym.

Jak obsługiwać menu funkcyjne

Obszar kontrolny menu funkcyjnego zawiera 6 przycisków funkcyjnych i 3 przyciski o natychmiastowym dostępie: SAVE/REL, MEASURE, ACQUIRE, UTILITY, CURSOR, DISPLAY, AUTOSET, RUN/STOP i HARDCOPY

Jak implementować ustawienia próbkowania

Wciśnij przycisk ACQUIRE (Akwizycja) w menu pokaże się obraz, jak na rys.43

Rys.43

Opis menu ustawień przedstawiono poniżej :

Funkcje Menu	Ustawienia	Opis
Próbkowanie		Główny tryb próbkowania
Wykrywanie wartości		Jest używane do detekcji zakłóceń z i możliwość
szczytowej		zmniejszenia szumów
Wartość średnia		Jest używana do redukcji przypadkowych szumów z
		opcją liczby uśrednień
Liczba uśrednień	4, 16, 64, 128	Wybór liczby uśrednień

Zmień ustawienia ACQU Mode i zaobserwuj zmiany sygnału na wyświetlaczu.

Rys. 44 W trybie akwizycji Peak Detect, zniekształcenia na zboczu opadającym sygnału prostokątnego są wykryte.

Rys.46 Wyświetlany sygnał pozbawiony szumu w trybie próbkowania z uśrednianiem (Avarage Mode), z stałą liczbą uśrednień wynoszącą 64.

Jak ustawić System wyświetlania

Wciśnij przycisk DISPLAY, w menu wyświetlacza pokaże się obraz, jak na rys. 47

Rys. 47 Ustawienia Menu wyświetlania

Funkcje Menu	Ustawienia	Opis
Тур	Vectors	Przestrzeń pomiędzy sąsiednimi próbkowanymi punktami
		na wyświetlaczu jest wypełniania wektorowo.
		Tylko próbkowane punkty są wyświetlane.
	Dots	
Poświata nieskończona	off	Ustawienia czasu persystancji dla próbkowanego punktu
	1sec	
	2sec	
	5sec	
	Infinite	
Format	YT	Pokazuje względną relacje pomiędzy pionową płaszczyzną
		nap. a poziomą płaszcz. czasu
		Kanał1 wyświetla oś poziomą
	XY	Kanał 2 –oś pionową
Przeniesienie	Bitmap	Dane transmitowane w postaci bitmapy.
(Carry)	Vectors	Dane transmitowane w postaci wektorowej.

Typ wyświetlana: Wciskając przycisk **F1**, możesz zmieniać typy pomiędzy **Vectors** i **Dots**. Różnice pomiędzy dwoma typami wyświetlania mogą być zaobserwowane z porównania rys.38 i rys.39

Rys. 48 Tryb wyświetlania wektorowego

Rys 49 Tryb wyświetlania punktowego

Poświata nieskończona

Kiedy funkcja Persist jest używana, efekt wyświetlania poświaty może być symulowany na ekranie oscyloskopu: zachowane oryginalne dane są wyświetlane w zanikającym kolorze a nowe dane są rozjaśniane. Za pomocą przycisku **F2**, mogą być wybrane różne czasy persystancji : **1sek,2sek,5sek,Infinite**(nieskończony),i **Closed**. Dla ustawionego "Infinite", mierzone punkty będą pamiętane dopóki nowa wartość się nie zmieni. (rys. 40)

Rys. 50. Czułość poświaty.

Tryb XY

Tryb XY daje się zastosować tylko dla kanału 1 i kanału 2 jednocześnie. Dla wybranego formatu XY, Kanał 1 wyświetla oś poziomą a Kanał 2 oś pionową. Oscyloskop jest ustawiony w trybie próbkowania bez wyzwalania: dane są wyświetlane jako jasne punkty z współczynnikiem próbkowania 1MS/s i nie mogą być zmienione.

Operacje pokręteł kontrolnych są jak poniżej:

- Pokrętła Vertical VOLTS/DIV i Vertical POSITION kanału 1 są używane do ustawiania skali poziomej i pozycji
- Pokrętła Vertical VOLTS/DIV i Vertical POSITION kanału 2 są używane do ustawiania skali poziomej i pozycji

W trybie X-Y nie ma dostępu do następujących funkcji:

- Reference or digital wafe form
- Pomiar za pomocą kursorów
- Automatyczne ustawienie
- Regulacja podstawy czasu
- Regulacja wyzwalania

Kroki wykonywania operacji

- 1. Wciśnij przycisk Display i wywołaj Menu ustawień wyświetlacza
- 2. Wciśnij F3 i wybierz format XY. Format wyświetlacza zmieni się na tryb XY (Rys.41)

Rys.51 Tryb wyświetlania XY

Jak Zapisywać i wywoływać przebieg

Za pomocą przycisku **SAVE/REL** możesz zapisywać i odczytywać przebiegi z instrumentu. Menu wyświetlane na ekranie oscyloskopu jak na rys.52

WAVE SAVE Sourec CH1
WAVE A
Save
CH A ON

Rys. 52 Menu zapisu przebiegów

Opis Wave Form Save Menu przedstawiono w poniższej tabeli:

Funkcja Menu	Ustawienia	Opis
Źródło	CH1	Wybór sygnału do zapisu.
	CH2	
	MATH	
Przebieg	A, B, C, D	Wybór adresu w lub z którego sygnał jest zapisany
		lub odczytany.
СНА	OFF	Włącznik/wyłącznik wyświetlania pamięci przebiegu
	ON	
Save (Zapis)		Zapis przebiegu do źródła o wybranym adresie

Zapis i wywołanie przebiegu

Oscyloskopy z serii PDS mogą zapisywać do czterech przebiegów, które mogą być wyświetlane jako sygnały prądowe w tym samym czasie. Zapisane sygnały nie mogą być regulowane.

W celu zapisu przebiegów z kanłu 1 o adresie A, postępuj zgodnie z poniższą procedurą:

- 1. Wciśnij przycisk **F1** i wybierz CH1 dla Source.
- 2. Wciśnij przycisk F2 i wybierz A dla Wave
- 3. Wciśnij przycisk F3 i wybierz Save
- 4. Wciśnij przycisk **F4** i wybierz ON dla CH A. Zapamiętany przebieg z pamięci A zostanie wyświetlony na ekranie. Poziom napięcia i poziom podstawy czasu również będzie wyświetlony w górnym lewym rogu (rys. 43)

Rys.53.zapisywanie sygnałów.

Jak wykorzystywać ustawienia funkcji systemu pomocniczego

Naciśnij przycisk UTTILTY, w menu pokaże się obraz jak na rys. 55

Rys.54 Funkcje Menu

Opis Auxiliary Function Menu (Menu Funkcji Pomocniczego) przedstawiono w poniższej tabeli

Funkcja Menu	Ustawienia	Opis
Status systemu (System Status)		Wyświetla system funkcji menu
Ustawienia fabryczne		Odwołanie do ustawień fabrycznych
(Recall Factory)		
Kalibracja własna (Do Self Cal)		Wykonywanie procedury kalibracji własnej
Język	Chinese	Wybór wyświetlania języka systemu
	ENGLISH	operacyjnego

Kalibracja własna

Procedura Kalibracji może wpływać na dokładność oscyloskopu, jeśli wykonana jest poniżej temperatury otoczenia. Aby uzyskać możliwie najlepszą dokładność procesu kalibracji, należy przeprowadzać procedurę kalibracji przy zmianach temperatury równych lub większych od 5°C.

Przed wykonaniem procedury kalibracji, odłącz wszystkie sondy lub przewody od wejść wszystkich kanałów oscyloskopu. Nastęnie, wciśnij F3 i wybierz "Do Self Cal". Po zatwierdzeniu wszystkich ustawień, wciśnij F3 i wybierz "Do Self Cal" aby zatwierdzić procedurę kalibracji instrumentu.

SYS STAT (Stan systemu)

Wciśnij F1 i wybierz pozycję "SYS STAT" . W menu pokaże się obraz jak na rys. 56

Opis " SYS STAT " przedstawiono w poniższej tabeli:

Funkcja menu	Ustawienia	Opis
Odchylanie poziome		Pokazuje parametry odchylania poziomego kanału
(Horizontal)		
Odchylanie pionowe		Pokazuje parametry odchylania pionowego kanału
(Vertical)		
Wyzwalanie (Trigger)		Pokazuje parametry wyzwalania
Misc		Nastawy Daty i Czasu

Po zatwierdzeniu w menu SYS STAT, wybierz odpowiednią funkcje za pomocą odpowiednich parametrów wyświetlonych na ekranie. Jeżeli przycisk F1 zostanie wciśnięty przy wybranej funkcji "Horizontal", na ekranie zostanie wyświetlony stan odchylania poziomego. Wciśnij dowolny przycisk funkcyjny i wyjdź z menu SYS STAT. (Rys. 57)

	OWON	(Trig'd) M I	Pos: 0.000ns		SYS STAT
	H TIME BA	IORIZONTAL S	STEM STATUS MAIN TIME BASE	ε	Horizontal
	WINDOW SCALE MAIN POSITION WINDOW POSITION		25.us 0.000ns 0s		Vertical
1	DISPLAY ACQUIR	FORMAT E MODE	YT SAMPLE		Trigger
					Misc
	CH1 20u-	CH2 50.0mu-	M 500us	∠~ сн	1 0.00mu

Rys. 56 Odchylanie poziome System State (Stan Systemu)

Jak przeprowadzać Automatyczny Pomiar

Wciśnięcie przycisku Measure, spowoduje uaktywnienie trybu automatycznego pomiaru. Jest 5 typów pomiarów i 4 wyniki które mogą zostać wyświetlone jednocześnie.

Wciśnij przycisk F1 aby wybrać Źródło (Source) lub typ(Type). Możesz wybrać kanał przy wybranym Source i wybrać typ pomiaru wtedy gdy wybrane jest Type.

(Freq, Cycle, Mean, PK – PK, RMS i none). W menu pokaże się obraz jak na rys. 48

Rys.57. Menu pomiaru.

Pomiar

Cztery zmierzone automatycznie wartości mogą być wyświetlone w tym samym czasie dla sygnału każdego kanału. Tylko jeśli....

Pomiar nie automatyczny może być wykonany do zapisu lub???

Pomiar częstotliwości, wartości międzyszczytowej kanału 1 i średniej, RMS kanału 2, wykonuj zgodnie z poniższą instrukcją:

- 1. Wciśnij F1 i wybierz Source,
- 2. Wciśnij przycisk F2 i wybierz CH1,
- 3. Wciśnij przycisk F3 i wybierz CH1,
- 4. Wciśnij przycisk F4 i wybierz CH2,
- 5. Wciśnij przycisk F5 i wybierz CH2,
- 6. Wciśnij przycisk F1 i wybierz Type,
- 7. Wciśnij przycisk F2 i wybierz Freq,
- 8. Wciśnij przycisk F3 i wybierz Pk-Pk,
- 9. Wciśnij przycisk F4 i wybierz Mean,
- **10.** Wciśnij przycisk **F5** i wybierz Cyc RMS.

Wartość zmierzona będzie wyświetlona automatycznie w oknie odczytowym. (Rys.58)

Rys.58. pomiar automatyczny.

Jak przeprowadzać pomiary za pomocą kursorów

Wciśnij przycisk **CURSOR** aby wyświetlić menu funkcji pomiaru za pomocą kursorów (**CURS MEAS**), na wyświetlaczu pojawi się Pomiar napięcia (**Voltage Measurement**) i Pomiar czasu (**Time Measurement**), patrz rys. 59.

Rys.59 Menu pomiaru za pomocą kursorów

Opis cursor measurement menu przedstawia poniższa tabela:

Funkcja menu	Ustawienia	Opis
Тур (Туре)	OFF	Pomiar za pomocą kursorów wyłączony
		Wyświetla pomiar napięcia za pomocą kursorów
	Voltage	Pokazuje zmierzony czas za pomocą kursorów
	Time	
Źródło (Source)	CH1, CH2	
Delta		Odczyt odległości między kursorami
Kursor 1(Cursor1)		Odczyt pozycji kursora 1
Kursor 2 (Cursor2)		Odczyt pozycji kursora 2

Pomiar za pomocą kursorów

Kiedy wykonywany jest pomiar za pomocą kursorów, pozycja Kursora 1 może być regulowana pokrętłem CURSOR1(POZYCJA POZIOMA), Kursora 2 może być regulowana pokrętłem CURSOR2(POZYCJA POZIOMA).

Postępując krok po kroku zgodnie z poniższymi instrukcjami wykonasz pomiar napięcia z wykorzystaniem kursorów:

- 1. Wciśnij CURSOR i odwołaj się do menu Curs Meas
- 2. Wciśnij F1, wybierz Voltage (Napięcie) dla Type, za pomocą dwóch przerywanych linii wyświetlonych w pozycji poziomej wzdłuż całego obrazu, oznaczają Kursor 1 i Kursor 2.
- 3. Wciśnij F2 i wybierz CH1 dla Source
- Regulując pozycje Kursora 1 i Kursora 2 zgodnie z mierzonym przebiegiem, wartość amplitudy napięcia jest różnicą pomiędzy Kursorem 1 i Kursorem 2. Aktualna pozycja Kursora 1 (Kursora 2) jest wyświetlana w oknie Cursor1(Kursor 2). Patrz rys.51

Rys. 60. sygnał napięciowy mierzony kursorami.

Postępując krok po kroku zgodnie z poniższymi instrukcjami wykonasz pomiar czasu z wykorzystaniem kursorów :

- 1. Wciśnij "CURSOR" i odwołaj się do menu CURS MEAS.
- 2. Wciśnij F1 i wybierz Time dla Type, za pomocą dwóch przerywanych linii wyświetlonych w pozycji pionowej wzdłuż całego obrazu, oznaczają Kursor 1 i Kursor 2.
- 3. Wciśnij F2 i wybierz CH1 dla Source.
- Regulując pozycje Kursora 1 i Kursora 2 zgodnie z mierzonym przebiegiem, cykle i częstotliwość zależą od ustawień Kursora 1 i Kursora 2. Aktualna pozycja Kursora 1 (Kursora 2) jest wyświetlana w oknie Cursor1(Kursor 2). Patrz rys.61

Rys.61. Pomiar kursorami

Jak wykorzystywać przyciski o natychmiastowym dostępie (Executive)

Przyciski o natychmiastowym dostępie AUTOSET, RUN/STOP i HARDCOPY.

Automatyczne ustawienia

Przycisk używany jest do automatycznych ustawień aby wygenerowany przebieg był stabilny dla obserwacji. Wciśnij AUTOSET oscyloskop zacznie przeprowadzać automatyczny pomiar sygnału.

Pozycje funkcji AUTOSET są zestawione w poniższej tabeli:

Ustawienie			
Aktualny			
DC			

Vertical Scale	Dobór właściwej skali	
Pasmo	Pełne	
Poziom Odchylania poziomego	Średnie	
Poziom Odchylania pionowego	Dobór właściwej skali	
Rodzaj wyzwalania	Aktualny	
Źródło wyzwalania	Pokazuje minimalną liczbę kanałów	
Sprzęganie wyzwalania	Aktualny	
Zbocze wyzwalania	Aktualny	
Poziom wyzwalania	Ustawienie punktu	
Tryb wyzwalania	Auto	
Format wyświetlania	YT	

RUN/STOP : Włącza albo wyłącza próbkowanie przebiegu.

Bateria:

Dostarczona bateria gotowa jest do użycia. Pierwsze ładowanie powinno trwac 12 godzin (oscyloskop powinien być włączony). Aby zapobiec nadmiernemu nagrzewaniu się oscyloskopu podczas ładowania należy ładowac oscyloskop w temperaturze otoczenia podanej w warunkach ogólnych użytkowania oscyloskopu. Całkowicie naładowana bateria

wystarcza na 4 godziny pracy . Wskaźnik naładowania baterii 🛋, 🖨, 🏟 informuje o stanie naładowania.

Przykłady znajdują się w angielskiej wersji instrukcji obsługi

MERAZET S.A. ul. J. Krauthofera 36 60-952 Poznań Tel. (061) 864-46-10, fax. 8651933

