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Preface

This book emerged from the project Trends in Mathematics Education Research (TiMER), an in-
itiative supported by the European Society for Research in Mathematics Education (ERME). The 
primary aim of the TiMER project was to foster and advance research in mathematics education.

The intended audience for this book includes teacher educators of pre-service and in-ser-
vice mathematics teachers at all educational levels, as well as the teachers themselves, mathe-
matics education researchers, policymakers, and all those with an interest in the field of math-
ematics education.

By presenting a wide range of topics, this book addresses various facets of mathematics edu-
cation, spanning multiple educational stages. These range from the development of mathemati-
cal thinking in early childhood education through the different grades of primary and second-
ary education and extend into issues of mathematics teacher training for mathematics educators.

Introduction

Three key components are distinguished in the classical theoretical framework of interac-
tions within the mathematics teaching-learning process: the student, the teacher, and the 
subject of instruction – mathematics. These elements are interconnected through bilateral 
relationships, emphasising their mutual influence on one another.

This book begins with a focus on students’ perspectives before transitioning to an anal-
ysis of the teacher’s role and training in mathematics education. 

The first part focuses on students’ understanding of selected mathematical concepts, ex-
amining their intuitive and formal knowledge. The research presented aims to describe how 
these concepts are comprehended, identify difficulties and misconceptions, and provide in-
sights into addressing these challenges. The findings can inform the design of learning en-
vironments and educational activities, guide education policy, and contribute to effectively 
structuring the core curriculum.

Research in this domain necessitates diverse methodologies, tools, and techniques. These 
range from developing fundamental instruments designed to elicit specific cognitive activities 



Trends in Mathematics Education Research8

in young children – as exemplified in the chapter by Marta Pytlak, Which Road Is Longer? – In-
tuitions of 5–6-Year-Old Children Related to the Concept of Measure and Taking Measurements 
– to the application of methodological triangulation and advanced apparatus in studies on for-
mal knowledge usage. An example of the latter is the research on mathematical modelling skills 
conducted by Mirosława Sajka and Roman Rosiek in Walking up the Stairs: An Excerpt from 
Research Involving Eye Tracking on Understanding Function as a Tool for Describing Movement.

When researchers employ tests as investigative tools, the process entails rigorous validation 
and interpretation, as illustrated in the study by Jarmila Novotná and Alena Šturcová, Tool 
for Diagnostics of Students’ Difficulties in CILL (Content and Language Integrated Learning). 
Estelle Szafran-Florian’s chapter, Mathematisation and Modelling – Comparing the Perfor-
mances of IB DP (International Baccalaureate Diploma Programme) and Polish Programme 
Students, explores the notion of function in practical contexts and contributes to discussions 
on curriculum design and its impact on student achievement.

The book’s second part continues to focus on learners but shifts towards analysing their 
metacognitive skills. Examining them necessitates solving carefully designed problems that 
elicit specific modes of reasoning. This section begins with a chapter by Bożena Maj-Tatsis 
and Konstantinos Tatsis, Perspectives on Young Students’ Mathematical Reasoning, which 
provides a literature review on mathematical reasoning in early primary education. The au-
thors highlight the varied definitions of the term and underscore the role of problem selec-
tion and teacher facilitation in the reasoning process. Following this, Esperanza López Cen-
tella presents an Analysis of Tasks from a Hejný Method Mathematics Textbook for the Sixth 
Grade, employing qualitative content analysis to examine the selection of tasks designed to 
foster critical thinking. Building on this theme, Edyta Juskowiak’s chapter, Ways of Solving 
Mathematical Tasks by Students Aged 14–15 as Manifestations of Critical Thinking, offers an 
in-depth analysis of student responses to a non-standard task, identifying elements of criti-
cal thinking in their reasoning and attempts of argumentation.

The chapter by Edyta Nowińska and Elena Kok, Challenging Aspects of Metacognitive Sup-
port in the Classroom and How to Prepare Teachers for Them, explores the complexity of fos-
tering metacognitive support and presents a theoretical framework that enhances teachers’ 
ability to foster students’ metacognitive development and critical thinking. This discussion 
serves as a transition to the subsequent parts of the book, which are dedicated to the role of 
teachers and teacher training. While the teacher’s influence is an underlying theme through-
out the book, the following two sections focus more explicitly on this aspect.

The book’s third and most comprehensive part focuses on mathematics teachers, partic-
ularly their professional knowledge and the training of pre-service teachers, examining how 
their subject-specific and pedagogical knowledge evolves throughout their preparation. Re-
search on various aspects of mathematical knowledge for teaching plays a critical role in this 
discussion. Monika Grigaliūnienė’s chapter, Knowledge of Mathematics Teachers from the 
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Perspective of Their Students, offers a qualitative exploration of teachers’ knowledge – or its 
gaps – from students’ viewpoint, utilising a focus group methodology.

The subsequent three chapters investigate mathematics teachers’ specialised knowledge, 
particularly in the context of courses designed to foster knowledge of functional and algebra-
ic thinking. Different methodological perspectives are employed: Matej Slabý and Ingrid Se-
manišinová analyse Pre-service Teachers’ Knowledge of Students’ Misconceptions About and Diffi-
culties With Functions, with a focus on pedagogical content knowledge; Veronika Hubeňáková, 
Monika Krišáková, and Zuzana Gönciová examine Slovak Pre-service Mathematics Teachers’ 
Knowledge About Linear Function Definition and Their Beliefs About Mathematics; and Begüm 
Özmusul and Ali Bozkurt implement the other methodological approach, An Experimental 
Study on Middle School Pre-Service Mathematics Teachers’ Algebraic Knowledge for Teaching.

Barbara Nawolska’s chapter, Reductive Reasoning of Pedagogy Students in the Process of 
Solving a Text Task Entitled: How Many Pearls Were in the Casket?, presents a detailed anal-
ysis of reasoning when solving a non-standard task by pre-service teachers’ of early childhood 
education, highlighting the need to shape reductive reasoning skills in this group. 

A thorough assessment of pre-service teachers’ knowledge at the outset of their universi-
ty education is essential for diagnosing their educational needs and designing effective train-
ing programs. In this regard, Mirosława Sajka and Sławomir Przybyło provide the chapter 
Diagnosis of School Mathematics Knowledge and Skills of Students Entering University to Be-
come Mathematics Teachers.

The book’s final section is devoted to proposals for enhancing pre-service mathematics 
teacher education at different educational levels. A critical aspect of this discussion is the 
need to thoroughly analyse mathematics curricula in early education. Comparative stud-
ies, such as the one presented by Marlene Kafui Amusuglo and Antonín Jančařík in Colleg-
es of Education Early Grade Mathematics Curriculum and National Kindergarten Mathe-
matics Curriculum in Ghana: A Comparative Analysis, offer valuable insights in this regard. 

Moreover, all innovative approaches to pre-service teacher education merit further dissemina-
tion. Agnieszka Bojarska’s chapter, The Use of an Interactive Form of Classes to Motivate Pre-ser-
vice Teachers of Early Childhood Education to Solve Mathematical Problems, exemplifies an un-
conventional yet effective teaching method designed to engage and inspire future educators.

The organisation of the chapters presented here represents one of many possible arrange-
ments, reflecting the inherently complex nature of the teaching and learning of mathemat-
ics. A comprehensive perspective that acknowledges the interplay of these various elements 
is crucial to enhancing the effectiveness of mathematics education. We hope that the find-
ings from the presented research, along with the theoretical insights, will underscore the im-
portance of understanding students’ and teachers’ mathematical knowledge. The book also 
introduces teaching and diagnostic tools, such as problem sets, which may serve as valuable 
resources for educators and researchers in enhancing mathematics education.
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P A R T  I

The Understanding of 
Chosen Mathematical 
Concepts in Students



Marta Pytlak
University of Rzeszów

Ch a pter 1

WHICH ROAD IS LONGER? – INTUITIONS OF 5–6-YEAR-OLD CHILDREN 
RELATED TO THE CONCEPT OF MEASURE AND TAKING MEASUREMENTS

Summary: Mathematics education in kindergarten is the subject of many studies. Children aged 5-6 
are especially open to new educational experiences. They have a natural ability to explore and learn. 
Moreover, many activities they undertake in everyday life have great potential to develop their intu-
ition regarding specific mathematical concepts. One such issue is the concept of measure and taking 
measurements. A study conducted among preschool children revealed their intuitions about these 
concepts – preschoolers are able to distinguish basic phenomena related to measure and measure-
ments. They understand the distance between objects as straight-line distance between them, and 
such “straightness” is equated with perpendicularity. The obtained results are a good starting point 
for broader research in the field of understanding the concept of measure and taking measurements 
in preschool children. 
Keywords: measure understanding, taking measurements, distance, preschool education.

1. Introduction

There is increasing talk about the importance of preschool education in a child’s devel-
opment. Its importance is emphasised especially in relation to preparing children for ear-
ly school education (Gruszczyk-Kolczyńska, 2009; 2012). Children’s mathematics on the 
preschool level is based on two main pillars: arithmetic and geometry. In relation to arith-
metic, competences are primarily developed in the scope of counting, converting, and com-
paring the size of sets. In geometry, preschool education focuses primarily on recognising 
the shapes of basic figures (triangle, square, rectangle, circle). 

The issues of measure and taking measurements are essentially omitted, but it is not 
a new and unknown concept for a child. Without even knowing it, he/she encounters this 
concept everyday. Many studies emphasise the importance of knowing measure and tak-
ing measurements (NTCM, 2000). However, there is a lack of extensive research in this 
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area, especially at the preschool stage. Meanwhile, geometry and measurement give us a lot 
of opportunities to develop children’s competences and talents. As Marija van den Heuv-
el-Panhuizen and Kees Buys (2004, p. 10) write:

Both measurement and geometry enable children to make connections with their daily environment. 
Both domains offer mathematical tools, each in their own way, to structure the physical world and 
to get a grasp on it. Moreover, they both lead to wonderment. And thus to the development of math-
ematical disposition with is characterized by an exploring attitude, a certain perseverance in solving 
problems, and a sensitivity to the beauty of mathematical structures and solutions.

The very issue of measure and taking measurements in formal terms is often difficult. It 
requires the understanding of operations at a specific level (Gruszczyk-Kolczyńska, 1992).
However, children aged 5-6 years function at the preoperational level. Therefore, it is im-
portant to use the child’s own experiences and introduce them to the world of mathemat-
ics in the most natural and friendly way for them. The development of skills and compe-
tences should take place through activities and the child’s active participation – such an 
approach, called Natural Mathematics, is described by Dwyer and Elliget (1970). Among 
the important principles of this approach are:

1. Skills are not separated and learned first and applied later to a problem. They are 
learned in the process of solving many problems.

2. Neither are concepts separated and learned first and then applied later to a prob-
lem. They are also learned in the process of solving many problems. This is the op-
position to the current procedure of using many exercises to illustrate a concept (…) 
(Dwyer & Elliget, 1970, p. 35).

The following questions remain open: What experiences do preschool children have with 
the concept of measure and taking measurements? What intuitions do they have and how 
can they be used to develop a correct and complete understanding of the concept of meas-
ure and measurements? An attempt to answer these questions is the subject of this paper.

2. Theoretical Framework

Intuition plays an important role in children’s learning. In the teaching process, the teach-
er should refer to the child’s intuitive approach to mathematical issues. Using natural be-
liefs can aid learning.
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Intuitive ability is the essential source for learning at all stages, including the conscious choice of skill 
or concept itself. Intuition is the initial platform for the beginning learner, the vehicle for progress 
of intermediate learner, and the means of breakthrough to new knowledge by the advanced scholar. 
At all steps along the way, intuition is used as the ultimate appeal when systematized comprehension 
breaks down, whether its purpose is “remedial” or creative (Dwyer & Elliget, 1970, p. 37).

The issue of measure and measurements is not completely alien to the child. Children’s 
first experiences with these concepts are in the form of comparisons. Children compare 
who is taller, who has a longer foot, who built a bigger tower. Their own idea of measure 
and measurements is slowly being built. The use of these natural tendencies of comparing 
can be a starting point for targeted activities in the development of “measuring” compe-
tences (MacDonald & Lowrie, 2011).

Taking measurements itself is usually associated with the use of a more or less stand-
ard measuring tool. There are a lot of studies that present differing approaches to this issue 
(see Gómezescobar, Guerrero, & Fernandez-Cezar, 2020). Some authors believe that us-
ing a measuring tape requires the child to understand the very essence of measurement. In 
a way, this aligns with Piaget’s approach: before a child can use a ruler properly, he or she 
should first become familiar with the concept of length. Vygotsky opposes this approach, 
by pointing out in his approach that the ruler is a type of tool that children can adapt and 
use even before they are formally introduced to the concept of measure. This is noted by 
Clemens and Stephan (2004).

The process of measuring is linked to a particular activity. Interestingly, when measur-
ing lengths, children naturally make use of one-dimensional geometry, even though they 
function in three-dimensional space. The measurement process involves several aspects, as 
mentioned by Buys and de Moor (2008). They distinguish between measuring by compar-
ison, by using a unit (standard or non-standard), and by using appropriate measuring tools. 
To fully understand the concept of measure, a child should be able to go through all three 
of these stages. Here, it is very important to strongly relate to the child’s everyday experienc-
es, as is often emphasised by van den Heuvel-Panhuizen (2008). In developing a proper un-
derstanding of the concept of measure and taking measurements, the use of both standard 
and non-standard units of measurement is important (Haylock & Cockburn, 1989; Boul-
ton-Lewis, Wilss, & Mutch, 1996; MacDonald & Lowrie, 2011). Measuring itself should 
not be treated and taught as a separate activity, but rather as a specific combination of con-
cepts and skills that develop over time (Clements & Stephan, 2004). In order to nurture the 
concept of measurement and the ability to take measurements in children, it is necessary 
to give them appropriately prepared “measurement tasks” (Mac Donalds & Lowri, 2011).

As mentioned in the introduction, in Polish preschool education, a lot of time is devot-
ed during mathematics classes to issues related to counting. Many games and tasks are re-
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lated to counting and converting. Geometric problems appear as an “afterthought”, usual-
ly in the form of recognition of figures and shapes. Measurement-related content is often 
overlooked. Comparing objects is done more in the form of comparing sizes of sets, than 
in the context of measuring, length, or size. Hence, the idea of examining children’s com-
petences in the scope of measure and taking measurements was born.

3. Research Methodology

This research is part of a larger project on the understanding of the concept of measure and 
measuring by preschool children (5-6 years old). 

The aims of the whole project are:

1. Recognising children’s intuitions regarding various aspects of measure and taking 
measurements,

2. Examining the ability to take measurements and use different units of measurement,
3. Developing competences of measuring and the understanding of the concept of 

measure (in relation to taking measurements),
4. Developing certain tools and didactic proposals supporting the understanding of 

the concept of measure.

The research was carried out in two stages: The first stage consisted of a pilot study, fol-
lowed by the research stage. At each stage, the procedure was very similar: first, the intui-
tions and beliefs of 5-6-year-old children were examined in the scope of measure and tak-
ing measurements, followed by studying how children use their intuitions to solve tasks 
related to measuring lengths and comparing them. After completing the pilot studies, eval-
uation of the research tool and its further testing are planned. 

The pilot studies aimed to answer the following questions: 

1. What intuitions and beliefs do 5-6-year-old children have about taking measure-
ments at the pre-introduction stage?

2. How do children measure different objects, and what units do they use?
3. Are children able to compare different objects considering their specific dimensions 

(can they develop a universal unit, rules for taking measurements)?
4. Are children able to apply the learned and developed principles of taking measure-

ments when solving related tasks?
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The research group during the pilot study consisted of children aged 5-6 attending a pub-
lic kindergarten (18 subjects in step 1 and 20 in the following steps). 

The pilot studies were carried out as follows:

Step 1. First, a diagnosis was made of all children participating in the study in the con-
text of their intuitions and beliefs related to taking measurements. For this purpose, an 
individual diagnostic interview was conducted with each child, during which he or she 
solved three tasks. The researcher conversed with the child, but did not evaluate his or her 
answers. The aim was to simply assess what the child knows about taking measurements. 

Step 2. During group activities, the children solved tasks together related to the con-
cept of measure and taking measurements. The aim of these activities was to stimulate 
interaction between the children. The influence of the differences between children in 
their thought processes when approaching a given task, as well as the final solution to 
the problem were observed. The aim of the children’s joint discussion with the researcher 
was to draw attention to important aspects related to measure and taking measurements 
and to systematise the knowledge on this subject (what it means to measure length, how 
to take measurements, what to pay attention to when measuring).

Step 3. Conducting classes, during which children solved tasks related to taking meas-
urements on their own or in small groups (3-4 people), including analysis of the chil-
dren’s work and observation of whether there has been a change in their approach to 
the issue of measure and taking measurements.

Step 4. Analysis of the collected research material. Redesigning of activities support-
ing the development of competences related to taking measurements and shaping the 
understanding of the concept of measurement, preparation for research on a wider re-
search group.

After the pilot studies, proper research is planned, the course of which will be similar to 
the first stage of this research. The studies will begin with individual diagnostic interviews. 
Then, the children will go through a series of group meetings during which they will de-
velop their skills in taking measurements through play. The next step will involve individ-
ual tests to check their understanding of measure and taking measurements, ending with 
classes to consolidate the knowledge learned. 

As of now, the pilot studies have been completed. Diagnostic studies were also carried out 
among children participating in the research. The next stages of the study are in preparation. 
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In this paper, I will focus on presenting the course of the pilot studies (especially from 
steps 2 and 3) and discussing the results obtained therein. The collected data were ana-
lysed qualitatively. Detailed results of the pilot studies from step 1 were presented during 
the SEMT conference (Pytlak & Maj-Tatsis, 2021).

4. Step 1

4.1. Organisation and Course of Pilot Studies – Step 1 

Step 1 in the pilot study was based on one-on-one meetings with every child. The aim of 
the interview was to identify the child’s intuitions in terms of measurements. The child was 
asked to attempt to define what it means to “measure”. We were also interested in how the 
children would compare the lengths of two objects (here it was two trains made of blocks) 
and how they would check which object was longer.

The conversations took place on the premises of the kindergarten, in a secluded place, 
so that nothing would distract the children while they worked. During this conversation, 
the researcher presented the child with three tasks to solve. There was no time limit to solve 
the problems, although usually these conversations lasted up to 10 minutes. While work-
ing on solving them, the researcher conducted a conversation with the child, the purpose 
of which was to obtain information on how to solve the tasks. The questions were inform-
ative rather than evaluative. It was primarily about acquiring information from the child 
without valuing or judging their answers. All of the child’s answers were considered correct. 

The research material consisted of videos recorded during each of the meetings and pro-
tocols prepared on their basis. The children’s working methods, as captured on film, and 
their conversation with the researcher were analysed. 

The tasks given to the children were as follows:

Task 1. Instruction for the children:
Ania loves to play with toys. She’s standing on the 
green line and would like to get to her toys [the re-
searcher physically places the figure on the green 
line]. She wonders which way to go. She wants to 
take the shortest route. Help Ania make the right 
choice. Why is this path the shortest? Is there any 
way to check this? 
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Aim of the task: To investigate the children’s intuitions about measuring the distance 
between two objects (their understanding of the distance and the “shortest path” be-
tween two objects).
Expected results: The child will indicate the third path as the correct one, intuitively 
referring to its perpendicularity in relation to the start and end lines.

Task 2. Instruction for the children:
Kuba and Jaś are arranging trains from colorful blocks. Here are Kuba’s blocks, and here are Jaś’s. 
Which of the boys do you think will make a longer train out of their blocks? Why? Try assembling 
these two trains. Was your prediction right? How can you tell which of the stacked trains is longer?

Note: The blocks the children received were the same length.
Aim of the task: To investigate the children comparing the length of objects with their 
intuitions in this area (e.g. arranging them on a common line).
Expected results: The child will point to the pile with more blocks, can refer to the 
size of the set; when assembling the two trains, he will place them one below the oth-
er on the same line.

Task 3. Instruction for the children:
Ala and Kasia are arranging trains. Here are Ala’s bricks, and here are Kasia’s. Which girl do you 
think will build a longer train? Why? Try to assemble these two trains. Was your prediction right? 
And how can you tell which of the assembled trains is longer?

Note: Each of the children had blocks of a different length (one had 8 longer blocks, 
the other 6 longer blocks, and after arranging the trains, the longer one was the one 
made of longer blocks).
Aim of the task: To investigate whether the children will pay attention to the “unit” 
of measurement and how they will compare the length of objects (whether they make 
use of their experience from working on task 2).
Expected results: 

1. The child will point to a set of longer blocks as the one from which a longer train 
can be built, and the assembly of the blocks will confirm this hypothesis 

or

2. The child will point to a set of shorter blocks as the one from which a longer train 
can be built, and the assembly of the blocks and comparison of the objects will lead 
to a change of mind and the discovery that not only the number of components, 
but also their size matters.
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4.2. Analysis of Results from Step 1

In task 1, each of the proposed roads (except No. 2) was selected. The justifications for the 
choice were quite surprising. This can be seen in the table below:

Table 1. The results from the task 1
Path no. 1 2 3 4 5

Choice made 
(in %) 30 0 55 5 10

Justification Because it’s 
straight -

Because it’s straighter
Because it’s not crooked

Because it’s the shortest/fastest

Because they are so 
straight here (pointing 
to individual sections)

Because it’s so twisted
Because it has loops

The analysis of the research material showed that children have considerable intuitions 
in the field of measure and taking measurements. The results obtained from task 1 showed 
that the vast majority identified the distance between the objects as a straight line connect-
ing the two objects. At the same time, their understanding of the “shortest way” was two-
fold. For some of the children, it was the “straightforward” way (here, it was a straight line 
without loops or bends, which could be verified visually). A large group understood the 
shortest path as a section perpendicular to the starting line (which is consistent with the 
mathematical understanding of the concept of distance). 

When attempting to solve the task, two of the children immediately provided the an-
swer, without arranging trains from the prepared blocks. Except for one case, all the an-
swers were correct. When asked by the researcher to justify their answer, the children usu-
ally counted both sets of blocks, referring to arithmetic justification (comparing the size of 
sets). Some of them started to build trains only after a suggestion from the researcher. Here, 
the following methods of arrangement can be distinguished here:

Table 2. Ways of arranging trains by children
Description of 
arrangement 

method

Arranging two trains 
in one line

Arranging two trains 
diagonally to each other

Arranging two trains 
parallel to each other, 

with offset

Arranging two trains 
parallel to each other, on 
a common starting line

Visualisation

number 6 5 4 3

The chosen method of arrangement determined, in a sense, the justification for the 
answer to the question regarding the longer train. When the researcher asked: “Can you 
show me that this train is longer?” some of the children recalculated the components of 
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each train. The children who arranged the trains on one starting line immediately point-
ed to the longer train and specified how much longer it was than the other. In a situation 
where the trains were parallel to each other, but offset, the children moved one of the trains 
so that they started on the same line. Some of the children performed similarly, arranging 
the trains in a single line or diagonally.

Figure 1. Comparing trains made of blocks by a child

However, there were subjects (6 children) who, despite providing the correct answer 
about the longer train, could not justify it in relation to the trains they had arranged. These 
were the children who arranged the trains diagonally or in a single line. As justification, 
they provided only the size of the two sets and referred to the comparison of numbers. For 
them, it was the numbers themselves that mattered, not their representation (here: in the 
form of two trains). Three children, when asked by the teacher to show which train was 
longer, combined the two into one very long train. One of the children’s comments on the 
situation was as follows: “This train is the longest”. It seems that for these children, the fact 
that they were building with identical blocks meant that they did not have to compare them 
with each other (they were the same objects). The number of elements used was important. 
Therefore, what they were comparing was not the physical sets, but their size.

The children transferred their experience from task 2 to task 3. This can be seen in the 
summary of the results of their work:

Table 3. Results for tasks 2 and 3 from the first part of the pilot studies
Task 2 Task 3

First answer: Indication of expected answer/indication of wrong answer 17/1 9/9

Justification by reference to size of sets 15 7

A
ra

ng
in

g 
m

et
ho

d

In line side by side 6 3

Obliquely 5 0

In parallel with offset 4 0

One below another, from common starting line 3 14

Some children did not initially pay attention to the different lengths of the blocks used 
to build the trains, hence the wrong answers and wrong justifications. Seeing the different 
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lengths of the blocks, the children started to assemble the trains themselves, which made 
them reassess their answer. This time, their method of assembly was significantly differ-
ent. Even if a child started assembling the trains in parallel with an offset, they would very 
quickly move them to the same starting line.

The results obtained from tasks 2 and 3 showed that when “measuring,” children paid 
attention to both the unit and the method of making measurements. At the same time, 
their experience from task 2 was transferred into their way of solving task 3. By com-
paring two objects with each other (here in the form of two trains of different lengths), 
they placed them one under the other, on the same starting line. However, this meth-
od of comparison was especially important in a situation where the trains were made of 
blocks of different lengths (which can be equated to a different unit of measurement). 
When the two objects were made of identical blocks, the children did not feel the need 
to make physical comparisons. In this case, it was enough for them to simply count the 
elements in each of the trains.

Thus, in this situation, “measuring” was equated to the size of individual sets, while “ar-
ranging trains” was treated as different arrangements of a given set.

5. Step 2

5.1. Organisation and Course of Pilot Studies – Step 2

In step 2 of the pilot study, group activities with children were conducted. The preschool-
ers were divided into two groups of 10 children. Each group worked separately under the 
supervision of a teacher, performing the same tasks. Each of the meetings was recorded. 
The children worked in groups, as I wanted them to interact with each other. I also want-
ed to see if the influence of the group would cause a change in their approach to the task. 
When talking with the group, the teacher did not evaluate the answers of individual stu-
dents, subjecting their correctness to the judgment of their classmates. Each of the children 
had the opportunity to speak freely.

During the meeting, the children were presented with two tasks. These were pre-
sented in the form of stories, illustrated with physical props. The aim of the tasks was 
to find out what intuitions and beliefs the children have about measuring, primari-
ly about understanding distance as the shortest segment between objects, perpendic-
ular to the end line.

The tasks presented to the students were as follows:
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Task 1.
In the land of toys, a doll, a ball, some blocks, and a teddy bear decided to pay each other a visit. 
Who is the teddy bear furthest away from? And who is closest to the ball? How can we check this?

Figure 2. Initial situation for task 1 in the second step of the pilot studies

When presenting the task to the children, the teacher placed the aforementioned toys 
on the floor. They were arranged to ensure differences in distance between them (Fig. 2) 
– it was not always possible to visually assess which distance was the greatest, which was 
meant to steer the children towards discussion and action.

This task did not impose any particular method of solution, nor did it suggest that the 
distances between the toys should be measured. The idea was to provoke the students into 
discussing the problem posed: How do we compare distances between objects? A string pre-
pared by the teacher was used as a means of measurement in this task. In addition, the children 
used their own feet or hands to measure distances (measuring distances with feet and hands).

Task 2.
a) The animals organised a ball-throwing competition. A fox and a bunny were the judges, and an 
owl, a beaver, and a deer stood on the starting line. Each player made one throw. Which animal 
won the competition? Why?

Figure 3. Initial situation for task 2 in the second step of the pilot studies



Trends in Mathematics Education Research24

b) The first judge was the fox. He used feet to measure the distances. The measurement, according 
to the fox, looked like this:

Figure 4. How the fox took measurements

The fox announced his verdict: The beaver won. Do you agree with the verdict of the 
fox judge? Justify your opinion.

c) The bunny started his judgment. With his feet, he measured each of the distances between the 
player and his ball. It looked like this:

Figure 5. How the bunny took measurements

The bunny announced his verdict: there is a draw, everyone threw the same distance. 
Do you agree with the bunny’s verdict? Justify your opinion.

As in the case of task 1, the teacher introduced the above three tasks, demonstrating 
their content. First, he placed all three players on a common starting line, and imitating the 
throw of balls, he placed them on the carpet at a certain distance from the players. Showing 
how the individual animals judged, he placed measuring instruments on the carpet (here 
they were paper feet of the same length).

At the start of the task, the students were able to propose their solutions. Then, these 
solutions were compared with two erroneous solutions.
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5.2. Analysis of Results from Step 2

Task 1
When starting to solve the situation from task 1, the children unanimously agreed that in-
dividual distances should be measured. There were various proposals regarding taking meas-
urements, usually by determining the distance using arm width. The teacher’s proposal of 
using a string to measure distances was met with approval. The children correctly marked 
the distances between the individual toys with a string. They also proposed a method of 
finding out which segment is the longest – by comparing the strings with each other. The 
shortest of them was the reference point by which the length of the others was determined. 
One of the boys took the first of the strings and put it to the second and third in turn. At the 
same time, he commented on the results obtained: “This one is longer”, “This one is shorter”.

Ex*:  What toy is the teddy bear farthest away from?
A:  The doll,
F:  No, the blocks.
Ex:  Ala says doll, and Franek says blocks. Which one of them is right? How do we check this?
F:  You have to measure the strings.
Ex:  Then measure the strings.
F:  [takes the strings and places them down one by one, with the centers of the strings at the 

same level] This one is longer and this one is shorter.
A:  No. [adjusts the arranged strings so that they all start at a common point, the teddy bear]
Ex:  Oh, Ala gathered all of the strings together. Is that a good thing? Do you agree?
F:  You can see here that this one is longer and these are shorter.
Ex:  You can see it very well.

* Ex – Experimenter; Ch – Children. Other capital letters represent the statements of the individual children.

In the quoted fragment of the conversation, we can notice that when comparing objects 
(here: strings illustrating the distance between toys), the children do not always pay attention 
to proper placement. The visual aspect is important. If something is clearly visible and certain 
properties can be visually evaluated, then additional aspects do not have to be taken into ac-
count. However, some children already have a need to organise the rules and put them into 
practice at this stage. If the child’s proposal does not negate the generally accepted solution, 
and instead presents it more clearly, then the other children accept the proposal with approval.

Figure 6. Measuring and comparing distances with strings
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In addition to measuring distances with strings, the children also suggested the use of 
measuring tape, which could be a reference to everyday life experiences. In addition, attempts 
were made to use arms (spreading arms to the measured distance), legs (measuring the dis-
tance by spreading legs) or oneself (one’s own body). However, the children themselves no-
ticed that it is not always possible to measure something in this way. It is also difficult to 
compare two lengths accurately with such measurements. The teacher suggested measur-
ing the distance with feet. First, he measured the distance between the teddy bear and the 
ball with his feet, and then asked one of the girls to measure the same distance. Two differ-
ent results were obtained: 3 feet for the teacher and 6 feet for the girl. In children, this sit-
uation did not cause any conflict, and it was noted that the results differ due to different 
foot lengths. It also seems that the children did not see the need to use the same measuring 
instrument for all measurements. The only thing that mattered was how it was measured.

Ex:  Laura took a measurement and came up with a 6. I’ll also take a measurement [he meas-
ures the distance between the teddy bear and the ball with his feet, counting loudly] one, 
two, three. So, who is right? Is it a distance of 6 or 3?

F:  Well, it’s because Laura has smaller feet.
Ex:  Oh, so if the feet are smaller, the result will come out a certain way, and if they are bigger, 

it will end up different, right? [children nod]
F:  Because bigger feet take up more space and smaller feet take up less.
Ex:  If I wanted to measure the distance between all of the toys, do I have to measure with the 

same feet, or can I measure some and Laura some?
Ch:  I don’t know [nodding their heads]
Ex:  Well, listen, Laura measured the distance from the teddy bear to the ball and it came out as 

6 feet. I measured the distance from the teddy bear to the blocks and I also came up with 
6 feet. You said that the teddy bear is further away from the blocks than the ball, right?

Ch:  [nodding their heads]
Ex:  But both measurements resulted in 6. So, can you take measurements with different feet 

to compare distances? Do they have to be the same rates?
Ch:  [silence, no answer]

The children unanimously approved of the teacher’s method of measuring distances 
with their own feet and began to use it themselves. They also very quickly noticed that the 
result of the measurement depends on the measuring instrument used. Hence, obtaining 
different values for the same distance did not cause any cognitive conflict in the children. 
They were a bit surprised when the teacher pointed out two identical results obtained when 
measuring two different distances (from the teddy bear to the blocks and from the teddy 
bear to the ball). They knew that the distances differed greatly, but they could not explain 
why the number was the same in both cases. What was surprising here was that, despite 
previous experiences with various “measurement units”, the children were unable to make 
use to this knowledge. Perhaps the measurement process itself was more important to them, 
and the unit used only mattered if it referred to the same measurement.
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Task 2
The second task consisted of two parts. The starting situation was always the same: There 
were three players on the starting line who threw balls a certain distance. First, the children 
evaluated the throws themselves and decided which player won. They agreed on who placed 
first and last. They justified their choice of winner by pointing out that the distance from the 
starting line to the ball is the longest. In addition, they used their hands to indicate the routes 
of sections of particular distances. Here, it was clear that the children made use of their intu-
itive understanding of the distance between objects as the shortest distance between them. 

In the second part of the task, the children were asked to assess the correctness of distanc-
es measured by two judges. In both cases the measurement was performed incorrectly and 
the results were different from those obtained by the children in the first part of the task. 
The first referee, a fox, measured the distance from himself to the balls thrown by individu-
al players. The children did not negate the fox’s measuring method. It followed the accept-
ed rules for measuring the distance between objects (between the fox and the balls): from 
one object to another, in a straight line. Objections were raised only due to the result, which 
differed from the one obtained by the children – this is when they paid attention to which 
sections were supposed to be compared. They quickly checked the solution and made chang-
es to the arrangement of the elements. Measuring the distances with their feet, the children 
tried to keep the parallelism of individual sections and start them from the same line. The 
recalculation of the elements (feet acting as units of measurement) in individual segments 
referred rather to size comparisons of appropriately ordered sets. When the children pro-
vided the numerical value of the measured distance, the cardinal aspect became apparent.

In the next part of the task, it turned out that the animal judge measured the distances 
in such a way that each competitor achieved the same result. The children spotted the mis-
takes right away. First of all, they disagreed with the result itself, clearly indicating that the 
distances achieved by the ball throwers are different. They referred primarily to the visual 
representation of the task. In addition, the preschoolers paid attention to the method of 
measuring itself: The feet were not placed in a straight line, but in an arc. 

6. Step 3

6.1. Organisation and Course of Pilot Studies – Step 3

In step 3 of the pilot study, classes were conducted with the entire group of preschoolers. 
The children were divided into teams of 3-4 subjects, whose task was to measure the length 
of various objects in the room (e.g. the length of the window sill, the dimensions of the ta-
ble). The selection of teams was fully arbitrary. The children were given measuring instru-
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ments – the paper feet used during previous tasks. They also had pieces of paper on which 
they could write down the results of their measurements. At the end of the task, everyone 
shared the results and compared them with each other. 

6.2. Analysis of Results from Step 3

All teams actively participated in the task. Initially, the children quickly divided the roles: 
One person was responsible for measuring, another for recording the results. At some point, 
however, everyone decided to measure and compare their results with each other. As soon as 
a different result was found, they checked if the measurement was made correctly. They paid 
a lot of attention to the correct use of measuring instruments: The feet were to be placed in 
a straight line, one behind the other, without gaps. They were very careful to apply the rules 
they had developed in their previous classes. The children wrote down the results of their 
measurements on pieces of paper. The results contained the number indicating the length 
or width of the tables, sometimes accompanied by an illustration. 

One of the groups made as many as three measurements. Each of the children measured 
the length of the bench on their own, and wrote down each of the results on a piece of pa-
per. However, three different values appeared: 10, 8, 6. Each of these results was treated as 
correct by the children on the team.

Figure 7. The girls measuring the length of the bench and recording the results of their work

Ex: Did you get three different results?
Ch: Yes.
Ex: And they’re all of the same bench? Are they all correct?
Ch: Yes.
Ex: Can you explain this to me? Because I don’t understand [he points to the drawing and the 

three numbers written in circles].
A: Well, at first, we measured like this [she points to the long side of the bench] and we came 

up with 10 feet.
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M: And then I measured it again, but I ran out of feet and I got 8.
A: And here [points to the short side of the bench] there were 6 feet.

The children were aware of how to take a measurement. They correctly applied the prin-
ciples of measurement and recorded the results obtained. The task was so interesting for 
them that each of them wanted to make their own measurements. In addition, while meas-
uring the length of the bench, both girls took measurements at the same time. Unfortunate-
ly, they lacked “measuring material”, so one girl arranged 10 feet along the entire length, 
and the other placed only 8. Although they knew that only one of these values was correct, 
they wrote them both down on a piece of paper. Perhaps they wanted to show the results 
of their own measurements. Since they got different results, both appeared in the record. 
Measuring the width of the bench, both girls got the same result (6 feet), hence they wrote 
only the one result on a piece of paper.

The boys took measurements in a completely different way. First, they placed their feet 
around the bench, creating a kind of border. However, when writing down the dimensions 
of the bench on a piece of paper, they only provided the length and width (6 and 10, Fig. 8).

Figure 8. The boys measuring the length of the bench and recording the results of their work

After all of the feet were placed, the boys began to count how many of them could fit 
on each side of the bench. However, they obtained different results because the feet were 
not positioned correctly.

K:  Here it will be 6 [points to the shorter side], and here [begins to count quietly] one, two, 
three...

W: Here’s 10, and here’s 5 [points to the other side of the bench]
K: [finishes counting] Eight, nine. No, it’s supposed to be 6 and 9.
Ex: And how did you guys do?
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W: Something doesn’t add up.
Ex: Something doesn’t add up? What is it?
W: Well, because it turned out differently.
Ex: Then check again if everything is correct.
K: [looks at the feet] It’s because it’s too loose here, they should be closer [he moves the feet 

closer together]. And now it’s 6
W: Ah, yes [corrects position on the long side]
Ex: And how is it now?
K: Now there’s 6 here [pointing to the shorter side] and 10 there [pointing to the longer side].

The boys were definitely aware of how to take a measurement. Initially, they arranged the 
measuring tapes around the perimeter of the bench, and by providing its dimensions, they 
counted the elements on its shorter and longer side. Each of the boys counted the lengths 
on his side. Obtaining different results provoked them to analyse the situation and verify 
the correctness of the measurement. They realised their mistakes very quickly. After fix-
ing them, each side had the same measurement. Analysing the way they worked, it can be 
seen that they used the principles of taking measurements developed during the previous 
meetings: measuring units (here, paper feet) should be arranged in a straight line, one be-
hind the other, without breaks.

7. Summary and Conclusion

The children were very eager to take part in the research and actively participated in solv-
ing individual tasks. They also tried to justify their answers, strongly supporting each oth-
er with gestures. 

The results obtained during the first step of the pilot study suggest that children aged 
5.5-6 already have some intuitions about the concept of measure and taking measurements. 
They typically interpret the distance between objects as a “segment perpendicular to both”. 
This coincides with the formal mathematical understanding of distance. Moreover, the 
word “straightness” is used by them to denote both a straight line and a perpendicular one.

The second step of the pilot study confirmed these assumptions. The children had their 
own intuitions about measuring. They understood the distance between objects as the short-
est distance connecting them, the end of which is perpendicular to the final object. This 
is in line with the notion of distance that students face during math education in primary 
school. The comparison of such segments was carried out through visual verification. They 
had to be placed parallel to each other and observed to see which one protruded from the 
others. The arrangement of these sections parallel to each other and from a common start-
ing line facilitated such visual verification, but was not considered a necessary condition. 
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The introduction of measuring with feet can be equated with the use of a unit of meas-
urement. Measuring with different feet (teacher and student) means using different units 
of measurement. However, when it came to taking measurements, the unit as such was 
not a priority. More important here was the process of measuring: Keeping a straight line, 
accurately measuring units (here: moving foot by foot). The children were aware that by 
measuring the same distance with different feet (i.e., different units) they would get differ-
ent results. However, they were not fully aware that in order to compare different sections, 
they had to use the same unit. Perhaps, at this stage of education, children are not yet fully 
ready for this type of reasoning. It is possible that if they had more experience with meas-
uring length with different measuring instruments (i.e., using different units) they would 
understand the point of using the same measuring instrument.

For the children taking part in the study, the key word was “to measure”. They under-
stood taking measurements as an activity, a certain procedure, and not as providing a nu-
merical value. The important parts concerned carrying out the measuring process, wheth-
er the right direction and straightness of the line were maintained, whether the measuring 
instrument (unit) was applied evenly. The numerical result being a result of this process was 
of secondary importance. This was especially evident when working on the second task. 
When assessing the fox and the bunny, the main consideration was whether the section was 
straight and connected the starting point with the end point. Hence, the arcs determined 
by the bunny were immediately treated as an erroneous way of measuring. On the other 
hand, the children agreed that the straight lines drawn by the fox were the correct way to 
measure the distance at which the balls were thrown, even though they ran to the individ-
ual balls from the fox and not from the players who threw them. The children were able to 
develop common, universal rules for taking measurements, and they were able to apply the 
adopted principles in their further work, as shown in the third step of the pilot study. The 
rules adopted by children for measuring and comparing lengths are in line with the gener-
ally accepted principles in this area. Similar results regarding the determination of meas-
urement principles can be observed in the research of Tzekaki (2018).

The attitude of the children participating in the pilot studies and the results obtained 
are encouraging. The presented series of meetings with preschoolers and the set of tasks 
provided to them seems to be a good starting point for developing children’s competences 
in the field of measure and taking measurements. Detailed research on a much broader re-
search group can verify this hypothesis and help to develop a didactic proposal for kinder-
gartens on how to develop competences in the scope of the concept of measure and taking 
measurements in children.
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Ch a pter 2

WALKING UP THE STAIRS: AN EXCERPT FROM RESEARCH INVOLVING 
EYE-TRACKING ON UNDERSTANDING FUNCTION AS A TOOL FOR 
DESCRIBING MOVEMENT

Summary: The ability to interpret graphs is crucial not only in learning mathematics and sci-
ence in general, but also in everyday life. This also concerns the ability to present, in such graph-
ical form, activities that every student experiences in their everyday life, such as walking up the 
stairs. Our chapter shows an introductory analysis of the difficulties students experience with de-
scribing such an activity in graphical form. We discuss an excerpt from a broader study on un-
derstanding the function as a tool for describing movement which involved 64 secondary school 
students and was carried out in methodological triangulation using a questionnaire, eye-tracking 
technology, and an open-ended in-depth interview. The analysis of the results provides us with 
information on the students’ interpretation of the graphs, showing that, despite understanding 
the graphs at the level of “reading the data” and “reading between the data”, the majority of re-
spondents did not correctly identify the graph of the movement. Different interpretations were 
revealed, and most of the wrong answers have their root in the “picture” misconception, consist-
ing of identifying the graph of the movement with the trajectory of the movement or the design 
of the stairs. A lack of covariational thinking in this context was evidenced in some students. In 
the light of the research results, the task proved to be difficult (success rate below 0.5) despite the 
different methodological approaches used, while the respondents considered it rather easy in their 
self-assessment. Both this fact as well as the oculographic data recorded during the eye-tracking 
part of the study show a high inference of the intuitive System 1 (Kahneman, 2011) in the solu-
tion of this task. However, for 20% of the respondents, the use of another research method was 
sufficient to improve their answers, because it led them to self-reflect on the task, which triggered 
analytical thinking and activated System 2.
Keywords: understanding function, covariational reasoning, functional thinking, function graphs, 
misconceptions, eye-tracking.
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1. Introduction

The ability to interpret graphs is crucial in the process of learning mathematics, physics, and 
science in general. It is also an important part of everyday life for any adult, as it allows to 
analyse the content of graphs appearing in daily news or in popular science.

The ability to mathematise and describe phenomena in the real world around us using 
the language of mathematics, is crucial in any mathematics curriculum, and is at the heart 
of teaching physics.

We have chosen to analyse the movement of walking up the stairs and its description in 
the form of a graph as the topic for consideration in the presented chapter, as such move-
ment is an elementary and common experience of every student. 

2. Theoretical Background

2.1. Understanding the Notion of Function in the Covariational Aspect

The notion of function is one of the most fundamental concepts in mathematics and its 
teaching, and is used for modelling in mathematics and science, as well as everyday life. 

The notion of function can be understood through several aspects. In this chapter, we ac-
cept four aspects of understanding the concept of function as described, among others, by 
Pittalis et al. (2020) and approved as a theoretical background for the European FunThink 
project, in which the authors of this work were involved. This project aims at enhancing func-
tional thinking at different stages of mathematics education and implementing in five Euro-
pean countries (FunThink Team, 2021; Frey et al., 2022). The function aspects are as follows:

1. Function as an input-output assignment stresses the computational aspect of func-
tion, perceived as a request to do a calculation (e.g., Sfard, 1991); 

2. Function as a dynamic process of covariation between the independent and the 
dependent variable which includes quantitative reasoning and multiplicative objects, 
coordination of changes in quantities or values, and ways in which an individual 
conceives the variation of quantities (e.g., Thompson & Carlson, 2017); 

3. Function as a correspondence relation focuses on the particular relation between 
the independent and the dependent variable, including mapping (e.g. Skemp, 2012); 

4. Function as a mathematical object, that can be examined, compared with, or con-
nected to other mathematical objects (e.g., Sfard, 1991; Sajka, 2003; Lichti & Roth, 
2019).
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In this chapter, we focus mainly on the understanding of function as a dynamic process 
of covariation (2) as well as an object (4).

Carlson et al. (2002) identified five mental actions that students undertake when ma-
nipulating the magnitudes or numerical values of covarying quantities in the context of 
functions. Each level encompasses the mental actions and behaviours associated with all 
the preceding levels. 

Thompson and Carlson (2017) revised the framework proposed by Carlson et al. (2002) 
by providing an in-depth description of the students’ progression in learning, incorporat-
ing aspects of the covariational reasoning developmental models of Saldanha and Thomp-
son (1994) and Castillo-Garsow et al. (2013). 

The major levels of covariational reasoning are distinguished and described by Thomp-
son and Carlson:

Smooth continuous covariation: The person envisions increases or decreases (hereafter, chang-
es) in the value of one quantity or variable (hereafter, variable) as happening simultaneously with 
the changes in another variable’s value, and the person envisions both variables varying smooth-
ly and continuously.
Chunky continuous covariation: The person envisions changes in one variable’s value as happening 
simultaneously with the changes in another variable’s value, and they envision both variables vary-
ing with chunky continuous variation.
Coordination of values: The person coordinates the values of one variable (x) with the values of an-
other variable (y) with the anticipation of creating a discrete collection of pairs (x, y).
Gross coordination of values: The person forms a gross image of the values of quantities varying to-
gether, e.g., “This quantity increases while that quantity decreases”. The person does not envision that 
individual values of quantities go together. Instead, the person envisions a loose, nonmultiplicative 
link between the overall changes in the two quantities’ values.
Precoordination of values: The person envisions the variation of two variables’ values, but asynchro-
nously – one variable changes, then the second variable changes, then the first, and so on. The person 
does not anticipate creating pairs of values as multiplicative objects.
No coordination: The person has no image of variables varying together. The person focuses on one 
or another variable’s variation with no coordination of values (Thompson & Carlson, 2017, Table 
13.4, p. 441).

2.2. Understanding Function Graphs

A crucial aspect of developing the understanding of the notion of function is understand-
ing function representations and providing students with diverse representations (Sierpin-
ska, 1992). Using representations and mastering representational change by students is also 
a complex research problem in itself (e.g., Even, 1998; Ronda, 2015). In this chapter we fo-
cus on understanding the graphs of functions.



Trends in Mathematics Education Research36

2.2.1. Graph of a Function

Semadeni (2002) stresses the epistemological difficulties concerning the concepts “ordered 
pair” and “function” and its consequences. In order to understand the graph of a function, 
an understanding of many other concepts is needed. It requires an understanding of the 
coordinate system, i.e. also the number axis, and therefore an intuitive understanding of 
a function being a bijection. It also requires understanding of the coordinates of a point, 
and therefore the notion of an ordered pair or a two-term sequence, i.e., also a function. 
This results in a looping of the concepts (Semadeni, 2002). 

Moreover, the term ‘graph of a function’ in school can be understood in two ways: as 
a set of points of the form (x, f(x)) or as a drawing, a sketch representing a function, of vary-
ing accuracy (e.g., Turnau, 1990). 

A graph of a function is one of these representations of functions which favour a rather 
structural understanding (Sfard, 1991), because it allows to grasp a function in one glance. 

What is more, a graph is also an example of a multiplied object – as describing “two mea-
surements at the same time” (Thompson & Carlson, 2017) and as a multiplied object it al-
lows for the reconstruction of co-variation – can be unpacked when it is needed.

2.2.2. Graph Misconceptions

An important branch of research in mathematics and physics education is the analysis of 
misconceptions, also related to the understanding of the concept of a function and the in-
terpretation of representations. Our chapter specifically addresses misconceptions related 
to understanding and interpreting graphs. Leinhardt et al. (1990) made an insightful study 
of misconceptions, also in the context of interpreting graphs, which is still relevant today. 
Among other things, they wrote:

Misconceptions are features of a student’s knowledge about a specific piece of mathematics knowl-
edge that may or may not have been instructed. A misconception may develop as a result of overgen-
eralizing an essentially correct conception, or may be due to interference from everyday knowledge. 
To qualify, a misconception must have a reasonably well-formulated system of ideas, not simply a jus-
tification for an error. So although misconception does not need to be an entire theory, it should be 
repeatable and/or explicit rather than random and tacit. Some misconceptions can be traced logical-
ly to intuitions. For example, students’ tendency to interpret graphs iconically may be related to their 
intuitions regarding picture reading (Leinhardt et al., 1990, p. 5).

Leinhardt et al. (1990) distinguished misconceptions in the following eight categories: 
What is and is not a function (including ideas about what graphs of functions should look 
like); Correspondence; Linearity; Continuous versus discrete graphs; Representations of func-
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tions; Relative reading and interpretation; Concept of variable; Notation. The relative reading 
and interpretation misconception included three other types of misconceptions: 1. Interval/
point confusion, 2. Slope/height confusion, and 3. Iconic representation. In the following de-
cades, a number of studies have found that the misconception diagnosed by Leinhardt et al. 
(1990) of a tendency to interpret graphs iconically, as a picture of a trajectory of movement, is 
common among students. We refer to it as the “picture” misconception later in this chapter.

2.2.3. Levels of Graph Comprehension

Two main categories, interpretation and construction, can be distinguished in the context of 
general actions which can be undertaken by learners while working with graphs. Leinhardt 
et al. (1990) stress that in most cases, construction requires interpretation of specific values, 
a part, or the whole representation, as well as of the properties of the concept it is representing. 

Several authors considered the kinds of questions that graphs can be used to answer 
(e.g., Bertin, 1983; Carswell, 1992; Curcio, 1987; McKnight, 1990; Wainer, 1992). Friel 
et al. (2001) have characterised these approaches and consolidated them into three levels 
of graph comprehension:

(…) an elementary level focused on extracting data from a graph (i.e., locating, translating); an inter-
mediate level characterized by interpolating and finding relationships in the data shown on a graph 
(i.e., integrating, interpreting), and an advanced level that requires extrapolating from the data and 
analyzing the relationships implicit in a graph (i.e. generating, predicting). At the third level, questions 
provoke students’ understanding of the deep structure of the data presented (Friel et al., 2001, p. 130).

We use Curcio’s (1987) terminology when referring to these three levels, that is, read 
the data, read between the data, and read beyond the data, described below.

1. Read the data: Students answer questions about specific data represented in a graph. 
Reading them requires students to understand what a graph is, what the axes rep-
resent, where the data are located and what they represent.

2. Read between the data: Students are able to identify and explain relationships in 
the data presented in the graph. This requires students to understand not only the 
basic structure of the graph (described in 1), but also to understand the differences 
in the values or types of data presented.

3. Read beyond the data: Students make predictions based on the data and relation-
ships presented in the graph. In order to do this, students not only need to under-
stand the structure of the graph and the relationships in it, but also the context in 
which the data are presented. In other words, students need to be able to use the in-
formation presented in the graph to answer questions beyond the data in the graph.
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2.3. Dual-Process Theory in Cognitive
        Psychology and Mathematics Education

When analysing the results of the research, it was also important to refer to general psy-
chological thought processes, as they were relevant to the purposes of this research. In our 
case, these were the models presented by Kahneman (2011) as well as Fishbein (1987) and 
Vinner (1997).

Kahneman (2011) presented a model of human cognition, known also as the Dual-Pro-
cess Theory, based on two modes or ‘systems’ of thinking. 

System 1 “operates automatically and quickly, with little or no effort and no sense of 
voluntary control”. Kahneman (2011) provides a list of examples of the automatic activi-
ties that are attributed to System 1, among which are, for instance, the answer to 2 + 2 = ?, 
detecting that one object is more distant than another, understanding simple sentences, or 
locating the source of a sudden sound.

Several of the mental actions in the list are completely involuntary. You cannot refrain from under-
standing simple sentences in your own language or from orienting to a loud unexpected sound, nor 
can you prevent yourself from knowing that 2 + 2 = 4 or from thinking of Paris when the capital of 
France is mentioned. Other activities, such as chewing, are susceptible to voluntary control but nor-
mally run on automatic pilot (Kahneman, 2011, p. 23).

System 2 conversely “allocates attention to the effortful mental activities that demand 
it, including complex computations. The operations of System 2 are often associated with 
the subjective experience of agency, choice, and concentration” (Kahneman, 2011, p. 22). 
Kahneman provides examples such as: monitoring the appropriateness of one’s behaviour in 
a social situation, counting the occurrences of the letter “a” in a page of text, telling some-
one your phone number, parking in a narrow space (for most people, except garage atten-
dants), comparing two washing machines for overall value, filling out a tax form, checking 
the validity of a complex logical argument.

Leron and Hazzan (2006) stress that these two modes operate in different ways, are ac-
tivated by different parts of the brain, and have different evolutionary origins, because Sys-
tem 2 is evolutionarily more recent than System 1, and it reflects cultural evolution.

There are many researchers who explore concepts developed in cognitive psychology 
and interrelations between them in the field of mathematical education. Leron and Haz-
zan (2006), for example, described the Dual-Process Theory in the context of the field of 
mathematics education and made a comparative summary on intuition vs. analytical think-
ing in mathematics education, based, among others, on the works of Fischbein (1987) and 
Vinner (1997). Their analysis can be summarised in Table 1.
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Mathematics education literature shows that the definition and function of intuition 
are similar to those of System 1 (Table 1). Both are characterised by immediacy, high ac-
cessibility, automaticity and effortlessness, and both are considered to be mostly useful and 
reliable under normal everyday conditions but are prone to errors under more complex and 
abstract conditions (Leron & Hazzan, 2006). 

Intuitive knowledge is immediate knowledge; that is, a form of cognition which seems to present itself to 
a person as being self-evident. [. . .] In all these instances, one deals with apparently immediate forms 
of cognition (Fischbein, 1987, p. 6; italics in the original).

Table 1. A comparison of terminology between mathematics education and dual-process theory

                  (interpretation based on Leron & Hazzan, 2006)

Dual-Process Theory 
perspective

Cognition

SYSTEM 1
SYSTEM 2

Rule-governed, serial thinking Self-monitoring

Mathematics 
education perspective

Intuition Analytical thinking Self-monitoring Beliefs, resource 
management, etc.

Cognition Metacognition

Moreover, it is worth mentioning that when relying on intuitive knowledge in the con-
text of mathematics education, the student does not know how to explain his/her reason-
ing, does not know where the conclusions he/she draws come from, such knowledge may 
also consist in using mere, not always well formed, concept images (Vinner, 1983).

Comparing System 2 and a part of metacognition, Leron and Hazzan (2006) also find 
similarities in the self-monitoring function of System 2 and the same part of metacogni-
tion, but other parts differ in the two theoretical approaches.

Finally, the term “cognition” is used in a partially similar way. However, from a mathe-
matics education perspective, self-monitoring belongs to metacognition, not to cognition, 
as the Dual-Process Theory states. For example, Vinner (1997) seemed to reserve cognition 
for analytical thinking only:

[...] much effort is devoted to find cognitive interpretations for many types of behavior for which, perhaps, 
a different type of interpretation is more suitable. Furthermore, much didactic effort is invested in ‘cog-
nitive corrections’ where perhaps a different type of correction would be more effective. By saying this, 
I am not denying the importance of cognitive research. I am asserting, however, that not every event in 
a mathematics learning can be explained in cognitive terms, and that it is a fallacy to assume that the cog-
nitive approach is adequate for almost every situation in mathematics learning (Vinner, 1997, pp. 97–98).

Vinner (1997) defined another term: pseudo-analytic processes, in which students super-
ficially select elements in the problem and apply procedures used with typical questions due 
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to their superficial similarity with previous problems. The pseudo-processes are “simpler, 
easier, and shorter than the true conceptual processes” (Vinner, 1997, p. 101), thus many 
students unconsciously apply them.

Leron & Hazzan (2009) stress the monitoring role of System 2 in relation to System 1. 
However, they also note that many of the misconceptions come from the combined fail-
ure of both S1 and S2. Therefore, they propose that the most important educational impli-
cation is the need to train people to be aware of the way S1 and S2 operate, and to include 
this awareness in their problem-solving toolbox.

This suggestion has an interesting (almost paradoxical) recursive nature: It in effect implies that S2 
should monitor not only the operation of S1 (its standard role), but the S1-S2 interaction as well; thus, 
S2 has to monitor its own functioning in monitoring S1.In a way, we might say that an operation of 
a “System 3” is needed here (to monitor S2),but in practice, this function is recursively assumed by 
S2 itself. (Stanovich (2008) attempted to formulate a tri-process theory). While monitoring and cri-
tiquing S1 is one of the reasons S2 has evolved in the first place, monitoring the S1-S2 interaction 
seems to be what Geary (2002) has called biologically secondary skills, one which will not normally 
develop without explicit instruction (Leron & Hazzan, 2009, p. 270).

In our study, we use psychological terminology (System 1 and System 2) because we are 
unable to resolve whether cognition (analytical thinking) or metacognition (self-monitor-
ing) will be responsible for overcoming the intuition that activates System 1, as resulting 
from the chosen methodology of our research.

3. Methodology

3.1. Purpose of the Study

The aim of the study was to answer the question: How do secondary school students, using 
a selected example in a real-life situation, analyse distance-time movement?

3.2. Methodological Triangulation

In designing the research, methodological triangulation was applied. Thus, the research was 
designed to be composed of the following three parts: 
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1. The eye-tracking part of research (ET), 
2. A written Questionnaire (Q) including, inter alia, a self-assessment of skills in math-

ematics and physics, a short written test, as well as a reflection on the solutions to 
the tasks from the first part, and a subjective assessment of their difficulty,

3. An individual, open, in-depth Interview (I).

3.2.1. Eye-Tracking

The methodology was intended to allow us to record and examine the way in which the con-
tent of the task was analysed, to distinguish the strategies and distractors that were taken 
into account when solving the task, to precisely record the duration of the analysis of each 
visual scene, mainly by analysing the scan-path records, i.e. the order and number of fixa-
tions on the areas of each AOI. By using this methodology, we seek answers to the follow-
ing research questions:

 ■ Do students only analyse mathematical models? 
 ■ Do students use graphics and drawing to illustrate the staircase?
 ■ Can we distinguish the criterion used to provide an answer?

3.2.2. Written Questionnaire

The questionnaire was carried out in paper-pencil format and contained three sections, as 
described below. 

a) Self-assessment of skills in mathematics and physics
The students completed a short self-assessment questionnaire of their mathematics and 
physics skills, along with a metric in which they provided their name, gender, and the type 
of the class they attended.

b) A short test
Then, they answered questions in the context of a task designed to test the students’ first 
two levels of graph comprehension, i.e. their ability to “read the data” and “read between the 
data” in a graph of a function and interpret it in a situation involving drone flight, among 
other things. We were keen to ensure, before analysing the students’ skills of research con-
text, that none of the students had elementary difficulties in reading motion graphs, which 
is clearly a prerequisite for undertaking the mathematisation process.
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c) Reflection on tasks 
The purpose of the final section of the questionnaire was to reflect on each task from the 
eye-tracking section, provide answers for these tasks once again, and assess their difficul-
ty. This section of the questionnaire also served as a scaffolding for the in-depth interview 
on each task.

3.2.3. Open In-Depth Interview

This methodology aimed to provide a more meaningful insight into the students’ reason-
ing by asking students to describe their own reasoning, to describe the reasoning behind 
their answer, and to share the difficulties they experienced in analysing the content of the 
task and attempting to solve it.

4. Research Tools

4.1. Eye-Tracking – Task Regarding Walking up the Stairs

The research concerns a verbally described real-life situation regarding movement modelled 
by means of a distance-time graph – which therefore directly concerns covariational rea-
soning, the second aspect of function understanding.

In the current chapter, we limit the analysis to one task, designed by authors, which is 
presented in Figure 1.

Figure 1. Original slide used for eye-tracking part: Walking up the stairs

Text translation

Imagine walking up the 
stairs at a uniform rate (pic-
ture beside). Which graph 
best represents how your 
distance from the ground 
changes in time during this 
movement?
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Walking up the stairs is an activity that everyone experiences and observes in everyday 
life from an early age, so it is both easy to recall from one’s own experience and from observ-
ing others. On the other hand, such a movement provides opportunities for multifaceted 
interpretation on a macro and micro scale as well as for considering functional relationships 
in terms of covariational reasoning. This is why we have chosen such a context for the task.

The students were asked to choose one of the six graphs presented that best describes 
the movement. In the proposed graphs, the vertical axis is described as distance from the 
ground and the horizontal axis is time. Figure 1 shows the slide as used in the research.

Due to the eye-tracking methodology, the task was formulated so that its solution did not 
require any calculations or drawings and was designed as a multiple-choice task. Students pro-
vided their best answer orally – they could, e.g., state ‘number two’ or ‘I don’t know – next’.

In the task, an illustration of a staircase with a complex spiral shape was intentional-
ly included alongside the description of the task in order to extend the possibilities for in-
terpreting the graph, to diagnose the amount of people (and their approach) who analysed 
the illustration of the staircase and whether this had a significant influence on the choice 
of answer. In addition, such a staircase addressed the possible misconception of equating 
the distance-time graph with the trajectory of the movement. Additionally, concerning the 
spiral shape, it is harder to abstract horizontal movement, which has no effect on height.

In the formulation of the task, six graphs are provided as distractors. We will refer to them 
as G1–G6. Among them, four purposely refer to the shape of the staircase: G2 and G6 (the 
shape of the successive steps of the staircase), and G1 and G4 (the spiral design of the stair-
case from the illustration). In addition, graph G5 illustrates the variation of height while ig-
noring the variation of time. Graphs G5, G2, and G6 purposely depict non-functional rela-
tionships, and in graphs G2 and G6, the sections that are not horizontal have been sloped so 
that it is impossible to use them in the context of a height-time graph (going back in time). 

The axes of the coordinate system intentionally have no units, so there are two possi-
bilities for the correct answer depending on whether we are analysing movement on a mi-
cro scale (G4 is then possible – as climbing one step of stairs, standing on it, then climb-
ing another) and on a macro scale, analysing a larger number of stairs (G3). The proposed 
graphs do not exhaust all possible interpretations. Due to the eye-tracking methodology, 
it was necessary to provide several distractors to choose from and provide elimination op-
tions. A graph in the form of a fragment of an increasing linear function, which could be 
the correct answer under appropriate assumptions, was intentionally not included. Such an 
option would certainly have been the most attractive distractor due to the curriculum’s em-
phasis on this type of function in mathematics and the association with uniform motion 
in physics. However, we wanted the students to think about this functional relationship 
by analysing it, and not to give an answer solely on the basis of school experience, quick as-
sociations, and being reminded of the shape of a graph they had seen during their lessons.
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4.2. Written Questionnaire

4.2.1. Self-Assessment of Skills in Mathematics and Physics

The questionnaire asked: How would you rate, on a scale of 1 to 10, your level of knowledge in 
mathematics? How would you rate, on a scale of 1 to 10, your level of knowledge in physics? The 
students were asked to mark their answers on a scale of 1-10, where 1 meant ‘I have great dif-
ficulty in learning mathematics / physics’, and 10 meant ‘I am definitely doing well with it’.

4.2.2. Short Written Test

There were two additional tasks in the questionnaire. In this chapter, we present only one 
of them with its first two sub-tasks, designed to test the ability to analyse graphs:

The graph shows the change in the height of a drone during its flight. Answer the following questions.

Figure 2. Task about a drone inspired by Janowicz and Wesołowski (2019, p. 173)

a) How long did the flight last? 
b) What was the maximum height reached by the drone?

The task had been used in previous research. Both questions relate to levels of graph 
comprehension (Curcio, 1987). The question formulated in sub-item (a) diagnoses level 1, 
the ability to “read the data”, as students are expected to read the specific drone flight time 
data presented in the graph and therefore understand what a graph is, what the axes rep-
resent, where the data are located, and what they represent. In contrast, the question for-
mulated in sub-question (b) diagnoses level 2, “reading between data”, as students identify 
and explain relationships in the data presented in the graph, in this case to find the max-
imum value in the given data for the height to which the drone ascended, which requires 
students to understand the differences in the values.
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4.2.3. Reflection on Tasks

As the research was composed of more tasks, the students were given a worksheet to fill in 
during the interview, which at the same time provided a set of open-ended questions for 
the interview (Figure 3). The instructions were as follows:

Below, for each task, share your thoughts:
- On a scale of 1 to 5, how would you rate the difficulty level of this task?
- Comments/reflections/doubts/solution method/corrections to your answer:

Figure 3. Worksheet fragment of the first participant [P01]

Each task was then restated in the form of a printout of the slide (Figure 3, down left col-
umn), and space was provided next to it to mark, on a scale of 1-5, the difficulty of the task, 
where 1 meant very easy and 5 meant very difficult. The following questions were present-
ed below: What doubts do you have? What is your answer? Figure 3 provides the response 
to the questionnaire for this task as given by the first participant in the study (we coded 
participants sequentially in P01 format), who marked the ease of the task as 4 and shared 
his/her doubts about whether all parts of the staircase in each part of the curve consist of 
the same number of steps – ‘e.g., with 7 steps of stairs, e.g., 5 steps of stairs, 4 steps of stairs’.

4.3. Interview 

The interview was conducted in the form of the students’ free responses to these inquir-
ies: Comment on the solution to the task; Do you have any doubts?; Do you want to share a re-
flection?; Why did you choose that answer?; Justify. The researcher often asked ‘Why?’ and 
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did not provide any feedback to the participants. The respondents signed a confidentiality 
clause that they would not discuss these tasks with other students. 

To stress the students with the prospect of being recorded, an indirect form was adopt-
ed – the use of a speech-to-text transcription application (Google Docs Voice Typing). The 
student was able to correct and authorise the recorded speech and was asked to speak loudly 
and slowly, pausing between sentences. Sometimes a participant was asked to wait a while 
so that necessary corrections could be made to the transcribed text.

5. Participants and Research Procedure

The research was carried out in one of Kraków’s secondary schools with a good reputation 
and a high level of teaching, as measured by the results of the matura exit exam. A total of 
64 students took part in the study. These were students from classes of different profiles and 
from different grades: 9, 10, 11. Participation in the study was voluntary, but it was neces-
sary to provide written consent for participation signed by parents or legal guardians of the 
student, or personally by adult students (over 18 years of age). 

The study’s stages were carried out chronologically according to the research methodol-
ogy, under laboratory conditions, identical for all study participants. Thus, the eye-tracking 
study began in a separate room. Eye movements were recorded using the Tobii Pro X3-120 
eye-tracking system with a sampling rate of 120 Hz. Prior to data collection, the system was 
calibrated individually for each participant using a 9-point calibration algorithm. The ques-
tions were displayed on a 24” monitor positioned 70 cm from the participant’s eyes. Participants 
proceeded to the next question by selecting an answer. After the eye-tracking test, the partici-
pant moved to the next room, where he/she first completed the questionnaire independently 
for parts a) and b). Then, after completing part b), an open-ended interview began, in which 
the participant reflected on the tasks in the eye-tracking part of the questionnaire and once 
again noted down his or her response to the task, assessed its ease, and commented on the task.

6. Presentation of General Results 

6.1. Self-Assessment of Skills in Mathematics and Physics

On average, participants in the research rated their skills in mathematics two marks high-
er (mean 6.97) than in physics (mean 4.93), while the modal value equalled 5 for physics 
marks and 8 for mathematics, 3 marks higher. The distribution of self-assessments is shown 
in Figure 4.
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Figure 4. Participants’ self-assessment of skills in mathematics and physics
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6.2. Introductory Task Regarding Drone

For question (a), all but one person correctly answered that the flight lasted 44 min, and 
only one person gave a duration of 42 min, which was due to a mistake in reading the 
unit on the correct axis – this person assumed that one grid corresponded to 1 minute. 
It can therefore be concluded that the respondents have reached level one of graph com-
prehension: ‘reading the data’ (Curcio, 1987) – they can directly read data from a graph, 
i.e. they understand what a graph is, the convention of reading data from a graph in a co-
ordinate system, the role of the ordinate and abscissa axes, where the data are located, 
and what they represent. 

In turn, for question (b), 100% of survey participants gave the correct answer: 30 m. 
This part of the survey was designed to ensure that these basic levels of graph compre-

hension were achieved by students. 

6.3. Overall Results – Walking up the Stairs

6.3.1. Results in ET and Q&I Parts of the Research

The overall results for responses to the task about walking up the stairs in two parts of the 
research, i.e., Eye-Tracking (ET) and Questionnaire & Interview (Q&I), are summarised 
in Figure 5.
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Figure 5. Walking up the stairs: answers from Eye-Tracking and Questionnaire & Interview parts 
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The responses that were considered correct, because they represented a non-decreasing 
function, were shown in graphs G3 and G4. However, no one in the interview argued the 
choice of answer G4 in the context of the micro-scale (climbing one step of the staircase), 
and the students’ choice of G4 was mainly due to other factors such as misconceptions or 
other additional assumptions in interpreting the shape of the staircase and even random-
ness, as we discuss in the next paragraph. Assuming, therefore, that the fully correct answer 
is only G3 in our sample, the success rate of this task was 0.28 in the eye-tracking (ET) part 
and 0.39 in the questionnaire part combined with the interview (Q&I). In both approach-
es, therefore, the task can be considered difficult, as it falls with its success rate within the 
range of 0.20–0.49 (Niemierko, 1999). When taking into account those G4 answers which 
can be considered correct with an additional assumption (e.g. P58), and those where pre-
cise reasoning was not provided because the student did not want to or could not describe 
them, therefore eliminating from the G4 answers only those which were selected on the 
basis of faulty reasoning – the task can still be considered difficult.

6.3.2. The Participants’ Assessment of the Ease of the Task 

Despite the above, the respondents considered this task as rather easy in their self-assess-
ment (Figure 6).
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Figure 6. Ease of the task on walking up the stairs according to the participants
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The average ease score was 2.63, and answer 2 was the most frequent, indicated by 27 
survey participants. In addition, no research participant found this task very difficult, and 
three people found this task very easy.

6.3.3. Changes in Answers

The changes in responses between the eye-tracking part of the research (ET) and the ques-
tionnaire and interview reflection part (Q&I) are interesting. Table 2 shows the numbers 
of individual responses in both parts of the research.

The correct answer G3 was given by 18 people in the ET part (Table 2, row ET G3), while the 
number of correct answers increased from 18 to 25 in the Q&I part (Table 2, column Q&I G3). 
The number of incorrect answers G5 decreased from 7 in the ET part to 3 in the Q&I part. 

The expected changes from a G2 answer in ET to a G3 answer in Q&I occurred in 6 people, 
and an additional 2 people changed their answer from G2 to a functional answer G4. More-
over, 2 people changed their G5 answer to G3, and one from G5 to G4, one from G6 to G3 
and one from G2 to G1 (and therefore to a functional answer). Thus, almost 20% of the survey 
participants changed their non-functional answer to an answer representing a function graph. 

Table 2. Numbers of individual responses G1-G6 in each part of the research
Q&I G1 Q&I G2 Q&I G3 Q&I G4 Q&I G5 Q&I G6

ET G1 1 1

ET G2 1 22 6 2

ET G3 3 15

ET G4 4

ET G5 1 2 1 3

ET G6 1 1

ET – Eye-Tracking part; Q&I – Questionnaire & Interview
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7. Chosen Oculometric Results and Analysis 

7.1. Methodology for the Analysis of Oculographic Data

Scan-path records were chosen as the primary qualitative criterion for analysis, as they directly 
reflect the order and manner in which the individual respondents analysed the task content. 

The area of the task slide was then subdivided into Areas of Interest (AOIs), allowing 
for analysis in terms of gaze-dwelling on particular AOIs. AOIs were defined in the word-
ing of the task, in the individual distractors to be selected (graphs G1–G6), and in the area 
of the staircase illustration. The area and shape of every AOI containing graphs were the 
same. The oculographic data on the AOIs were then statistically analysed, with the num-
ber of recorded fixations by individual subjects on the selected areas of the AOI task cho-
sen as the relevant criterion for eye-tracking analysis. 

In order to visualise the distribution of fixations obtained in the sample group, the num-
ber of fixations, from smallest to largest, was divided into 10 intervals of equal length, for 
which a histogram was made, expressing the number of subjects for whom the number of 
fixations falling within the interval was recorded. 

The mean value of the number of fixations for all test subjects for this task was calcu-
lated, resulting in 194 fixations. 

We further identified groups of participants for whom the number of fixations during the 
entire task was less than 75% of the group mean value, which in the case of our data is also 
equivalent to 25% of all participants – those for whom the lowest number of fixations was 
recorded during the solution of the entire task. We refer to this group as ‘fast’ participants 
because, according to Kehneman’s (2011) theory, we can assume that they activated System 
1 while analysing the visual scene of the task by analysing it briefly and making a quick de-
cision. It is worth noting that, according to Kahneman (2011), if the fast system is not ac-
tivated, System 2 (called slow) is assumed to be activated. We refer to all subjects outside of 
the distinguished ‘fast’ group as ‘non-fast’. In our analysis, we further distinguish another 
group, which we refer to as ‘very slow’, for whom more than 125% of the average number 
of fixations in the group of all participants was registered during their work on the task.

Another methodological approach was to analyse the AOI with a staircase illustration. 
In this context, three groups were also distinguished: the first one being the ‘no illustra-
tion’ group of subjects, whose number of fixations on this AOI was less than or equal to 5, 
the second was the ‘with illustration’ group, where the subjects showed more than 5 fixa-
tions, and the third was the ‘prolonged illustration’ group of subjects, characterised by in-
tensive support of reasoning through visual analysis of the illustration, with at least 30 fix-
ations on this AOI.
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7.2. Correctness of Answers in Relation to the Number of Fixations

7.2.1. Number of Fixations in the Study Sample 

The recorded fixations in the entire task for all subjects ranging from 76 to 412 are shown 
in the histogram in Figure 7. 

This distribution shows, among other things, that only in 10 subjects out of 64, fixation 
numbers greater than the median were registered (245-412). There are 54 subjects in the 
first five ranges (fixation number from 76-244). Thus, the visual scene analysis performed 
by the 10 individuals with the highest number of fixations significantly deviates from the 
rest of the subjects due to their higher fixation numbers.

Figure 7. Histogram of the distribution of the number of individuals whose number of fixations falls 
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7.2.2. Results Obtained in the ‘Fast’ Group 

Table 3 shows the distribution of responses in the ‘fast’ group, which consists of 25% of all re-
spondents – equivalent to the group that had less than 75% of the average number of fixations. 

Table 3. Distribution of answers given in the ‘fast’ group (n=16)
G1 G2 G3 G4 G5 G6 total

‘fast’ 0 8 2 1 4 1 16
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The ratio of correct G3 answers to incorrect G2 answers is 1:4, with a similar ratio of 
selected functional to non-functional relations of 3:13 (0.23) in this group. 

This group is likely to be predominantly made up of those who attempted to provide 
answers using System 1 or those who guessed the answer.

However, eye-tracking technology makes it possible to identify the participants in this 
group who were guided by their expertise, completed the tasks very quickly, and indicat-
ed the correct answer. 

Below is an example of a scan path for the participant who achieved the lowest number 
of fixations in the entire sample group (76) and who, after analysing the task text, without 
analysing the staircase illustration, indicated the correct answer (Figure 8).

Figure 8. Fastest participant P51 (least number of fixations, expert knowledge) 

It shows that the respondent analysed the visual scene of the task in a very effective way, 
did not make use of the illustration of the stairs at all, read the content of the task once, 
went back to the relevant phrases from the content of the task: ‘which of the graphs’ and 
‘your distance’, and looked at each of the answers. The respondent immediately paid par-
ticular attention to graphs G2 and G3, the saccades between these graphs are evidence of 
comparative analysis – the respondent chose one of them as correct. Graph G3 was ana-
lysed by the participant the most – the description of the ordinate axis was verified and 
found to be correct. The low number of fixations (3-5) on graphs G1, G2, G3, and G4 in-
dicates that it was eliminated as an answer, and the arrangement of the saccades indicates 
that they were analysed in one group, after the correct answer had already been selected, in 
order to ascertain and eliminate them.
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7.2.3. Results Obtained in the ‘Non-Fast’ Group

If we were to remove the ‘fast’ group (i.e. 16 people) from the pool of all participants, the re-
maining students can then be tentatively identified with the group that could hypothetical-
ly trigger analytical thinking, or System 2 according to Kahneman (2011). It is clear from 
Table 4 that there is a greater number of correct G3 responses in this group relative to the 
number of incorrect G2 responses, and the ratio is approximately 0.7, the highest among 
the distinguished groups by this total fixation count criterion (Table 4). The ratio of func-
tional to non-functional responses is even higher, at approximately 0.78.

Table 4. Distribution of answers given in the ‘non-fast’ group (n=48)
G1 G2 G3 G4 G5 G6 total

‘non-fast’ 2 23 16 3 3 1 48

7.2.4. Results Obtained in the ‘Very Slow’ Group

An additional criterion identified another group of ‘very slow’ participants, i.e. participants 
whose number of fixations during the whole task equalled a value greater than 125% of the 
average number of fixations. This group is included in the previous one, eleven people were 
thus singled out. Table 5 shows the distribution of their answers.

Table 5. Distribution of answers given in the ‘very slow’ group (n=11)
G1 G2 G3 G4 G5 G6 total

‘very slow’ 0 5 3 2 1 0 11

The ratio of correct G3 responses to incorrect G2 responses is 0.6 in this group, and 
the ratio of functional to non-functional relationships is higher than in previous groups, 
at around 0.83.

7.2.5. Results Obtained in the ‘No Illustration’ Group

Additional analysis was performed on the participants who did not analyse the staircase 
illustration. To isolate such participants, we assumed that these participants recorded, at 
most, 5 fixations on the AOI with the staircase illustration. This gives 17 participants. 

Table 6 illustrates the distribution of responses given by these participants.
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Table 6. Distribution of answers given in the group ‘no illustration’ (n=17)
G1 G2 G3 G4 G5 G6 total

‘no 
illustration’ 0 10 5 1 1 0 17

In this group, the ratio of correct G3 answers to incorrect G2 answers is 0.5. The ratio 
of functional to non-functional relationships is approximately 0.83.

7.2.6. Results Obtained in the ‘With Illustration’ Group

Participants who had more than 5 fixations on the AOI with the staircase illustration are 
included in the ‘with illustration’ group. Table 7 shows the distribution of responses in this 
group, which shows that the ratio of correct G3 responses to incorrect G2 responses is ap-
proximately 0.62.

Table 7. Distribution of answers given in the group ‘with illustration’ (n=47)
G1 G2 G3 G4 G5 G6 total

‘with 
illustration’ 2 21 13 3 6 2 47

7.2.7. Results Obtained in the ‘Prolonged Illustration’ Group

There were 16 subjects who analysed the staircase illustration for the longest time, achiev-
ing at least 30 fixations on the AOI containing the staircase illustration. The record num-
ber of fixations on the AOI of the image was as high as 197.

Table 8. Distribution of answers given in the ‘prolonged illustration’ group (n=16)
G1 G2 G3 G4 G5 G6 total

‘prolonged 
illustration’ 0 6 5 1 3 1 16

In this group, the ratio of correct G3 responses to incorrect G2 responses is 0.83 – inter-
estingly, the same as in the ‘no illustration’ group – and the ratio of functional to non-func-
tional relations is about 0.6.

Below, we provide an example of a scan path of a P13 participant with a very high fixa-
tion count (total fixation count of 165), an in-depth analysis of the wording of the task and 
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particular distractors and, above all, of the staircase illustration (56 fixations on the illus-
tration alone), followed by an identification of the wrong answer G6.

Figure 9. Scan path P13, high number of fixations in illustration area (56), wrong answer G6

8. Chosen Qualitative Analysis

Due to the vastness of the different ideas observed in this study and the amount of possi-
ble approaches to analysing and interpreting the results, in this paragraph we focus only 
on the work of those who chose answer G5 in the eye-tracking part, as we consider this 
wrong answer as the most contradictory in terms of understanding the concept of func-
tion, revealing the lowest level: no coordination in the context of covariational reasoning 
(Thompson & Carlson, 2017). 

We present information about these participants sequentially: participant number and 
group they belong to, scan path while working on this task, statement during the inter-
view about the task, their self-assessment in maths and physics, and self-assessment of the 
difficulty of the task.

8.1. Changing the Answer from G5 to G3 (n=2)

Two respondents changed their answer from G5 to the correct answer. An analysis of their 
scan path allows us to conclude that both subjects assessed the entire visual scene associated 
with the task (see scan paths, Table 9). It is interesting to note the differences in speed be-
tween the subjects in the context of eye-tracking when working on the task. One of them 
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(P43) was classified as a ‘fast’ response (total fixation count 115), the other belonged to those 
with a moderate total fixation count (184). Both used drawing analysis, while P43 analysed 
the drawing briefly (fixation count: 7), and P41 analysed it overlong (fixation count: 21).

Table 9. Results of those who changed their answer from G5 to G3 during the interview (n=2)

N
o P41 P43
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The first time I chose answer five, but now I think 
it was the wrong answer. Perhaps this mistake was 
due to the fact that I was, in a sense, not yet fully 
warmed up and now I would like to think about 

this question again. This time I would choose 
answer three. I think this graph best illustrates 

what is being asked in this task.

I answered 5. I suggested that it was uniform. But I thought 
about the fact that after all, here’s the time... and there’s no 
time progression, so it would take one moment to move, yet 
there are no instruments. And it has to be a function, right? 
[researcher does not respond, student continues] ...It should 

be.... it assigns a value to a particular argument and this here 
argument was one, and there were multiple values on the 

straight line, this would mean that at one time I would be in 
all possible positions on the staircase i.e. something comparable 

to ‘warp 10 – superluminal speed’, multilocation [laughs].
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t in Maths: 8 in Maths: 6

in Physics: 7 in Physics: 7

Difficulty: 4 – difficult Difficulty: 2 – easy

Person P41 was parsimonious in explaining his/her reasoning, he explained his/her 
change of mind was due to ‘not being warming up’ – while it cannot be excluded that the 
subsequent tasks in the whole series of the research, which also dealt with the analysis of 
movement and the interpretation of graphs in this context, may have influenced his/her 
choice of answer the second time around, the didactic role of the examples provided during 
the research cannot be excluded, which we consider a positive phenomenon. The student 
rated this task as difficult, which may also suggest that the actual process of changing his/
her mind required effort and the student took into account his/her earlier wrong answer 
in the evaluation.

Participant P43 did not need the support of the illustration during the eye-tracking part 
and did not use it. On the other hand, in the interview with person P43, it can be seen how 
he/she, on his/her own, with an internal dialogue, makes reflections about the function-
ality of the graph. He analyses the fact that multiple values cannot be achieved in one mo-
ment of time. He compares this with metaphor and humour by referring to science-fiction 
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works. Independently arrives at the correct answer. Assesses the task as easy, is convinced 
of the correctness of his/her new answer.

8.2. Changing the Answer from G5 to G4 (n=1)

Only one participant (P58) changed the answer from G5 to G4. At the same time, this per-
son was placed in the ‘prolonged illustration’ analysis group (fixation count 30). When ana-
lysing the visual scene, his/her hesitation with answer G4 is visible.

Table 10. Results of the person who changed their answer from G5 to G4 during the interview (n=1)

N
o P58
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w The only graph that works for me in this task is graph four, because all of the graphs that have some sort of staircase 

look are not going to make sense to me, because at no point in the movement up these stairs are we at the same distance 
from the ground, we are just going up all the time. Diagram 4 makes the most sense. It also seems that halfway up those 

stairs they are probably a little less steep [shows illustration] so the distance might change less rapidly.
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t in Maths: 10

in Physics: 5

Difficulty: 3 – moderate

The influence of the illustration on his/her interpretation shines through in the stu-
dent’s statement, and the intensity of the analysis of the illustration is confirmed by the oc-
ulographic data. The participant chose answer 4 because of the shape of the staircase, as-
suming that the staircase is almost flat in the ‘bend’ part. It can be seen in his/her scan path 
that there are a lot of fixations on the ‘bend’ part of the staircase. This is an additional as-
sumption added to the task, at which the G4 graph becomes possible and correct, howev-
er this shows the misconception of the picture. The student was swayed too strongly by the 
illustration and failed to consider that if a part of the bend was flat while being at the same 
distance from the ground as suggested by diagram G4, then that part of the bend would 
not be made up of stairs. Meanwhile, the illustration shows a regular staircase, just in per-
spective. Therefore, the student’s answer was influenced by a misconception regarding the 
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picture and an incomplete interpretation of the situation depicted in the drawing, requir-
ing spatial imagination. 

In addition, the student likely has a habit of climbing stairs quickly and smoothly, as he 
did not take into account the fact that when standing on a step the height does not change 
for a while, which he clearly emphasised with the words: ‘at no point in the movement up 
these stairs are we at the same distance from the ground, we are just going up all the time’.

It is undoubtedly gratifying to see this reflection, followed by the student’s selection of 
the G4 functional relation as the answer. Re-reflection on the task resulted in the activa-
tion of covariational reasoning.

This respondent is an example of someone who rightly rated his/her mathematics achieve-
ment at the top of his/her class. This participant is in a class with an extended level of math-
ematics (Grade 9), which shows that the task is challenging even in a group of such able stu-
dents. He was able to overcome the fundamental difficulty in the task and rated the task’s 
difficulty as moderate.

8.3. Changing the Answer from G5 to G2 (n=1)

Only one person (P70) changed his/her answer from G5 to G2. Table 11 shows his/her data.

Table 11. Results of the person who changed his/her answer from G5 to G2 during the interview (n=1)

N
o P70 (‘fast’)
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Answer 2 because the graph of the relationship of the distance from the ground to time resembles the construction of 
a staircase.

EXP: ‘You chose 5 first, why?’ 
Because this answer seemed the most logical to me. 

EXP: ‘What made you change your mind?’ [longer reflection, smile, no answer].
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t in Maths: 9

in Physics: 4

Difficulty: 2 – easy
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Person P70 made a progression, as from a G5 response, indicating a lack of consider-
ation of two changes varying simultaneously, he/she selected a G2 graph, which, although 
still non-functional and wrong, does roughly account for both changes – height and time.

This individual went from No coordination to the penultimate Chunky continuous covari-
ation level of covariational reasoning in the second approach (Thompson & Carlson, 2017).

8.4. Those Who Stayed with Their Choice G5 (n=3)

It is interesting to note their affiliation to the previously listed groups, as two of them are 
from the ‘fast’ group, and one is from the ‘non-fast’ group. In addition, two of them ana-
lysed the illustration for an ‘prolonged’ time, and one of them did it quickly. 

Table 12 shows the work on the task of the three students who remained stable in their 
answers by choosing G5 in both parts of the task. 

Table 12. Results of participants who stayed with their choice G5 (n=3)

N
o P08 – ‘fast’ and ‘prolonged 

illustration’
P10 – ‘slow’ and ‘prolonged 

illustration’ P12 – ‘fast’ and ‘with illustration’
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The participant in the interview did 
not want to comment on this task. 

He limited himself to a written 
statement in the questionnaire: 
I had my doubts about whether it 
was not possible to move sideways.

The request was not very clear. 
I think it would have been better to 

add relevant details so that there was 
no doubt. Change the wording of the 
tasks to make them clearer, e.g. Stairs, 
was perhaps not quite clear – it is not 

clear where the stairs are.

I think the answer is number 5. I’m 
generally weak at maths, so I make 

broad guesses. I almost guessed in all 
of them. I don’t know how to do this, 
I don’t have any comments. I don’t 

want to talk about it.
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t in Maths: 8 in Maths: 6 in Maths: 5

in Physics: 8 in Physics: 5 in Physics: 5

Difficulty: 2 Difficulty: 2 Difficulty: 2

Two individuals P08 and P12, however, are among the fastest responders (total fixation 
count: 134 and 143), while P10 is from the ‘very slow’ group (total fixation count: 366). 
The three individuals did not change their minds. However, it is difficult to assign P10 to 
a literally fast system; his/her way of looking at the slide shows a systematic and very de-
tailed analysis of the visual scene. This respondent, however, lacked interpretive skills and 
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covariational reasoning skills. In spite of this, he was confident in the correctness of his/
her answer, as he rated the task as easy, which indicates that he based his/her answer on in-
tuitive knowledge, i.e. the experience of walking up the stairs, which proved to be an in-
surmountable obstacle.

9. Discussion and Conclusions

9.1. Self-Assessment of Skills in Mathematics and Physics

It can be concluded that the self-assessment of knowledge in mathematics among the partic-
ipants of the study was high, as on a scale of 1 to 10 the mean score was 6.97 and the mod-
al score was 8; while in regard to physics it was average, as the mean score was 4.93 and the 
modal score was 5. These results show that the students do not underestimate their self-as-
sessment in this area, therefore their attitude towards mathematics and physics tasks in 
general is not affected by anxiety or stress caused by the subject. Additionally, in the case 
of our respondents, this positive attitude towards mathematics and physics is due to the 
specific nature of the school, which is attended by ambitious students who maintain high 
grades in these subjects. 

9.2. Graph Comprehension

In the written part of the research, all participants in the research achieved basic levels of 
graph comprehension (Friel et al., 2001). All can be considered to have achieved the first 
level – ‘reading the data’ (Curcio, 1987) – they can directly read data from a graph, i.e. they 
understand what a graph is, they understand the convention of reading data from a graph 
in a coordinate system, the role of the ordinate and abscissa axes, where the data are locat-
ed, and what they represent. In addition, all students demonstrated the level of ‘reading be-
tween data’ (Curcio, 1987), as by correctly answering question (b) they demonstrated an 
understanding not only of the basic structure of a graph (explored in subsection (a)), but 
also an understanding of the differences in the values of the data represented by identify-
ing and explaining the relationships in the data involving the selection of the largest val-
ue in a given set.

Thus, the students possessed the necessary knowledge and understood the tools they 
were meant to use when describing a given situation from everyday life in the form of 
a graph.
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9.3. Overall Results versus Self-Assessment of Task Difficulty – System 1

The answers that were considered correct were G3 and G4, but no one in the interview ar-
gued the choice of answer G4 in the context of the micro-scale (climbing one step of the 
staircase), and the students’ choice of G4 was mainly due to other factors, i.e. either mis-
conceptions or other additional assumptions when interpreting of the shape of the stair-
case. Assuming that only G3 was the correct answer, in both methodological approach-
es the task was difficult for the test participants, as its success rate fell within the range: 
0.20–0.49 (Niemierko, 1999), with a success rate of 0.28 in the eye-tracking part and 0.39 
in the questionnaire part. In the case of assuming as a correct result those G4 answers which 
are possible with an additional assumption (e.g. P58, see description 7.3.2) and those for 
which the exact reasoning is unknown because the student did not want to or was unable 
to provide it, and therefore eliminating from the G4 answers only those which were select-
ed on the basis of faulty reasoning – the task is still interpreted in both methodological ap-
proaches as difficult.

At the same time, the respondents found the task rather easy in their self-assessment – 
the average self-assessment on a scale of 1-5 was 2.63 with response G2 being the most fre-
quent, 3 people found the task very easy, and no one found the task very difficult.

This discrepancy between the self-assessment and the test results indicates that System 
1 was triggered in the majority of the respondents, resulting in a quick, intuitive, and, in 
most cases, incorrect answer. The respondents were not aware that they had solved the task 
incorrectly, they did not have significant doubts about the answer, and therefore considered 
the task easy. This belief was certainly also reinforced by the context of the task describing 
a basic activity from everyday life.

9.4. Change of Answer in the Second Type of Approach – System 2

The distribution of responses in both parts of the research was reported in detail in Table 2. 
The improvement in some of the results may have been due to various factors. First of all, the 
subjects approached the solution of the same task again under different conditions, so the 
task was already familiar to them and the thought process involved in solving it was like-
ly to continue. In addition, the respondents felt less stressed than in the eye-tracking part 
due to knowing all the tasks this time as well as not being recorded. They were able to re-
flect on their own first and then recount their interpretations in an open-ended interview. 
Sometimes, by speaking their thoughts out loud, they noticed mistakes. There was no rush 
in this part of the research. This methodology promoted and indirectly triggered analyt-
ical thinking, System 2, as it required reflection. For those who corrected their answer, it 
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was therefore sufficient to calmly reflect on the task again, triggering System 2, in order to 
give the correct answer. This indirectly indicates that the first attempt at solving the task 
lacked this reflection, i.e. it was based on System 1. 

However, the vast majority of the respondents, 44 out of 64, did not change their mind 
in the Q&I part compared to the ET part (see the diagonal in Table 2). The choice of incor-
rect answer G2 in the ET part appeared to be more stable than the choice of the aforemen-
tioned incorrect answer G5, whose incorrectness was noticed by 4 people. In contrast, an-
swer G2 remained unchanged by 22 people, despite their reflection on the task. This answer 
remained the most frequently chosen answer (by 27 people in total), gaining an additional 
5 responses in the Q&I section from people who had chosen a different answer in the ET 
section. Unfortunately, some of these changes were in an undesirable direction, as 3 people 
changed their answer G3 in the ET part to G2 in the Q&I part. Undesirable changes are 
indicative of uncertainty and perhaps randomness in making the first choice, lack of knowl-
edge regarding functional relationships, and, possibly, insufficient activation of System 2.

The selection of responses G2 and G5 indicates the activation of the ‘picture’ miscon-
ception, as G2 simply depicts a diagram of the staircase and G5 depicts the direction of up-
ward movement when climbing the stairs. On several occasions, answer G4 was chosen 
by participants on the basis of the same misconception (e.g., P58, see 7.3.2), as revealed in 
the interviews. Answer G1 depicts a diagram of the shape of the staircase with a curve as 
in the picture, and G6 again depicts a diagram of the staircase, only leading ‘down’ (going 
from left to right). Thus, all answers except G3 may be indicative of a ‘picture’ misconcep-
tion triggered while working on this task.

In addition, the choice of answers representing non-functional relationships (G2, G5, 
G6) demonstrates an inability to carry out covariational reasoning in the context of this 
task. It can be concluded that as many as 40 individuals selecting these answers, or 63% of 
the respondents in the ET part, and 36 individuals after reflection in the Q&I part, still 
more than half of the respondents (56%), did not reach the level of smooth continuous co-
variation (Thompson & Carlson, 2017). These individuals were focused on the shape of 
the trajectory (the ‘picture’ misconception). The drone task reassures us that the subjects 
were aware of the importance of the horizontal axis, which describes time, and were able 
to read the data from a graph. Thus, the ‘picture’ misconception, reinforced by everyday 
experience, was such a strong factor and obstacle that even the activation of System 2 did 
not overcome it.

Moreover, the choice of G5 was indicative of the respondents’ inability of covaria-
tional reasoning in this task – they stopped their interpretation at the change of only 
one variable – height, ignoring the simultaneous change of the other variable – time, i.e. 
they reasoned only variationally, which represents a level of no coordination (Thompson 
& Carlson, 2017).
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9.5. Conclusions Based on Oculographic Analysis

In the context of fast thinking, it appeared that among the 16 participants classified as ‘fast’, 
two demonstrated expert knowledge, while the rest of the respondents succumbed to erro-
neous associations. ‘Speeding’ through the task tended to result in incorrect answers, but 
the research documented two instances of rapid expert thinking.

The ‘very slow’ group in the criterion of fixation numbers obtained the best ratio of 
functional to non-functional responses. However, this result is even better in the ‘non-fast’ 
group, after excluding those from the ‘very slow’ group. The number of fixations on the task 
and its long and detailed analysis did not lead to significantly better results for the subjects. 

However, in the ‘non-fast’ group, the ratio of those who answered correctly to those 
who did not is higher than in the groups of participants whose answers are characterised 
by a significantly lower number of fixations on the task. The increase in time spent working 
on the task did not correlate directly with an increase in correct answers, while the activa-
tion of System 2 in the ‘non-fast’ group, excluding the ‘very slow’ group, had such an effect.

The analysis, or lack thereof, of the illustrations in the task did not prove to be a signif-
icant factor affecting performance. In both the ‘no illustration’ group and the ‘prolonged 
illustration’ group, the ratio of correct G3 answers to incorrect G2 answers was exactly the 
same: 0.83.

10. Summary

The participants can be considered to represent a relatively high level of knowledge and 
skills in mathematics and physics and a high motivation to learn, as evidenced by their at-
tendance to a prestigious and selective high school, their willingness to participate in this 
maths and physics study, their very serious approach to solving the tasks, their self-assessment 
of their skills in mathematics and physics, and the correctness of their work on the drone 
task. This reinforces all the more the conclusions reached in our study. The task proved to 
be difficult for the respondents, even though it was set in the context of an elementary ac-
tivity from everyday life and was rated by them as easy.

In the context of this task, we found that the success rate was only 0.28 on the first at-
tempt, so the level of smooth continuous covariation (Thompson & Carlson, 2017) in the con-
text described would be very difficult to achieve even for gifted students. The conclusions 
are obvious if we want to predict the solvability of this task in a group of less able teenagers. 

The first conclusion is therefore that covariational reasoning should be taught in school 
and that more time should be devoted to it.
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In the first eye-tracking approach to solving the task, 72% of the participants succumbed 
to the ‘picture’ misconception. Thus, school teaching practice should take into account and 
design measures to eliminate this obstacle through targeted didactic interventions in this 
direction, which is another conclusion of our study.

One possible way to do this is to trigger System 2 activation, which can be achieved in 
different ways. In our study, reflection on the task was a methodologically planned proce-
dure. It is noteworthy that almost 20 percent of the participants in the study changed their 
non-functional answer to an answer representing a function graph only as a result of their 
own spontaneous reflection; in this way, the respondents improved their answers by acti-
vating System 2. The implementation of critical thinking and self-monitoring is, and should 
continue to be, a concern for all teachers, especially mathematics and physics teachers, and 
science teachers in general.

In the context of fast thinking, a tendency to succumb to associations with the trajec-
tory of movement and to identify the shape of the staircase with the diagram was revealed. 
Taking into account our research methodology, the way in which we have defined ‘fast’, 
only 2 people in the group were fast thinkers.

The increase in time spent working on the task did not correlate in the longest cases 
with an increase in correct answers. The best results were obtained in the group of people 
who belonged to neither the ‘fast’ nor the ‘very slow’ group; in this group we assume that 
System 2 of slow, analytical thinking was spontaneously activated. In contrast, the poorer 
performance in the ‘very slow’ group most likely has its origins in other knowledge deficits 
and uncertainties, which the subjects were unable to overcome despite many attempts. On 
the other hand, they were certainly highly motivated to give the correct answer.

The analysis or lack of analysis of the illustrations in the task did not prove to be a sig-
nificant factor affecting performance on the task. In both the ‘no illustration’ group and 
the ‘prolonged illustration’ group, the ratio of correct G3 to incorrect G2 answers did not 
differ significantly. Climbing stairs is a well-known activity. However, the analysis of the 
illustration contributed to the discovery of further misconceptions related to the non-stan-
dard and complex shape of the stairs in the illustration.

11. Follow-up

The research is part of a broader investigation, and the partial analysis cited here concerns 
only a part of the results of the responses to one task among those used in the investiga-
tion. Analyses of the results of this and subsequent tasks will be continued and explored 
further from different perspectives.
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The paper presents a preliminary methodological approach to categorising participants 
as ‘fast’ based on the overall fixation count analysis. This approach represents an initial step 
and should be further refined in future research. The task is relatively complex compared 
to those typically employed in Dual-Process Theory studies in psychological literature, as it 
requires multiple decisions to reject response options. It is plausible that some participants 
rely on System 1 thinking for certain parts of the task, while engaging System 2 thinking 
for others. The next methodological approach will focus on the number of fixations on 
each rejected response option, combined with a more detailed and sophisticated analysis. 

Moreover, other alternative theoretical backgrounds will be implemented to interpret the 
results of the study, for example, such as the two types of thinking: predicative and function-
al, or analysis from the point of view of representation translation or modelling approaches.

In addition, activities have been undertaken as part of the Embodying Math & Physics 
Education (EMPE) project to design and implement learning environments for students 
that address the difficulties described. 
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TOOL FOR DIAGNOSTICS OF STUDENTS’ DIFFICULTIES IN CLIL 
(CONTENT AND LANGUAGE INTEGRATED LEARNING)

Summary: The article is focused on CLIL (Content and Language Integrated Learning), integrat-
ing a non-linguistic subject (here represented by mathematics) and a foreign language (here repre-
sented by English) for students. The aim is to introduce a type of didactic test which involves test-
ing both language and content, and also simultaneously helps the teacher to diagnose whether the 
students’ difficulties lie in the content or language portion. The test is analysed with statistical indi-
cators to determine whether it can be used for other classes. Students’ results from different testing 
rounds are compared. 
Keywords: CLIL, Content and Language Integrated Learning, integrated learning, assessment in 
CLIL, diagnostics, testing, tests.

1. Introduction

CLIL is an abbreviation of the English term “Content and Language Integrated Learn-
ing”. It is a method that integrates the teaching of a foreign language and a school sub-
ject. The concept of CLIL is rapidly spreading in Europe. It is a method that allows stu-
dents to learn a foreign language in a natural environment. Students do not learn the 
language for the language itself, but they learn it while using it directly to gain knowl-
edge in other areas.

Language education in Czech schools is compulsory from the third grade (the pu-
pils are usually 9 years old). The pupils should be at A21 level when they leave elemen-

1 The level of English is described according to CEFR, which is an international standard for describ-
ing the level of foreign language (CEFR, 2023). 
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tary school at 15 and at B1 level if they pass the secondary school exit exam (Maturitní 
zkouška, Anglický jazyk, 2023). The CLIL method is used in Czech schools and is offi-
cially supported, but its prevalence is not extensive. There are official learning programs 
for teachers, and several projects aimed at CLIL have been undertaken in the last twen-
ty years. However, the method is not enshrined in Czech law, and its adoption depends 
on individual schools and teachers. 

The dual focus of CLIL teaching is naturally reflected in the assessment of students 
taught through the use of this method. The teacher can either assess only the content sub-
ject, only the language portion, both subjects separately, or both subjects at the same time. 
The relevant topics are how to assess both subjects at the same time, how a test assessing 
both subjects can be designed, and how to identify whether a student struggles in the con-
tent subject, language, or both, and how the teacher can diagnose this. The diagnostics pro-
vide important feedback for the teacher, who can gain a better overview of the student’s re-
sults and progress, as well as feedback from the results and the class. 

This article focuses on CLIL integrating mathematics and English, and its purpose is 
to introduce a type of test for diagnosing whether students’ difficulties lie in mathemat-
ics or English though didactic testing. The test was designed from the position of a teacher 
who uses diagnostics to analyse the difficulties of individual students as well as the whole 
class. Our aim is to inspire other CLIL teachers to extend their assessment tools. It is pos-
sible to use the test in its given form or it can be modified to suit different topics. The ad-
ditional purpose of our research was to determine if the test we created is suitable for use 
in different classes.

We carried out studies where we administered the test to different groups of students, 
not only in English (L2) but also in Czech (L1 – first language), then analysed and com-
pared the results, and subsequently analysed the test. This research method allowed us to 
conduct several types of analyses. We analysed the results of selected individual students in 
each version of the test (as a teacher in a class would do), the results of the students in a giv-
en group, we compared the results of students in individual rounds of tests, and we also an-
alysed the test itself using statistical indicators. 

In the theoretical part of the article, we introduce CLIL and describe its advantages 
and problematic aspects. We also focus on the language used and the difficulties students 
encounter in learning through the CLIL method, as the analyses of the students’ solutions 
are partly based on the terminology and language used. We also describe the assessment in 
CLIL and alternative tests that preceded the test used in this research. 
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2. Theoretical Background

2.1. CLIL (Content and Language Integrated Learning)

CLIL is a method that combines the teaching of a foreign language and a content subject 
in such a way that equal emphasis is placed on both the language and the subject. The les-
son, or teaching in general, has two objectives – one related to the content and the other to 
the language. Language is taught through content, and the content is taught through lan-
guage. Mehisto, Marsh, and Frigols (2008) point out a third objective that CLIL should 
fulfil, which is the development of students’ learning skills and strategies.

CLIL is a method of teaching that makes use of a foreign language, and there are sev-
eral perspectives on how to define CLIL. A broader definition considers CLIL as an um-
brella term for any teaching where content and language are integrated, making it superi-
or to bilingual education (e.g., Ball, 2012). In teaching, especially with advanced students, 
the distinction between bilingual education and CLIL is often blurred. A narrower under-
standing sees CLIL as a methodology with specific characteristics that differ from bilin-
gual education (e.g., Coyle, Hood, & Marsh, 2010). For the purposes of this article, CLIL 
is viewed in its narrow understanding. 

CLIL encompasses teaching through short language activities (called language showers), 
individual lessons or longer periods, and can also be part of various projects. Ball (2009) 
distinguishes between “hard CLIL” and “soft CLIL”. Stannard (2017) elaborates on this, 
describing “hard CLIL” as teaching content in a language other than the native language. 
This type of teaching is often conducted by teachers of the content subject, not language 
teachers, which might limit them due to their potential lack of language skills as well as 
language teaching expertise. “Soft CLIL” focuses more on the language aspect of teach-
ing, where interesting topics are taught in a language which is non-native for students, and 
teachers are more often qualified language teachers.

When planning CLIL lessons and creating materials for teaching and assessing, teach-
ers must consider various aspects of teaching, including the language students require in 
order to understand the content and use it in the classroom. Šmídová (2012) describes 
three types of language and refers to them as: the language of specialised terms, academ-
ic language, and peripheral language. In the realm of specialised terms, she emphasises 
that some terms are already familiar to students but in a different context – for instance, 
“square” might be known in Czech language as “náměstí” (public square) and “čtverec” 
(geometric square), but students might not be acquainted with the usage of “square” as 
“na druhou” (to the power of two). Concerning academic language, it encompasses not 
only individual words but also knowledge of entire language structures and grammar. 
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For example, if a student is unfamiliar with modal verbs, they will not be able to express 
themselves even if they are acquainted with the specialised terminology. Šmídová cat-
egorises peripheral language as encompassing the basic and commonly used phrases in 
teaching, such as greetings and basic instructions. In CLIL teaching, teachers should be 
aware that most subjects have their specific terminology, which students need to know 
in both languages, not only in L2 but also in L1. 

The specificities of CLIL teaching are experienced by the students and the teacher dur-
ing the teaching process, and by the teacher also when creating or adapting CLIL materi-
als. Mathematics is characterised mainly by specific terminology and procedures. Mathe-
matics has its unique language, for instance, Novotná and Hofmannová (2000) introduce 
L3 – the language of mathematics, in addition to L1 and L2 (second language, the one in-
tegrated with mathematics). They point out that mathematical language has specific gram-
matical structures and a vast amount of terminology used exclusively for mathematics, of-
ten involving non-verbal communication and the use of visual and graphic materials. 

Mathematical language has been studied by a number of authors. In this article we con-
sider mathematical language as described by Pimm and Keynes (1994), who state that math-
ematical language covers several areas: 

 ■ Spoken language used during mathematics teaching (from both teacher’s and stu-
dent’s perspectives),

 ■ Specialised language – the use of mathematical terms and phrases (“mathematics 
register”),

 ■ Language used for writing texts, e.g., in textbooks and word problems, including 
graphical representations,

 ■ Language of written symbols,
 ■ Language used by students to think about mathematics,
 ■ Language used by students to communicate with each other.

The mathematical language used depends on the students’ age, level, and the topic they 
are studying. Older and more mathematically educated students should be able to express 
themselves with more precision and complexity. At that level, mathematics becomes more 
general and complex, and the specific topic being taught also affects the language used, for 
instance, when teaching conic sections or word problems.

Students face difficulties in learning mathematics through CLIL on several levels. 
Again, it depends on the students’ age and level as well as the topic. Numerical tasks (e.g., 
equations, expressions) can be solved without knowledge of the language, but understand-
ing the process often requires comprehension of specialised terminology and notation not 
encountered in regular language classes. Moreover, these are not just individual technical 
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terms, but phrases encompassing entire sentences, which often differ greatly from English 
– e.g., expressions with powers and square roots, etc.

These challenges can be categorised into five groups, as outlined by Kubínová (2018) 
(based on her research which was, in turn, based on a study by Novotná and Moraová (2005)) 
(supplemented with own examples):

 ■ Common expressions – these are expressions from general English that might be 
too challenging for students, either due to their level or because they describe a so-
cio-cultural context unfamiliar to students,

 ■ Cultural specifics – primarily different ways of expressing units, time, and dates,
 ■ Grammar – the most significant challenge here is the distinct structure of English 

sentences. Czech has a much freer word order, whereas English uses a fixed word 
order and specific sentence structures. Differences also exist in inflection, articles, 
tense usage, etc.

 ■ Mathematical notation – this involves different symbols and notations,
 ■ Mathematical terminology – mathematics has a rich and specific terminology, and 

difficulties for students can arise from terms that do not have equivalents in the oth-
er language or where one term in the first language encompasses multiple mean-
ings in the second language.

Teachers and students also have to contend with differences resulting from the differ-
ent curricula and didactics of mathematics in different countries.

2.2. Assessment in CLIL – Mathematics and English

Assessment in CLIL occurs at multiple levels, similar to school assessment in general, and 
can be viewed from various perspectives. We can assess the teaching unit (a lesson, part of 
a lesson, or several lessons forming a logical unit), including its planning, implementation, 
and outcomes. We can also assess the students and their results, performances, or progress. 
Additionally, we can assess the effectiveness and efficiency of the CLIL method. These ar-
eas overlap in some aspects. Besides these areas, various other aspects can be assessed, such 
as CLIL materials, etc. 

Our research deals with the assessment of CLIL students and their results from the 
point of view of the relationship between content and language. A CLIL teacher might pri-
marily assess the content, focus only on language, or assess both content and language in-
dependently (for example, conducting one test for terminology and another for content in 
L1), or attempt a form of assessment that considers both language and content simultane-
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ously. The research studies and our experiences confirm that CLIL teachers primarily pri-
oritise assessing the content. For example, Reierstam (2015), analysing the assessment and 
perception of biology and history teachers in Sweden, states that these CLIL teachers tend-
ed to assess content rather than language skills. Regarding language, they only focused on 
terminology. Hönig (2010) carried out a similar study involving history teachers in Aus-
tria. She states that they concentrated on content, but the language accuracy was also im-
portant, so the language was assessed indirectly. 

Our experience shows that the teacher’s assessment of content or language also depends 
on the students’ proficiency level in the language. If their language proficiency is very good, 
the teacher is more likely to assess specialised terminology from the language as the prima-
ry focus. For instance, if the teacher knows that the students are proficient in modal verbs, 
he or she can safely use them without testing their understanding. Based on our experience, 
language testing in CLIL can be approached in two ways. Either the teacher wants to test 
whether the students have mastered language material that is independent of the mathe-
matics content being covered, or the teacher wants to test language material, whose under-
standing directly affects the students’ comprehension of the mathematics content. In the 
latter case, the testing primarily ensures that students can comprehend both content and 
language together.

Students can be assessed on the basis on their language skills (speaking, listening, writ-
ing, and reading), content knowledge, critical and logical thinking, communication and 
interaction skills, ability to work independently, teamwork, practical skills, etc.

Assessment of students in CLIL classes occurs at several levels. It involves ascertaining 
how well the students have mastered the learning material – this can be done through vari-
ous types of tests, graded oral testing, etc. The teacher influences which aspect of the learn-
ing material will be tested by their choice of testing methods. For example, during oral ex-
ams, the teacher can assess pronunciation in L2 (which is typically not assessed in written 
exams) or assign independent or group work and assess the progress or output of this work. 
The teacher also influences the assessment through the terminology used and can utilise 
various graphical aids such as pictures or graphs. If a mathematical problem is given nu-
merically, the students can solve it without understanding the language. The teacher can 
also influence the testing process by specifying the expected outputs during the examina-
tion, for example whether they require responses or comments in L2. 

Lo, Lui, and Wung (2019) conducted a study on how science teachers provide instruc-
tions during assessment and the scaffolding methods they use to help students acquire lan-
guage skills. Among their findings, they discovered that the majority of teachers focus on 
content. However, the authors also provide examples of tasks where the teachers assessed 
language skills, such as assigning students to write coherent paragraphs. They also state that 
teachers may be compelled to solely evaluate content if it involves hard CLIL.



Chapter 3: Tool for Diagnostics of Students’ Difficulties in CLIL 75

2.3. Alternative Tests – Research by Hofmannová,
         Novotná, Pípalová, Šteflíčková (Šturcová)

The issue of assessing integrated mathematics and English teaching has been studied by 
Hofmannová, Novotná, and Pípalová (2004, 2011). In a 2004 study, they presented a test 
whose results illustrate that a student’s ability to understand the language influences their 
ability to solve mathematical problems. They created a test focusing on comparisons. Stu-
dents are asked to translate verbal expressions (e.g., “There are roughly four times as many 
people in Bristol as in York” (2004)) into mathematical language. From a mathematical per-
spective, the test deals with transforming verbal language into equations and inequalities 
using symbols such as =, <, ≈, +. From a language perspective, it primarily focuses on spe-
cific vocabulary related to comparisons, specific adverbs and verbs, comparative and prep-
ositional phrases, etc. By comparing the results for ten different expressions, it is possible 
to identify the areas where students face difficulties.

In another study, Novotná (2011) introduced another type of test, structured on the 
basis of grading individual tasks, wherein by comparing answers to these tasks it is possi-
ble to distinguish what the student does not understand. Some tasks test the use of lan-
guage tools, but the mathematical difficulty remains the same, while others maintain the 
use of the same language tools but differ in mathematical difficulty. For some tasks, nei-
ther component changes.

Both of these tests deal with different mathematical concepts, but in both cases, stu-
dents are asked to convert verbal expressions into mathematical language.

Šteflíčková (Šturcová) (2014) also explored alternative tests, building on previous re-
search, and created three different tests to determine the areas which are challenging to stu-
dents. The first test was entirely verbal, requiring students to identify a mathematical op-
eration from its description and then do it. One of the tasks was, for instance, “Add 10/7 
to 3/14 and divide by 6”. If a student was able to rewrite the sentence into mathematical 
notation, they likely understood the language; if they translated it correctly but could not 
solve it, the difficulty was probably rooted in mathematics. If a student was unable to re-
write the sentence and therefore could not solve the task, they faced language difficulties, 
but it was impossible to determine whether they would have been able to solve the task if it 
had been presented differently. Each operation appeared multiple times in the test, allow-
ing the teacher to assess whether the student genuinely understood the language and was 
capable of solving the task thanks to comparing solutions in different parts of the test. The 
second test (inspired by Novotná’s test in 2011) focused on geometric plane figures – poly-
gons. The test was verbally presented and the students were supposed to analyse figures they 
were familiar with and search for those that met specific conditions related to sides, angles, 
congruent sides and angles, perimeters, and areas. From a linguistic perspective, the test con-
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sisted of specific terminology associated with geometric figures and the grammar of mod-
al verbs. One of the tasks, for example, was: A polygon. It must have equal angles. It can’t 
have all sides equal”. To solve this task correctly, the student must understand mathemat-
ical terminology i.e. “polygon,” “equal,” “angles,” and “sides”; be familiar with modal verbs 
like “must” and “can’t”; and have a grasp of geometric shapes and their properties. The tasks 
were designed to build upon each other, repeating terminologies and concepts, providing 
the teacher with deeper insights into the student’s understanding. The third test consisted 
of a set of word problems that intertwine various tenses and different types of percentage 
problems. These problems intentionally included information irrelevant to solving the word 
problems for the students to eliminate through proper understanding of time sequences. 

All of these tests can be modified in various ways.

3. Research

3.1. Research Questions

1. Which didactic tests are suitable tools for identifying difficulties in CLIL teaching 
when integrating mathematics and English?

2. Is the test we have designed suitable for determining whether a student has difficul-
ties in English or mathematics? How can the teacher diagnose this?

3. According to statistical indicators, is the test we have designed suitable for use in 
teaching?

3.2. Analysis of Didactic Test Designed for CLIL Teaching 

Based on the research conducted by Hofmannová, Novotná, Pípalová (2004; 2011) as well 
as Šteflíčková (Šturcová) (2014), alternative tests were created (Šturcová, 2024) that can be 
used to determine whether a student has difficulties in mathematics or English. One of these 
tests was used for the research portion of the article. We decided to carry out this type of 
research with our test to be able to analyse more data and, despite the fact that our research 
sample was small, the research could be a base for some other – more extensive – research 
studies. In the following text, we will conduct an analysis from several perspectives. We 
will perform an analysis of the statistical indicators of the test to assess whether the test is 
suitable for repeated use in teaching. We will also analyse and discuss the students’ results 
in terms of identifying areas of difficulty regarding content and language. We will demon-
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strate how the diagnostics are conducted on individual tasks. We will also discuss and com-
pare the results in both rounds in order to see how the results of individual students change. 

3.3. Methodology and Use of Research Tools 

For the experiment, we used a test focusing on geometric plane figures in mathematics and 
basic terminology related to plane geometry in English. More details are provided later. 

The experiment was conducted in such a way that the test was given to a class where the 
students were divided into groups of four based on their proficiency levels in English and 
mathematics. In each group, there were students with approximately the same proficien-
cy levels in both subjects. This proficiency level was assessed based on the students’ grades 
from their latest report card and their performance in English and mathematics classes, as 
judged by their teachers. Two students in each group took the test in English, and the other 
two in Czech. Subsequently, a CLIL lesson was conducted during the class, focusing main-
ly on vocabulary, but also revisiting basic mathematical concepts during vocabulary prac-
tice. Due to time constraints, a class that already had knowledge of the mathematical con-
tent was selected, so the test aimed to assess what the students remembered, although it was 
primarily designed as a test to assess the outcomes of learning. This lesson took part one 
week after the first test. Approximately a week after this lesson, the second round of test-
ing took place, with tests administered in such a way so that each group included: one stu-
dent who took both tests in English, one who solved the first test in English and the second 
one in Czech, one who solved the first test in Czech and the second one in English, and fi-
nally, one who took both tests in Czech. As a result, four groups of students were formed. 
The first group solved both tests in English, the second group solved both tests in Czech, 
the third group solved the first test in English and the second one in Czech, and the fourth 
group solved the first test in Czech and the second one in English. An analysis of the tests 
and an assessment of the student’ solutions were conducted.

3.4. Research Sample

The experiment was conducted in one class of students aged 16–17 consisting of 5 boys and 
15 girls in the 2nd year of a secondary vocational school2. The experiment occurred in two 

2 Secondary vocational schools are four-year institutions that educate students preparing for a specific 
profession while also providing the option to continue their studies at a university. Following a nine-
year elementary school, students can choose to attend a secondary vocational school or a grammar 
school, which is a four-year general secondary school where they prepare for university studies. Al-
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rounds: in the first round, a total of 20 students participated (10 students solved the test in 
English, 10 in Czech), and in the second round of testing, 15 students participated (7 stu-
dents solved the test in English, 8 in Czech). Mathematics is taught three times a week in 
the second year and the content involves topics related to the exit exam – they are the same 
for all secondary schools. 

3.5. Test

The created test is a non-standardised cognitive test of proficiency, objectively scorable 
(Chráska, 2007). It is a multiple-choice test where one out of four answers is correct. Four 
options were chosen to reduce the likelihood of guessing, eliminating the need for having 
to work with a guessing correction (Chráska, 2007) (although this would be possible and, 
if there were many tasks, appropriate). The test’s simplicity in evaluation was the reason for 
having only one correct answer. 

The test aimed to assess whether and how students mastered the content, and if they 
faced difficulties, whether they were in English or in mathematics. The test content fo-
cused on planimetry – geometric figures on a plane. Mathematically, the content cov-
ered basic plane figures in five subcategories: lines and their parts, angles, relative position 
of lines, triangles, and polygons. From English, basic mathematical terminology relat-
ed to planimetry was included in the test, primarily testing memory and understanding 
of specified terms.

The test was constructed on the basis of a specification table, where each task was cat-
egorised according to Bloom’s taxonomy of learning objectives (Čábalová, 2011). The test 
comprised 20 tasks, with 4 tasks in each subcategory. Each task specified what the student 
should have mastered in mathematics and in English, and what additional English terms 
they must know. We did not include the most common terms used in English, such as “to 
be”, “can” etc. In some tasks, it was necessary for students to be familiar with mathemati-
cal symbols, which, in this case, were nevertheless the same in both languages, and students 
should know them from regular mathematics classes.

Tables 1, 2, 3, 4, and 5 show specification tables for different subcategories. 

ternatively, they can enroll in a vocational school, typically lasting three years, where they receive vo-
cational training and, upon completion, enter the workforce. 
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Subcategory “Lines and their parts”

Table 1. Specification table for subcategory “Lines and their parts”

Task number: Bloom’s taxonomy Mathematics content English (specialised 
terms)

Additional English 
expressions 

1 Remembering

To match basic 
mathematical 

concepts (straight 
line, line segment)

line segment
straight line

choose
in order

2 Understanding
To estimate the 
length of a line 

segment

determine
long

length

3 Applying

To apply the 
definition: A straight 

line passes through 
exactly two different 

points

straight line
point

determine
how many

pass through
different
exactly

4 Applying
To determine how 

many line segments 
are in the picture

line segment determine
how many

Tasks in subcategory “Lines and their parts”
Figures 1, 2, 3, and 4 present the tasks in the subcategory “Lines and their parts”. 

Figure 1. 1st task in test

Figure 2. 2nd task in test
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Figure 3. 3rd task in test

Figure 4. 4th task in test

The test is constructed so that if a student answers task 1 incorrectly, it is likely that they 
will also answer task 3 and 4 incorrectly, indicating a problem with English. It will not be 
possible to determine from the English version of the test whether they also have a prob-
lem with mathematics. If a student answers task 1 correctly but answers task 3 incorrectly, 
they likely have a problem with mathematics. If a student answers task 1 correctly but an-
swers task 4 incorrectly, this also likely signifies a problem with mathematics. Task 2 pri-
marily tests mathematical knowledge.

Subcategory “Angles”

Table 2. Specification table for subcategory “Angles”

Task number: Bloom’s taxonomy Mathematics content English (specialised 
terms)

Additional English 
expressions 

5 Remembering
To know the basic types of 
angles (right, obtuse, acute, 

straight)

right angle
obtuse angle
acute angle

straight angle

determine

6 Applying To determine the size of 
vertically opposite angles angle determine

size

7 Understanding
To estimate angle sizes 
using knowledge about 

angles
angle guess

size

8 Analysing

To perform an analysis 
when adding angles

To know basic 
mathematical concepts 

(right, obtuse, acute, 
straight angle)

right angle
obtuse angle
acute angle

straight angle
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Tasks in subcategory “Angles”
Figures 5, 6, 7, and 8 present the tasks in the subcategory “Angles”.

Figure 5. 5th task in test

Figure 6. 6th task in test

Figure 7. 7th task in test

Figure 8. 8th task in test
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If a student answers task 5 incorrectly and does not know English terminology, noth-
ing can be determined from a mathematical perspective. If a student answers task 8 incor-
rectly but task 5 correctly, they probably have a problem with mathematics. Tasks 6 and 7 
primarily test mathematical knowledge.

Subcategory “Relative position of two lines”

Table 3. Specification table for subcategory “Relative position of two lines”

Task number: Bloom’s taxonomy Mathematics content English 
(specialised terms)

Additional English 
expressions 

9 Remembering To understand the 
relationships between lines

square
parallels

intersecting lines
perpendicular 

lines

determine
relationship

between

10 Analysing
To decide on the relationship 
between perpendicularity and 

parallelism

line
parallel 

perpendicular
relationship

11 Applying
To determine the sizes of 

corresponding and alternate 
angles

angle determine
size

12 Applying
To determine the sizes of 

corresponding and alternate 
angles

angle determine
size

Tasks in subcategory “Relative position of two lines”
Figures 9, 10, and 11 present the tasks in the subcategory “Relative position of two lines”.

Figure 9. 9th task in test
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Figure 10. 10th task in test

Figure 11. 11th and 12th task in test

If the student successfully completes task 9, they likely know the tested English termi-
nology. If they answer task 10 incorrectly but task 9 correctly, they likely have a problem 
with mathematics. Tasks 11 and 12 primarily test mathematical knowledge.

Subcategory “Triangles”

Table 4. Specification table for subcategory “Triangles”

Task number: Bloom’s taxonomy Mathematics content English (specialised 
terms)

Additional English 
expressions

13 Remembering To understand and find the 
altitude and median

triangle
side

altitude
median
bisector

determine

14 Analysing

To specify mathematical 
terms (altitude, median and 
side of the triangle) and the 
relationships between them

triangle
side

altitude
median

the same
length
shorter

15 Applying To apply the triangle 
inequality triangle

16 Applying To calculate the size of 
internal angles in a triangle triangle
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Tasks in subcategory “Triangles”
Figures 12, 13, 14, and 15 present the tasks in the subcategory “Triangles”.

Figure 12. 13th task in test

Figure 13. 14th task in test

Figure 14. 15th task in test

Figure 15. 16th task in test

If a student answers task 13 correctly but task 14 incorrectly, they likely have a problem 
with mathematics. Tasks 15 and 16 primarily test mathematical knowledge.
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Subcategory “Polygons”

Table 5. Specification table for subcategory “Polygons”

Task number: Bloom’s taxonomy Mathematics content English (specialised 
terms)

Additional English 
expressions

17 Remembering To know the sum of internal 
angles in a polygon

interior angle
regular polygon

formula 
sum

18 Understanding
To determine convexity

To identify basic polygons 
(tetragon, hexagon)

convex
tetragon

determine
figure

19 Applying To apply knowledge of the sum 
of internal angles in a polygon

interior angle
regular hexagon

determine
size

20 Applying To apply knowledge about 
regular polygons

regular polygon
line segment

determine
length
longest

Tasks in subcategory “Polygons”
Figures 16, 17, 18, and 19 present the tasks in the subcategory “Polygons”.

Figure 16. 17th task in test

Figure 17. 18th task in test

Figure 18. 19th task in test
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Figure 19. 20th task in test

If the student correctly identifies the quadrilateral in task 18, it is likely that they know 
the basic terminology for polygons. If they answer task 19 incorrectly but task 18 correct-
ly, they likely have a problem with mathematics (as they likely understand the word “hex-
agon”). If they answer task 19 correctly but make a mistake in task 17, the problem, again, 
likely lies with mathematics, just as when they answer task 18 correctly but task 17 incor-
rectly. Task 20 primarily tests mathematical knowledge.

3.6. Pre-Experiment for Adjusting Distractors of Proposed Test

After preparing the test and designing the distractors for each task, a pre-experiment was 
conducted. In this pre-experiment, students of the same grade as those in the tested group 
worked on the test in Czech, without any provided answers. A total of 24 students, aged 
16–17, participated in the pre-experiment. The time limit for the test was set at 10 minutes. 
The students were asked to complete the test and, if possible, write down their procedures, 
or add comments or explanations. The permitted tools were writing implements and a ruler.

The distractors contained in the test were adjusted based on the students’ responses in 
the pre-experiment. This adjustment involved incorporating into the multiple-choice op-
tions the answers that were most frequently provided by students during the pre-survey tests. 
(The distractors in the test described in the previous part of this article are already adjusted.)

3.7. Experiment

The test was administered to students in two rounds – before the CLIL lesson, and af-
ter. The reason for conducting two rounds of testing and dividing students into those who 
wrote both tests in Czech, both tests in English, the first test in Czech and the second in 
English, and the first test in English and the second in Czech, was to verify the character-
istics of the didactic test among different groups. Additionally, we wanted to compare the 
results of students in individual groups.
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The test was conducted in class, students were given a paper test and worked on the test 
with a time limit of 15 minutes. They were asked to complete the test and were informed 
about the grading (one point for every correct answer, no negative points for incorrect ones). 
The permitted tools were writing instruments and a ruler.

The characteristics of the didactic test were verified from several perspectives. The first 
and second rounds of testing were assessed separately for each language. Then, the students’ 
results and the changes in results in the created groups were assessed. Another tested aspect 
were the diagnostics of what the students have had difficulties with.

3.8. Statistical Analysis and Discussion of Results
         for Each Round of Testing

The statistical analysis was conducted using several statistical indicators according to Chrás-
ka (2007) – difficulty, selection of distractors, number of answers omitted, sensitivity, va-
lidity, and reliability and standardisation. We created Table 6, including some of these indi-
cators as well as the number of students who participated in the test and the average score. 
Regarding the difficulty, tasks with a difficulty value (Q) higher than 80 are considered 
difficult, and tasks with a value lower than 20 are considered easy (Chráska, 2007). The se-
lection of distractors is appropriate if the students’ attention is not focused on any specif-
ic distractor. For students who do not know which answer is correct, all distractors should 
be equally acceptable (Chráska, 2007). Regarding the number of answers omitted, atten-
tion should be paid to tasks where more than 30-40% of students omit the answer. Sen-
sitivity is calculated using the coefficient of sensitivity ULI (Chráska, 2007). If the coef-
ficient reaches negative values, students who perform worse on the test get better results. 
No quantitative methods are used to determine validity (whether the test checks for what 
it is supposed to) (Chráska, 2007). According to Chráska (2007), reliability means that 
the test is reliable (i.e., repeating the test under the same conditions should yield the same 
or similar results) and accurate (relating to errors). Reliability can be determined, for ex-
ample, by using the Kuder-Richardson formula, which is used for level tests composed of 
thematically homogeneous tasks (Chráska, 2007). This is the formula we used. The halv-
ing method is also used, but it requires items to be in order of increasing difficulty, which 
this test does not satisfy. According to Chráska (2007), the purpose of standardisation is 
to create a norm so that a student’s results can be compared with those of other students. 
Several scales are used, such as the percentile scale, which determines what percentage of 
students scored lower.
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Table 6. Analysis of statistical indicators in each round
First Round of Testing 

in English
First Round of 

Testing in Czech
Second Round of 
Testing in English

Second Round of 
Testing in Czech

Number 
of students 

participating 
10 10 7 8

Difficulty

The least challenging 
task was 6 (90% of 
students answering 

correctly). 
The most challenging 
task was 8 (no correct 

responses). 
Tasks 3, 4, 8, 17, and 19 
are considered difficult. 

Task 8 with Q = 100 
should be excluded 

from the test for 
potential future use.

The least challenging 
tasks were 5 and 9, as 

expected. 
No task had 

a difficulty value 
higher than 80.

Task 6, with 
a difficulty value 
of 10, could also 

be described as not 
difficult.

Task number 19 was 
difficult. 

The least challenging 
tasks were tasks 2, 5, 

and 6.

The easiest tasks were 
tasks 1, 5, and 9. 

Tasks 6 and 10 were 
also easy. 

Tasks 15 and 19 are 
considered difficult.

Selection of 
Distractors Appropriated

The selection of 
distractors in the 
Czech version is 

distributed differently 
than in the English 

version.3

appropriated appropriated

Number of 
Answers Omitted

Tasks 16 and 17 are 
considered problematic. 

Task 17 tests formal 
knowledge, so the 

students are likely to 
have forgotten.

The students did 
not skip any tasks 

more frequently than 
others.

The students did 
not skip any tasks 

more frequently than 
others.

The students did not 
skip any tasks more 

frequently.

Sensitivity

The coefficient reaches 
negative values for tasks 
1, 5, and 17. (However, 
due to the small number 

of participants, this 
represents a difference 

of one or two students.)

The sensitivity 
coefficient reaches 

negative values 
for tasks 6, 12 and 

13. In contrast, 
the sensitivity 

coefficient is high for 
tasks 4 and 8.

The sensitivity 
coefficient achieves 
a negative value for 

task 3. 

The sensitivity 
coefficient achieves 
a negative value for 

tasks 10, 13, and 15, 
but this constitutes 
a difference of only 

one person.

Reliability The reliability is 0.73, 
which is average. 

The reliability is 0.65, 
which is a low value.

The reliability is 0.81, 
which is average. 

The reliability is 0.55, 
which is a low value.

Average score

In the Czech version, 
the students were 

more successful on 
average by 2.9 points 
than in the English 

version, which is due 
to the difference in 

language proficiency.

In comparison with 
the first round of the 
English version, the 
average increased by 

approximately 2.9 
points.

In comparison with 
the first round of the 

Czech version, the 
average increased by 

only 1.4 points.

3 For example, in task 3, half of the students selected the same incorrect distractor. In task 7, students 
selected the wrong angle size, which was often determined by students who were working on the open 
test in a pre-research.
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4. Discussion

4.1. Discussion and Comparison of Results in Both Rounds
        for Individual Students

In Table 7 we observe a comparison of the students’ results in each round. Only those stu-
dents who took both tests are included in the comparison. This information was not direct-
ly relevant to any aims of the research, but we found it important to include as it indicates 
the results of individual students and therefore demonstrates the diagnostics of a teacher 
and students’ progress regarding Czech and English language. We discussed individual test 
items to ensure that our diagnostic process was accurate. 

Students are divided into rows by grades in English and mathematics, and into columns 
by the versions of the test they took. Each student’s score in each round is indicated. (The 
table uses the notation 1st r for denoting the first round, and 2nd r for denoting the second 
round. ENG means English version of the test, Czech means Czech version of the test).

Table 7. Comparison of students’ results in each round
ENG + ENG ENG + Czech Czech + ENG Czech + Czech

1st r 2nd r 1st r 2nd r 1st r 2nd r 1st r 2nd r

Vítek 11 16 Michal 9 15 Aneta 10 9 Maruška 11 13

Dominika 15 15 Verča 7 9 Marcela 15 12 Jarda K. 16 15

Jarda 5 10 Markéta 12 6 Míša P. 11 14

Zuzana 3 5 Míša 7 10 David 8 11 Eva 7 10

There are 3 students in the ENG + ENG group. One student neither improved nor wors-
ened, while two students improved by 5 and 2 points, i.e., by 25% and 10%. 

There are four students in the group with both Czech tests. These students improved by 
only 10% and 15%, and one student worsened. It appears that the students who wrote both 
versions in English improved more than those who wrote both versions in Czech. This may 
be due to the fact that the CLIL lesson was mainly focused on terminology with only a re-
view of the mathematics portion. In the second round, the majority of students achieved 
similar results as their classmates. 

When comparing students who wrote the first round in English and the second round 
in Czech, all of them improved – individually by 10%, 15%, 25%, and 30%. These students’ 
results are also close to those of the other students in the second round, except for Michal, 
who showed a noticeable improvement.

In the group of students who took the first test in Czech and the second one in English, 
deterioration is evident. As Czech is their mother tongue, it is clear that it is easier for stu-
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dents to take a test in Czech – but we still find it surprising, especially for Markéta, who 
worsened by 30%. Considering that the students had already taken the test in Czech and 
had also learned the terminology, only minimal worsening or slight improvement would be 
expected, as was the case with David, where the deviation from his initial result equaled 5%. 

Students who took the first round test in Czech got better results compared to those 
who took the second round test in English, which is not surprising, because Czech is their 
native language. We could ask if it is possible to compare results in Czech and English if 
Czech is their native language, with English being their second language.

We find the results surprising, as we would have expected a more significant improve-
ment in the second rounds, given that the students took the same test twice and had a re-
vision lesson between tests. we would have also expected improvement of all students in 
the group of Czech + Czech.

4.2. Analysis and Discussion of Students’ Results in Terms of
         Identifying Areas of Difficulty

The test was designed to determine areas of difficulty for the students. In Table 8, we pres-
ent an overview of the answers from individual students in both rounds of testing in Eng-
lish. Correct answers are highlighted in yellow, denoting tasks that may indicate whether 
the difficulties are in English or mathematics. Tasks primarily testing mathematical knowl-
edge (not highlighted in yellow) are not included in the discussion. All students, including 
those who took only one test (did not take the second test due to their absence) are includ-
ed in the table. In the following section, we describe the procedure of a teacher who wants 
to determine if the student has difficulties in math or English. 

Table 8. Students’ score in first and second round of testing in English



Chapter 3: Tool for Diagnostics of Students’ Difficulties in CLIL 91

Task 1 focused on determining a line and a line segment (i.e., primarily testing vocab-
ulary). If a student answered task 1 correctly but task 3 and/or 4 incorrectly, we can con-
clude that there was a problem with mathematics. This is the case for 7 out of 17 students.

Task 5 also tested the terminology. If a student had the correct answer in this task but an 
incorrect answer in task 8, the problem was again with mathematics. Task 5 was not diffi-
cult; in the first round, five students had the correct answer, none of whom answered task 8 
correctly, indicating a problem with mathematics. Renata, Sabina, Michal, and Verča strug-
gled with English; whether they also had problems with mathematics cannot be determined.

Task 9 was a simple exercise to verify whether the students are familiar with the term 
“parallel lines” and could identify them. If a student answered task 9 correctly but task 10 
incorrectly, there was likely a problem with mathematics. Sabina and Míša experienced dif-
ficulties with these tasks from a mathematical perspective. Six students probably had diffi-
culties with English. Renata and Markéta chose answer d (we cannot say) for task 9, which 
suggests that they did not grasp the entire question, not just the term “parallel lines”.

Regarding another part of the test, if a student answered task 13 correctly, they like-
ly knew the terminology needed for task 14. It means that if a student had task 13 correct 
but task 14 incorrect, they had difficulties with mathematics. Both tasks were correctly an-
swered by Vítek and Dominika in both rounds, as well as by Míša and Marcela. Verča had 
problems with mathematics.

In the last subcategory, we can observe the results of tasks 17, 18, and 19. If a student 
answered task 18 correctly but did not answer 17 and/or 19 correctly, they had difficulties 
with mathematics. This applied to Vítek in both rounds and Dominika and Míša in the 
first round. The source of difficulties for others could not be determined.

Comparing the difficulty levels of mathematics and English for each student, Vítek 
and Míša faced the most predominant difficulties with mathematics. Vítek likely under-
stood a significant part of the test in the first round, even improving in the second, but he 
is not as strong in mathematics as he is in English. However, his overall results were good 
compared to other students; Vítek scored 10 points in the first round and 16 points in the 
second round. This aligns with his performance in English and mathematics, where he is 
among the top students in English and commendable in mathematics.

The most significant difficulties with English compared to mathematics were experi-
enced by Sabina and Marcela. Whether these difficulties were solely with English or also 
with mathematics could be partially determined by comparing the results of the first test 
with the results of the second test if the second one was written in Czech. Both also had 
an average score compared to others. They are considered average students in both math-
ematics and English. Analysing the difficulty levels of mathematics and English for each 
student suggested that students had more difficulties with mathematics.



Trends in Mathematics Education Research92

The highest score in the first round was obtained by Dominika (15 points), being strong 
in both mathematics and English compared to others. Interestingly, she scored the same 
number of points in the second round. However, studying the table of results reveals that 
she provided different answers, particularly in questions aimed at testing mathematical 
knowledge. Vítek achieved the highest number of points in the second round (16 points).

The lowest number of points in both rounds was obtained by Zuzana (3 and 5 points). 
Markéta, scoring 6 points, was also very weak in English and acquired the points mainly 
in more mathematically-focused tasks. At school, both students have unsatisfactory results 
in English, and Zuzana is weak in mathematics as well.

The research was supported by interviews with individual students along with an as-
sessment of their general performance in both English and mathematics provided by their 
teachers. We discussed the individual tasks contained in the test with those students who 
seemed to have difficulties in specific concepts or terminology in order to acquire feedback 
and to be able to confirm or refute our conclusions about where the students’ difficulties 
are. These interviews supported our conclusions and we can say that the test succeeded in 
distinguishing the source of the students’ difficulties. 

4.3. Discussion of Results of Student’ Solution Analysis in General

The test analysis is influenced by the low number of participants in the experiment and likely 
by the fact that the students took the same test twice. One CLIL lesson was conducted be-
tween the two tests (as described in the section Methodology and Use of Research Tools). 
The CLIL lesson was mainly focused on terminology, the problems present in the test were 
not solved, and the students did not get to see their test after the first round.

The test contains several problematic items. In terms of difficulty, task 19 appeared chal-
lenging in almost all versions. If the test were to be used in further testing, this task should 
be omitted or replaced with another. In the first rounds, tasks 16 and 17 were also difficult, 
but in the second rounds, the solutions to these tasks did not appear challenging. On the 
other hand, tasks 5 and 6 were very easy. In the first round of testing in English, half of the 
students guessed the correct answer. When asked later how they knew the correct mean-
ing of “acute“ and “obtuse“, students answered that they had guessed, going by the sound 
of the words. In the Czech rounds, task 9, which focuses on vocabulary, also appeared easy. 
Unexpectedly, some students had difficulty with task 1 in the first round of the Czech ver-
sion, even though this task also focuses on English terminology, so it should be easy in 
Czech. This fact could be due to three students overlooking that the order of the pictures 
matters, even though it was noted in the assignment and emphasised when the test was ad-
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ministered. Regarding sensitivity, some tasks reach negative values; in two versions, tasks 14 
and 15 are repeated, so it would be appropriate to reconsider the wording of the questions.

The reliability is 0.73 and 0.81 for the English versions, and 0.65 and 0.55 for the Czech 
versions. This is likely due to a significant difference in task difficulty in the Czech version 
due to the easy tasks in the English version which were focused on terminology. This also 
shows that, in terms of difficulty, a task given in English and the same task given in Czech 
can be considered a completely different task for the student.

Comparing different groups of students indicates that students who wrote both versions 
in English improved more than those who wrote both versions in Czech.

5. Summary
This article deals with the assessment of students learning with CLIL, integrating math-
ematics and English, and demonstrates a tool for identifying sources of difficulties in stu-
dents during testing. 

We stated the following research questions: 

1. Which didactic tests are suitable tools for identifying difficulties in CLIL teaching 
when integrating mathematics and English?

We believe alternative didactic tests to be suitable as tools, where by comparing the 
results of different tasks it can be determined whether the student has difficulties 
with mathematics or with English.

2. Is the test we have designed suitable for determining whether a student has difficul-
ties in English or mathematics? How can the teacher diagnose this?

We described several types of suitable tests which can be used by teachers during 
lessons and we performed an experiment with one test. We conducted an analysis, 
carried out an experiment with secondary school students, and discussed and ana-
lysed solutions from various perspectives. We showed how to determine where a stu-
dent has difficulties using the test. Such tests could also be used in non-CLIL les-
sons taught in the native language. Here too, it is necessary to decide whether the 
students understand the terms and formulations in mathematics.
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3. According to statistical indicators, is the test we have designed suitable for use in 
teaching?

Analysis using statistics indicators showed that the proposed test might be suitable 
for use in lessons after omitting or replacing task 19, but the number of respondents 
was very small, and it is therefore necessary to conduct further research to be able 
to make the statistics meaningful. The results cannot be generalised. However, the 
experiment as well as interviews with students and their English and Math teach-
ers showed that the proposed type of test is suitable for CLIL assessment. We as-
sume that further research with more participants will follow the presented study.
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MATHEMATISATION AND MODELLING – COMPARING THE 
PERFORMANCES OF IB DP AND POLISH PROGRAMME STUDENTS

Summary: The many differences between the Polish mathematical education programme and the 
IB DP (International Baccalaureate Diploma Programme) mathematics curriculum prompted a re-
search regarding the differences in students’ performances. The main focus is on the topic of func-
tions and their use as a tool for mathematisation and modelling.
Mathematisation in literature is described as the process of adapting reality to a mathematician’s 
needs (Freudenthal, 2002), while modelling is a commonly used tool in mathematisation, which can 
help build a bridge between the mathematical and non-mathematical world (Niss et al., 2007). Stu-
dents in the IB DP following the Mathematics: Applications and Interpretation course are more of-
ten exposed to activities requiring them to use mathematics in a real-life context or to build a mod-
el than their peers following the Polish mathematics curriculum. It was therefore assumed that the 
IB DP students would achieve better results in exercises placed in a real-life context, while the Polish 
curriculum students would perform better in exercises placed in an entirely mathematical context.
The assumptions above have been verified by a study in which the author asked both IB DP and Pol-
ish curriculum students to solve a research questionnaire composed of nine questions from the do-
main of functions, which are based either in a real-life or mathematical context and require the use 
of various skills. The author then compared the results and came to the conclusion that differences 
in skills are not entirely representative of the differences in the curricula. It is possible that the differ-
ences that did appear are a reflection of the differences in the entrance performance of the students, 
or their motivation to learn mathematics.
In the report the differences between curricula will be shortly discussed, as well as the structure and 
methodology of the study and the results and conclusions obtained.
Keywords: mathematisation, modelling, functions, application of mathematics, secondary school 
students, Polish and IB DP curriculum.

1. Introduction

This chapter regards the topic of mathematisation (Krygowska, 1979, p. 48) and model-
ling (Niss et al., 2007, p. 4), or more specifically, the ability of students to carry out those 
processes with the use of functions. The focus of the chapter will be on an empirical study 
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conducted in 2022 by the author. The study required the participation of high school stu-
dents, who studied either in the Polish national curriculum or were part of the IB DP (In-
ternational Baccalaureate Diploma Programme) and thus, studied mathematics according 
to the international curriculum of the programme. 

The motivation behind this study was to better understand how differences in curric-
ula may affect a student’s skill set and how different approaches to teaching mathematics 
impact a student’s thinking. Teachers should always hope to optimise their teaching in or-
der to achieve better results with their students and comparing different methods of teach-
ing might be one of the ways to achieve this goal. Moreover, modelling is a key ability in 
mathematics (Blum, 1993). 

The IB group students who participated in the study are all students in the course Math-
ematics: Applications and Interpretation (AI), which is one of the two mathematics sub-
jects proposed by the IB DP. It was selected over the course Mathematics: Analysis and 
Approaches (AA), as the AA curriculum is much more similar to the Polish national curric-
ulum and thus, it is likely that less differences would be observed. Anytime the IB syllabus 
is mentioned onwards, it will always refer to the curriculum of the Mathematics AI subject.

The main difference observed between the IB and Polish national curricula is an entire-
ly different approach to the context given to mathematics. IB prefers a much more realis-
tic approach, with exercises set in a real-life setting, in which mathematics is only a tool to 
draw conclusions significant in the given context. On the other hand, the Polish national 
curriculum has a more analytical approach, with problems rarely having any context other 
than the required mathematical information. Apart from analysing the content of the re-
spective syllabuses, those differences can be observed when comparing questions from the 
programmes’ respective end-of-course examinations. Examples are shown below. 

Figure 1. Example question from the Polish end-of-course examination 

Source: Matura examination 2022, standard level

Text translation

The zero of the linear 
function f, given with the 

equation

is the number
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In the question above, the student is asked to choose the given function’s zero among 
the proposed answers. No real-life context is deemed necessary – this is a strictly algebra-
ic question, which verifies whether the student knows how to identify the zero of a func-
tion (or how to find it). 

Figure 2. Example question from the AI end-of-course examination 

(Source: Examination for AI SL, May 2021, Paper 1, standard level)

The question above also concerns linear functions, but is set in a real-life context. In part 
(a) and (c), it doesn’t ask the student to find the value of the function for the argument 40 or 
find the intersection point of the graphs of two functions. Rather, it asks a question in the 
given context, and the student has to understand by themself what this means in a math-
ematical context. Since it is postulated that translating information from an extra-mathe-
matical context to a mathematical one is the first step of any modelling activity (Niss et al., 
2007, p. 4), this means that IB students are very often subject to mathematical modelling, 
as opposed to Polish curriculum students. With this information in mind, the methodol-
ogy of the study was designed. 

2. Methodology

The study took place in April of 2022. The research group consisted of students follow-
ing the IB DP and students following the Polish national curriculum. In total, 149 senior 
students from 10 different schools in Cracow and Warsaw, Poland, filled out the research 
questionnaire. The structure of the research group (with division into subgroups) is shown 
in the table below. 
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Table 1. Structure of the research group
SL HL

PL 60 53

AI 32 4

The research group was divided into four subgroups:
 ■ PL SL – standard level students following the Polish national curriculum
 ■ PL HL – higher level students following the Polish national curriculum
 ■ AI SL – students in the IB DP following the Applications and Interpretation course 

at the standard level
 ■ AI HL – students in the IB DP following the Applications and Interpretation 

course at the higher level

Unfortunately, the AI HL group consisted only of 4 students, which would result in 
a very low statistical significance. As shown in the “results” part of this chapter, their an-
swers were analysed and included in the general results of the whole research group, but 
not analysed separately. 

As mentioned, the study focused on the strategies of solving questions from the topic of 
functions implemented by IB DP and Polish curriculum students. The aim of the study was 
to identify the differences between and the correctness of the methods used by these students.

The main research question was: Does the ability to solve tasks from the topic of 
functions differ between IB DP and Polish programme senior (grade 12) students?

As the topic of functions is broad, it was decided to limit the study to the matters of domain 
and range of functions, given in algebraic or verbal form, as well as the topic of linear functions. 

The main research question was later supported with further, more detailed research 
questions:

1. What are the mathematisation abilities of students in the compared groups in terms 
of transforming and using information in a:
a. Mathematical context,
b. Real-life context? 

2. What are the modelling abilities of students in the compared groups in terms of 
building and using a model based on information given in a:
a. Mathematical context,
b. Real-life context?

3. What are the abilities of students in the compared groups in terms of recognising 
functions, specifically:
a. Deciding whether a relation given in algebraic form is a function,
b. Deciding whether a relation given in verbal form is a function,
c. Using theoretical knowledge about relations and functions?
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There is not much pre-existing research on the investigated topic, hence the hypoth-
eses were formulated based on personal experience with the Polish and IB programmes, 
and a thorough analysis of textbooks and curricula (Dobrowolska et al., 2019; Haese et al., 
2007; Kurczab et al., 2019; International Baccalaureate Organisation, 2017). The hypoth-
eses formulated for the study are shown below.

1. The students following the Polish national curriculum will achieve better results 
in terms of the abilities to:
a. Transform and use information in a mathematical context, 
b. Build and use a model based on information given in a mathematical context, 
c. Decide whether a relation given in algebraic form is a function. 

2. The students following the IB DP curriculum will achieve higher results in terms 
of the abilities to:
a. Transform and use information in a real-life context, 
b. Build and use a model based on information given in a real-life context,
c. Decide whether a relation given in verbal form is a function. 

No hypothesis was formulated to accompany hypothesis 3.c., as the analysis of textbooks 
and curricula did not provide enough information to suspect one of the groups would per-
form better in terms of using their theoretical knowledge of functions.

The next step in the study was to formulate the variables used and their indicators. For 
an independent variable, the research used the programme followed by the student (Pol-
ish or IB), as well as the student’s course level (standard level or higher level). The depend-
ent variables used relate directly to the detailed research questions. The indicators refer to 
the research questionnaire, which is briefly described below the table.

Table 2. Variables and indicators 
Main dependent variable Indicator

The ability to solve questions from 
the topic of functions The sum of points obtained for all questions

Detailed dependent variables Indicators

The ability of mathematisation in 
a mathematical context

The points obtained for the question verifying the ability to transform and use information given in 
a mathematical context (question 2)

The ability of mathematisation in 
a real-life context

The sum of points obtained for questions verifying the ability to transform and use information in a real-life 
context (questions 3, 8)

The ability of modelling in 
a mathematical context

The points obtained for the question verifying the ability to build and use a model based on information given 
in a mathematical context (question 9)

The ability of modelling in a real-
life context

The points obtained for the question verifying the ability to build and use a model based on information given 
in a real-life context (question 1)

The ability to recognise functions 
among relations given algebraically

The points obtained for the question verifying the ability to decide whether a relation given in algebraic form 
is a function and justifying their answer (question 4)

The ability to recognise functions 
among relations given verbally

The points obtained for the question verifying the ability to decide whether a relation given in verbal form is 
a function and justifying their answer (question 7)

The ability to use theoretical 
knowledge about functions

The sum of points obtained for questions verifying the ability to use knowledge on functions to answer 
theoretical questions in a mathematical context (questions 5, 6)
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The research method used was a survey, and the research tool was a questionnaire 
(Nowak, 1981, p. 106). A key part of building the questionnaire and selecting the topic of 
the study was to accommodate the differences between curricula. The AI SL students are 
allowed to use, throughout their course and during examinations, a graphic display calcu-
lator (GDC), often being expected to use it above classic algebraic methods. For example, 
AI SL students are not required to know how to solve quadratic equations algebraically, as 
they are expected to use their GDC to solve them. It is a powerful tool that provides a lot of 
help, and allowing IB students to use it while denying it for the Polish group, would cause 
a large imbalance between the two groups. It was necessary to choose a topic which the IB 
group is used to working on without the use of their GDC. This is why, as previously men-
tioned, the selected topic is the domain and range of functions given in algebraic or verbal 
form, as well as linear functions. The students were also asked to identify whether a rela-
tion is a function at all, when provided as an equation (for example: x = 4 – 0.75y) or in ver-
bal form (for example: “To a student in your class are assigned the names of their siblings”).

The research questionnaire consisted of 9 questions (mathematisation – 3 questions, 
modelling – 2 questions, function knowledge – 4 questions). The students were expected 
to solve the questionnaire in 45 minutes (it was necessary to accommodate the duration of 
periods in Poland – this is the typical duration of one lesson). The students could not use 
a calculator. Each of the exercises in the questionnaire corresponds to one of the detailed 
research problems shown above. A few example questions from the questionnaire were se-
lected for the purpose of a more detailed description in this chapter and are shown below. 
A full version of the questionnaire is provided as the appendix to this chapter. The example 
questions below are numbered according to the numbering in the questionnaire. 

Question 2 – Transforming and Using Information Given in a Mathematical Context
2. Consider the line with equation 0.8x – y + 4 = –4

a. Draw this line in the coordinate system below. Write down all necessary calcula-
tions. (In the questionnaire a coordinate system was provided with the question)

b. Find the equation of a linear function whose graph is parallel to this line.
c. Find the equation of a linear function whose graph is perpendicular to this line. 

The main difficulty in the exercise above was the form in which the line equation was 
given. The students are usually familiar with the gradient-intercept form y = mx + b, where 
m is the gradient and b is the y-intercept of the graph of the function. IB students are also 
accustomed to the point-slope form of a line equation y – y0 = m(x – x0), where m is the gra-
dient of the line and (x0, y0) are the coordinates of any point belonging to the graph of the 
function. The general form Ax + By + C = 0, where A2 + B2 ≠ 0 is also used on a few occa-
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sions. Since the equation from the question was not given in any of these forms – some stu-
dents did not recognise this function as linear. 

Ad. (a) The students could, but did not have to, decide to transform the equation of the 
line to gradient-intercept or point-slope form to find the gradient of the line. There are in-
finitely many possibilities in terms of the points the students could decide to find in this 
question in order to draw the graph of the given line. Common points include (0,3), (5,7) 
and (-5,-1) due to their integer coordinates. A correct graph of the given line is shown below:

Figure 3. Solution to question 2, part (a)

Ad. (b) If the student did not do this in part (a), this is where they should transform their 
line equation, for example to a gradient-intercept form, to find the value of the gradient:

0.8x – y + 4 = 1
y = 0.8x + 3.

As can be seen, the given line has the gradient 0.8. Other options to find the gradient 
are possible – such as using the points found in part (a), but none of the students decid-
ed to use this method. Part (b) of this question aimed to verify the students’ knowledge 
about the properties of gradients – specifically, that when two lines are parallel, their gra-
dients are equal. Four different types of answers were expected in this question, shown be-
low, with examples.
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Table 3. Solutions to question 2, part (b)
Exact value for the 

b coefficient, different than 
0 or 3, i.e.:

Coefficient b = 0 General b coefficient Line overlapping with the 
given line

y = 0.8x + 4
y = 0.8x – 3 y = 0.8x y = 0.8x + b y = 0,8x + 3

Ad. (c) Similarly to part (b), finding the correct solution depends on finding the appro-
priate gradient and the students’ knowledge about the gradients of perpendicular lines. 
When two lines are perpendicular, their gradients satisfy the equation m1 ⋅ m2 = –1. Fol-
lowing this equation, the student could identify the correct gradient for a line perpendic-
ular to the one given. 

Again, four different types of correct answers could be expected, as shown below. 

Table 4. Solution to question 2, part (c)
Exact value for the 

b coefficient, different than 
0 or 3, i.e.:

Coefficient b = 0 General b coefficient Same b coefficient as in the 
given line

Question 9 – Building and Using a Model in a Mathematical Context

9. A rectangle has a length of x and its width is 20 units shorter than the length. 
a. Write down the equation of a function describing the perimeter of this rectan-

gle in terms of x.
b. What is the domain of this function?
c. Is it possible to find the smallest perimeter of this rectangle? Circle the right an-

swer (YES / NO) and justify. If you circle YES, calculate the smallest perimeter. 
d. Is it possible to find the largest perimeter of this rectangle? Circle the right an-

swer (YES / NO) and justify. If you circle YES, calculate the largest perimeter. 
e. Write down the range of this function. 

The question was formulated by the author specifically for this study. Its aim was to ver-
ify the students’ performance in modelling within a purely mathematical context, with a si-



Chapter 4: Mathematisation and Modelling 105

multaneous use of linear functions. Constructing the equation of the function should not 
be too challenging for the students. The hardest aspect might be part (c) – the student can 
be drawn to designating 20 as the smallest value of x, which is not possible, as the width 
would then be 0 units. Moreover, question 9 is the last one in the questionnaire, which 
means that the students may be tired or unmotivated when solving this question after al-
ready solving eight demanding problems.

Ad. (a) The rectangle described in the question can be sketched as follows: 

Figure 4. Rectangle described in question 9

After sketching the figure, it can be easily calculated that the perimeter P of the rec-
tangle is:

P(x) = 2x + 2(x – 20) = 2x + 2x – 40 = 4x – 40.

Ad. (b) To find the domain it is important to consider three conditions: the lengths of 
both sides and the perimeter of the rectangle must all be positive. The following results are 
obtained:

x > 0, x – 20 > 0
x > 20,

4x – 40 > 0
4x > 40
x > 10.

By finding the intersection of all three conditions, the domain of the function can be 
determined: .

Ad. (c) Per the function P(x) = 4x – 40, which describes the perimeter of the rectangle 
as a linear function, the minimum perimeter can be found when the minimum value of ar-
gument x is known. The domain states that such a minimum value does not exist, hence it 
is not possible to find a minimum perimeter for this rectangle. 
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Ad. (d) Analogically to part (c), when searching for a maximum perimeter, the maxi-
mum value of argument x should be considered. Such a value cannot be defined in the do-
main, hence it is not possible to find a maximum perimeter. 

Ad. (e) Despite not being able to find either a maximum or minimum volume, it is pos-
sible to find a range which matches the domain, as the function is linear and increasing. 

P(20) = 4 ⋅ 20 – 40 = 80 – 40 = 40

As mentioned in Ad. (c), 40 is not a value of this function, it is, however, a lower bound 
for the range. Furthermore, as the domain does not have an upper bound, the range will 
not have it either. The range of function P is then .

Question 1 – Building and Using a Model in a Real-Life Context

1. At a sushi restaurant, nigiri costs $4.50 per serve and sashimi costs $9.00 per serve. 
Hiroko spent a total of $45 buying x serves of nigiri and y serves of sashimi.
a. Find a function describing the relation between the number of nigiri serves (x) 

and the number of sashimi serves (y) bought by Hiroko. 
b. If Hiroko bought 4 serves of nigiri, how much sashimi did she buy?
c. If Hiroko bought 1 serve of sashimi, how much nigiri did she buy?
d. Sketch the graph of the function you found in “a”. Mark two points on your graph 

to indicate your answers to “b” and “c”.

The question is a modified version of a question found in an IB textbook, which is 
shown below:

Figure 5. The question which formed the basis of question 1 in the questionnaire
(Source: Haese et al., 2019a, p. 28)
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The first modification applied to the base question was to change part (a) so that the func-
tion is not provided. This was done in order to give the students more freedom in choosing a way 
to approach the question while being able to investigate their ability to build a function. The 
question as a whole is very interesting from a modelling perspective. The graphic representa-
tion required in part (d) also shows whether the student understands the model they built. 

Ad. (a) The main difficulty is to understand that the model needs to bind the number 
of serves bought to the amount of money spent. A correct answer is 4.50x + 9y = 45 or any 
equivalent representation, such as the gradient-intercept form y = 5 – 0.5x.

Ad. (b) This part of the question is not of high difficulty and mainly correct answers should 
be expected. It is interesting to observe whether the students used the model built in part 
(a), or used a different method to answer the question. The correct answer to this question is 
three serves, which can be calculated with or without the use of the model, as shown below:

Table 5. Solution to question 1, part (b)
With use of the model Without the use of the model

x = 4
4.50 ⋅ 4 + 9y = 45

18 + 9y = 45
9y = 27

y = 3

OR

x = 4
y = 5 – 0.5 ⋅ 4

y = 5 – 2
y = 3

Total amount spent on sashimi and nigiri: $45
Amount spent on 4 serves of nigiri: 4 ⋅ $4.50 = $18

Amount of money left: $45 – $18 = $27
Amount of serves of sashimi: $27 : $9 = 3 serves.

Ad. (c) Analogically as in part (b), this part also did not have a high level of difficulty 
and mostly correct answers are expected. Again, the student could calculate the correct an-
swer with or without the use of their model, as shown below. 

Table 6. Solution to question 1, part (c)
With use of the model Without the use of the model

y = 1
4.50x + 9 ⋅ 1 = 45

4.50x + 9 = 45
4.50x = 36

x = 8

OR 

y = 1
1 = 5 – 0.5x
–4 = –0.5x

x = 8

Total amount spent on sashimi and nigiri: $45
Amount spent on 1 serve of sashimi: 1 ⋅ $9 = $9

Amount of money left: $45 – $9 = $36
Amount of serves of sashimi: $36 : $4.50 = 8 serves
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Ad. (d) The last part of the first question is probably the hardest part of this problem. The 
students are expected to draw their model in a coordinate system. In part (a) they should 
observe that the relation is of a linear type. The difficulty is in identifying a correct domain 
and range for their function. It is impossible to purchase a negative or non-integer amount 
of serves. From parts (b) and (c) the student already knows two points lying on the graph of 
the function: (4,3) and (8,1). The next step is not to draw a line through these two points, 
but to fill the graph with points representing other possibilities that still suit the context of 
the question – (0,5), (2,4), (6,2), and (10,0). It is worth observing that the value, the amount 
of serves of nigiri can only be an even number. This is due to the range of the function – if 
Hiroko tries to buy an uneven amount of serves of nigiri, she will have to buy a non-inte-
ger amount of serves of sashimi, or not spend the whole $45. Both situations do not fit the 
conditions of the question. A correct graph of the function is shown below: 

Figure 6. Solution to question 1, part (d)

3. Results

When analysing the questionnaire as a whole, it is worth noting that the questions used 
were not standard, textbook questions. They required the students to use their knowledge 
in an advanced, non-algorithmic way. The questions also required the students to frequent-
ly justify their answers, which can be a very demanding activity, to which they may not be 
accustomed. For the purpose of demonstrating the process of analysing the answers pro-
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vided by the students, a detailed description of the results of question 1, part (a) is shown 
below. Later, more general results are discussed. 

Question 1 – Results

Ad. (a) Firstly, the answers provided by the students were analysed and categorised. 
The answer was either labelled as correct (1 point awarded) or incorrect (no points award-
ed). Incorrect answers were further categorised depending on the type of mistake made 
by the student. An example of a correct answer provided by a student is shown below. The 
questionnaires were available both in Polish and in English to accommodate the students’ 
needs, which is why on the figures, the question and/or answer provided might be in either 
of the languages. The questions in Polish are an exact translation of the questions shown 
above in English. 

Figure 7. A correct answer provided by a student to question 1, part (a)

In this question, the student first wrote down the 4.5x + 9y = 45 form of the equation, 
then decided to transform it to gradient-intercept form. 

The table below shows the average result achieved by each of the research subgroups. 

Table 7. Average score achieved in question 1, part (a)
AI SL PL SL PL HL General

Average score 68,75% 66,67% 86,79% 74,50%

In terms of incorrect answers, 4 types of mistakes were identified. They are described 
below.
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 ■ No function equation
An answer was put in this category if a student showed some work, but did not write 

down an equation connecting the variables. Four students committed this mistake. An ex-
ample is shown below. 

Figure 8. Incorrect answer to question 1, part (a) – no function equation

In the example above, the student did not use variables x and y as indicated in the ques-
tion. Their work implies that here, x would mean the amount of money spent on nigiri, and 
y the amount of money spent on sashimi. Furthermore, the student did not include infor-
mation regarding spending $45 on the food in total and did not include a relation between 
the two variables. They also falsely assumed that the same amount of serves of sashimi and 
nigiri was bought. The answer is incorrect. 

 ■ Price not included or false
A student’s answer was labelled with this type of mistake if they did not include the 

price of serves in their model or if they included incorrect prices. Five students committed 
this type of mistake. An example is shown below. 

Figure 9. Incorrect answer to question 1, part (a) – price not included



Chapter 4: Mathematisation and Modelling 111

The model shown in Figure 9 would suggest that 45 is the number of serves bought, not 
the amount of money spent on those serves. The answer is incorrect. 

 ■ Equation describing the relation between the prices
A student committed this type of mistake if instead of showing a model relating the 

number of serves bought to each other and the total amount of money spent, they built 
a model connecting the prices of serves to each other. Fourteen students committed this 
error. An example is shown below. 

Figure 10. Incorrect answer to question 1, part (b) – relation between prices of nigiri and sashimi

In the example above, the student misused the variables provided in the questions – it 
could be concluded that x represents the price of a serve of nigiri, while y represents the 
price of a serve of sashimi. As the prices are constant and provided in the question, there is 
no purpose to build a model like this one – the answer is incorrect.

 ■ Calculation error
This type of mistake happened if a student used a right method, but made a calcula-

tion error in their work. Four students made such a mistake. An example is provided below. 

Figure 11. Incorrect answer to question 1, part (a) – calculation error



Trends in Mathematics Education Research112

In the example above, the student provided a correct model, but then failed to trans-
form it to the gradient-intercept form. Because of their subsequent work being wrong, and 
because the student underlined the transformation as their final answer, this answer was 
deemed incorrect. 

The table below shows the types of mistakes made by the students in each of the subgroups.

Table 8. Error types in question 1, part (a)
Type of error AI SL PL SL PL HL Sum

No function 
equation 2 2 0 4

Price not included 
or false 1 0 4 5

Equation describing 
the relation between 

the prices
2 10 1 13

Calculation error 4 0 0 4

No answer provided 1 8 2 11

Sum 10 20 7 37

As can be observed, the students from the AI SL group most often committed calcu-
lation errors, while the students in the PL SL group most often built equations describing 
the relation between prices. Among the students in the PL HL group with incorrect an-
swers, not including the price was the most common mistake. 

The table below shows the results achieved by the students in question 1 (all parts) 

Table 9. Average results in question 1
AI SL PL SL PL HL General

Average score 60,25% 59,5% 70,75% 63,5%

This question showed an interesting structure. As assumed, the results achieved in parts 
(b) and (c) were quite high, but the average score for the question as a whole was greatly 
lowered by the answers provided to part (d). In part (d), only 8 students from the entire re-
search group provided a correct answer. It is important to note that the assumed difficulty 
of the last part was much higher than of the previous parts, as the students are rarely used 
to drawing graphs with a discrete domain. Regarding the results of question 1, one can no-
tice that the higher-level group obtained the highest average score, while the AI SL and PL 
SL groups achieved very similar scores. 



Chapter 4: Mathematisation and Modelling 113

General Results

A student could obtain a maximum of 29 points for all correct answers throughout the 
questionnaire. The histogram below shows the results obtained by all 149 students who 
took part in the experiment. 

Figure 12. Score obtained by each student
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The scores observed are relatively evenly distributed. Only four students (2.68% of the 
group) achieved a score higher than 26 points (90%). A relatively large number, 11 students 
(7.38% of the group) achieved scores lower than 4 points (13.8%). Most students got either 
11 (37.93%) or 14 points (48.28%). The next most frequent score was 7 points (24.14%), 
achieved by 10 students (6.71% of the group). The lowest score was 0 points, achieved by 
3 students (2.01% of the group), while the highest score was 28 points, achieved by 2 stu-
dents (1.34% of the group). No student achieved the maximum possible score. 

The table below shows the average scores achieved by each of the subgroups. 

Table 10. Average scores with respect to subgroups
AI SL PL SL PL HL General

Average score 30,71% 36,55% 61,68% 44,06%

The lowest average score was observed in the AI SL group. The PL SL group achieved 
a slightly higher result, while the highest result, as expected, was observed in the PL HL group. 
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Detailed Results

What is more interesting than the results achieved by the subgroups in the whole ques-
tionnaire are the detailed results for each of its parts. Analysing those results allows us to 
address the hypotheses stated at the beginning of this chapter. The table below shows the 
results obtained by each group in the parts regarding mathematical contexts. 

Table 11. Summary of indicators – questions 2, 9, 4
AI SL PL SL PL HL

Question 2
(Hypothesis 1.a) 27,07% 56,11% 79,87%

Question 9
(Hypothesis 1.b) 19,38% 26% 68,68%

Question 4
(Hypothesis 1.c) 7,81% 15,83% 41,04%

General 17,45% 30,14% 62,26%

In all three questions, the PL SL group obtained significantly higher results than the 
standard-level groups. When comparing only the standard-level groups, in these questions, 
PL SL students obtained, on average, higher scores than their IB peers. The overall score 
of the PL SL group for this part of the questionnaire is almost twice the score of the AI SL 
group. The overall results of the SL groups are very low. 

It is possible to confirm hypotheses 1.a, 1.b, 1.c based on the results of the study. Stu-
dents following the Polish national curriculum achieved better results in all three investi-
gated aspects. 

The table below shows the indicators linked to hypotheses 2.a, 2.b., 2.c, which regard-
ed mathematical performance in a non-mathematical context. 

Table 12. Summary of indicators – questions 1, 3, 7, 8
AI SL PL SL PL HL

Questions 3 and 8
(Hypothesis 2.a.) 49,55% 46,90% 66,31%

Question 1
(Hypothesis 2.b.) 60,16% 59,58% 70,75%

Question 7
(Hypothesis 2.c.) 4,69% 12,5% 31,13%

General 40,41% 41,11% 58,11%

Again, in all three aspects the PL HL groups achieved the best results. Comparing only 
the SL groups, the only significant difference can be observed in question 7 (identifying 
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a function among relations given in verbal form). Both results for this question are very 
low, but the AI SL group managed to achieve a score more than twice lower than the score 
of the PL SL group. The overall scores of both groups are comparable. 

In relation to the hypotheses, it can be stated that the Polish higher level group achieved 
higher results than the standard-level groups. There is insufficient evidence to state wheth-
er IB students achieved better results in this part of the questionnaire, as the results are too 
similar. It could be possible to state that the Polish students have better abilities in the do-
main of identifying functions given in verbal form, but, due to the very low score of both 
SL groups, this would be a very risky statement. 

The last investigated variable concerned the use of theoretical knowledge of functions. 
The results of the indicators are shown below.

Table 13. Summary of indicators – questions 5 and 6
AI SL PL SL PL HL

Questions 5 and 6 
(Ability to use theoretical 

knowledge about 
functions)

18,75% 18,33% 52,83%

In this part of the questionnaire, the PL HL group achieved the highest results as well, 
placing more than 30 percentage points higher than the two SL groups. Comparing only 
the SL groups, the difference between them is insignificant. 

Apart from stating that the HL group clearly performed better in using their theoret-
ical knowledge of functions than the SL groups, it is not possible to draw any conclusions 
comparing the IB group to the PL group for this part of the experiment.

4. Conclusions

After analysing the answers provided by the students, it was possible to answer the research 
questions and draw conclusions from the study. 

For the detailed research questions, it was concluded that students following the Pol-
ish national curriculum show better abilities in terms of modelling and mathematisation 
in a mathematical context, as well as in recognising functions given in algebraic form, than 
their IB peers. Both standard-level groups showed very similar, quite low, achievements in 
terms of modelling and mathematisation in a real-life context, as well as in recognising 
functions given in verbal form. The higher-level group showed a significantly better per-
formance in using their theoretical knowledge of functions, while the SL groups, again, 
showed very similar abilities. 



Trends in Mathematics Education Research116

It was therefore possible to answer the research question: Does the ability to solve 
function exercises differ between IB DP and Polish programme senior (grade 12) stu-
dents? A satisfying answer seems to be – partially, yes. Higher-level students showed, un-
surprisingly, much better results throughout the questionnaire. But the most important 
comparison is between the two SL groups – in some aspects, the Polish students showed 
better abilities than the IB students, while in other aspects, their results were very similar. 
The average scores from the whole questionnaire seem to indicate a small advantage of the 
PL SL group in comparison to the AI SL group.

Apart from answering the research questions, other general conclusions can be drawn 
as well:

 ■ The level of skill shown by the students from the research group was alarmingly 
low. The study does not investigate the reason for such low results, but to some ex-
tent, it is possible to make assumptions based on the timing of the study. The low 
results can either be a result of remote learning, or the unwillingness of senior stu-
dents to work on something non-mandatory and non-graded near the end of their 
school year (the study took part mid-April, and senior students in Poland finish their 
school year at the end of April to start final examinations in May). It is also possi-
ble that students are not used to the type of questions used in the questionnaire. 
Most questions called for a justification of their work and some were more theoret-
ical than what is typically used in school. 

 ■ It is not possible to efficiently compare the PL HL group, which studies mathemat-
ics on a higher level than the PL SL and AI SL groups, which study mathematics 
on a standard level. To improve the conclusions of this study, better participation 
would be required in the AI HL group in order to collect statistically significant 
results. The results obtained by the AI HL group would be a suitable comparison 
to the PL HL group. 
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Appendix – Research Questionnaire 

RESEARCH QUESTIONNAIRE
Name: __________________________________  School: _________________________

1. At a sushi restaurant, nigiri costs $4.50 per serve and sashimi costs $9.00 per serve. 
Hiroko spent a total of $45 buying x serves of nigiri and y serves of sashimi.
a. Find a function describing the relation between the number of nigiri serves (x) 

and the number of sashimi serves (y) bought by Hiroko. 

b. If Hiroko bought 4 serves of nigiri, how much sashimi did she buy?

c. If Hiroko bought 1 serve of sashimi, how much nigiri did she buy?
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d. Sketch the graph of the function you found in “a”. Mark two points on your graph 
to indicate your answers to “b” and “c”.

2. Consider the line with equation 0.8x – y + 4 = –4.
a. Draw this line in the coordinate system below. Write down all necessary calculations.

Calculations:
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b. Find the equation of a linear function whose graph is parallel to this line

c. Find the equation of a linear function whose graph is perpendicular to this line

3. For a hot air balloon ride, the function 
gives the height of the balloon after 
minutes. Its graph is shown alongside. 
a. Find H(30) and explain your an-

swer in the context of the hot air 
balloon ride.

b. Find the values of t such that H(t) = 600. Explain your answer in the context of 
the hot air balloon ride.
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c. What range of heights was recorded for the balloon?

d. How long was the balloon ride?

e. Can you read the distance travelled by the balloon from the graph of function H? 
Circle YES or NO below and justify your answer.
YES / NO, because ………………………………………………………………………………………
……………………………………………………………………………………………………………………
…………………………………………............................................................................................

4. Determine whether these relations are functions of variable x. Circle the right an-
swer: YES (the relation is a function) or NO (the relation is not a function). Justi-
fy your answers.
a. y = x2 – 9  YES / NO, because .…………………...………………………….................

............................………………………………………………………………………………………….
b. 2x – 5y = 1.7  YES / NO, because .………….…………..….………….............................

............................………………………………………………………………………………………….
c. 4x + y2 = 1  YES / NO, because …..….…….………………………………….................

............................………………………………………………………………………………………….
d. x = 4 – 0.75y  YES / NO, because ..………………………………………..........................

............................………………………………………………………………………………………….

5. Is it possible for the graph of a function of a variable to have more than one y-inter-
cept? Circle the right answer and justify.
YES / NO, because …………………………………………………………………………......................
.....................................................................................................................................................
..........................…………………………………………………………………………………………………..
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6. Is a straight line always the graph of a linear function? Circle the right answer and justify.
YES / NO, because …………………………………………………………………………......................
....................................................………………………………………………………………………………
…………………..………………………………………………………………………………………………….

7. Decide whether the relations described below are functions. Circle the right answer: 
YES (the relation is a function) or NO (the relation is not a function) and justify.
a. The table shows the price of enter-

ing an amusement park depend-
ing on age.
YES / NO, because ……………………
…………………………………………………
…………………………………………………

b. The area of an equilateral triangle is assigned to the length of its side.
YES / NO, because ………………………………………………………………….……………………
…………………………………………............................................................………………………….

c. To the number of pages in a mathematics textbook is assigned the number of sen-
tences on that page.
YES / NO, because ………………………………………………………………….……………………
…………………………………………………………………….............................................................

d. To a student in your class are assigned the names of their siblings.
YES / NO, because ………………………………………………………………….....................
..........................………………………………………………………………………………………….

8. The graphs below represent how the water level changes in a vessel as it is being filled. 
Assume the water stream is steady.
a. Assign the appropriate graph to the vessels below.

Vessel A – graph number ……………………
Vessel B – graph number ……………………
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b. Draw a vessel which could be assigned to the graph below. 

9. A rectangle has a length of x and its width is 20 units shorter than the length.
a. Write down the equation of a function describing the perimeter of this rectan-

gle in terms of x.

b. What is the domain of this function?

c. Is it possible to find the smallest perimeter of this rectangle? Circle the right an-
swer and justify. If you circle YES, calculate the smallest perimeter.
YES / NO, because ………………………………………………………………………………………
……………………………………………………………………………………………………………………
…………………………………………............................................................................................

Calculations:
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d. Is it possible to find the largest perimeter of this rectangle? Circle the right an-
swer and justify. If you circle YES, calculate the largest perimeter.
YES / NO, because …………………………………………………………………...........................
.................................................................………………………………………………………………
……………………………………………………………………………………………………………………

Calculations:

e. Write down the range of this function.
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PERSPECTIVES ON YOUNG STUDENTS’ MATHEMATICAL REASONING

Summary: According to relevant studies, children at all ages have the potential to engage in mathe-
matical reasoning. What remains under discussion is what qualifies as mathematical reasoning, which 
relates to methods of identifying mathematical reasoning in children’s activities. In the article, we 
present different ways to view mathematical reasoning, with a focus on children in the first years of 
primary school. Following relevant studies, we suggest ways to identify and analyse instances of math-
ematical reasoning among young students, with a focus on communication. We also present two sig-
nificant factors that seem to affect the extent of mathematical reasoning, namely the role of the teach-
er and task characteristics. Finally, we present our own study on mathematical reasoning with young 
children to showcase the implementation of the selected analytical frameworks.
Keywords: mathematical reasoning, mathematical thinking, young students, task design.

1. Introduction

The involvement of children in meaningful tasks or, more generally, within meaningful 
contexts is a prerequisite for their engagement in important mathematical activities, even 
at a young age (Clements & Sarama, 2020). Powerful mathematical ideas, such as mathe-
matisation, connections, argumentation, number sense and mental computation, algebraic 
reasoning, spatial and geometric thinking, or data and probability sense can be accessible 
to young children (Perry & Dockett, 2002). Among these ideas, the notion of mathemati-
cal reasoning prevails among many studies on mathematical thinking. It is, however, note-
worthy that although the term “is widely used with the implicit assumption that there is 
universal agreement on its meaning”, “most mathematicians and mathematics educators 
use this term without any clarification or elaboration” (Yackel & Hanna, 2003, p. 228). 
A common idea that accompanies many studies is that mathematical reasoning is actual-
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ly deductive reasoning (Duval, 1991). At the same time, we can find studies that stress the 
importance of abductive reasoning in mathematical inquiry (Reid, 2003). Our own read-
ing of papers related to mathematical reasoning has led us to studies that perceive reason-
ing as a subordinate activity of an overarching activity (e.g., Stylianides, 2008), as a discur-
sive construct that possesses a dual nature of structure and process (Jeannotte & Kieran, 
2017), or as an epistemologically sound notion that may be further categorised into vari-
ous styles (Kollosche, 2021). Given the importance of mathematical reasoning, the diversity 
of approaches in mathematics education studies, as well as our own interest in young chil-
dren’s reasoning, we present various approaches in a comprehensible manner, with an aim 
to suggest ways to identify and analyse instances of mathematical reasoning among chil-
dren. We will focus mainly on analytical frameworks, namely those that come with con-
crete methods on analysing data; however, no method can exist without a sound theoreti-
cal background, therefore we will also refer to the theories that underlie these approaches.

 
2. Perspectives on Students’ Mathematical Reasoning

2.1. Reasoning Complementing or Constituting Mathematical
        Thinking

A large strand of research on mathematical thinking contains references to mathematical 
reasoning. The majority of these studies view reasoning as an element of the process of gen-
eralisation or conjecturing (Ellis, 2007a; Mason, 1982; Stylianides, 2008). Blanton and Ka-
put (2002) claim that “justification in any form is a significant part of algebraic reasoning 
because it induces a habit of mind whereby one naturally questions and conjectures in or-
der to establish a generalisation” (p. 25). In most of these studies, reasoning is closely tied 
to proving; for instance, Stylianides (2008) uses the term “reasoning-and-proving” to de-
note the overarching activity that encompasses “‘identifying patterns’, ‘making conjectures’, 
‘providing non-proof arguments’, and ‘providing proofs’” (p. 9). Due to the significance giv-
en to other processes, there is no clear definition of mathematical reasoning in these stud-
ies, and, actually, in some cases, reasoning is conflated with argumentation and justifica-
tion (Simon & Blume, 1996).

2.2. Reasoning as a Content-Based Notion

Studies on mathematical reasoning sometimes focus on its manifestation within a particu-
lar mathematical field. The most common case is algebraic reasoning. According to Kaput 
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(2008), the first core aspect of algebraic reasoning is “generalisation and the expression of 
generalisations in increasingly systematic, conventional symbol systems” (p. 10), whereas the 
second core aspect “is syntactically guided action on symbols within organised systems of 
symbols”. The generalisations mentioned in the first aspect may refer to “arithmetic opera-
tions and their properties and reasoning about more general relationships and their forms” 
(p. 12) or even to mere computational strategies. However, there is also another possibili-
ty in which generalisation “can be thought of as describing systematic variation of instanc-
es across some domain” (p. 13). This leads to the notion of function, therefore some stud-
ies use the term functional reasoning to denote this specific strand of algebraic reasoning. 
We need to note at this point that although the term ‘functional’ may seemingly relate to 
higher-order mathematical concepts and advanced thinking, there is evidence that children 
as young as six years old “are capable of making sense of functional relationships, of repre-
senting these relationships in sophisticated ways, and of reasoning with symbolic relation-
ships in novel situations” (Blanton et al., 2015, p. 545).

Other instances of content-oriented reasoning are: spatial and numerical reasoning 
(Battista et al., 2017), additive and multiplicative reasoning (Simon & Blume, 1996), and 
combinatorial reasoning (Batanero et al., 1997). Spatial and numerical reasoning may re-
fer to measurements in two- or three-dimensional space, therefore can be related to angle, 
length, area and volume measurements and sense-making (Battista et al., 2017). Additive 
and multiplicative reasoning also involve measurements but are usually enriched with ad-
ditive and multiplicative notions and understandings. As for combinatorial reasoning, re-
search has shown that children, even during preschool and the first years of primary school, 
are able to articulate and work with combinatorial concepts, or, in other words, engage in 
combinatorial reasoning (Batanero et al., 1997; English, 1991; Fesakis & Kafoussi, 2009). 
In line with this, Maher and Martino (1996) describe the progression in a student’s justifi-
cations from a trial-and-error approach to a more proof-oriented written justification. En-
glish (1991) identified six solution strategies in her study with 4 to 9-year-old children, rang-
ing from random selection to a systematic pattern; she also noticed that although younger 
children did not manage to move beyond trial-and-error procedures, the “7- to 9-year-olds 
discovered systematic combinatorial procedures” (p. 471). This approach has been useful 
in one of our studies, as we will show later.

In addition to the above, Kollosche (2021) suggests a framework based on styles of rea-
soning, namely: postulation style, experimental style, modelling style, taxonomic style, sta-
tistical style, and genetic style. The author acknowledges the fact that these styles do not 
suffice to cover all types of mathematical reasoning, e.g., functional reasoning, but they still 
provide a comprehensive framework for the analysis of mathematical reasoning.
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Summing up, we do acknowledge the specificities involved in each mathematical field 
or style; at the same time, we believe that mathematical reasoning consists of some general 
mathematical properties which can be the object of analysis, as we show next.

2.3. Reasoning as the Object of Analysis

Theoretical approaches to mathematical reasoning lead to the adoption of specific analyti-
cal frameworks for identifying and categorising related actions. These frameworks mainly 
differ in the way they perceive reasoning. The first view that appears in the literature is that 
reasoning has a structural and a process aspect (Jeannotte & Kieran, 2017): the structural 
aspect is static and refers to elements such as deduction, induction, abduction, data, claim, 
warrant, qualifier, and backing (Toulmin, 2007), while the process aspect refers to “pro-
cesses related to the search for similarities and differences, or the processes related to vali-
dating” (Jeannotte & Kieran, 2017, p. 9). This distinction leads to two different analytical 
procedures, since in the structural view the focus is on the form and the structure of state-
ments ‘locally’, while in the process view, the analytical lenses ‘zoom out’ in order to capture 
more global and contextual information. For instance, Boero et al. (2018) stress the impor-
tance of considering historical-epistemological and anthropological aspects of argumenta-
tion and proof situations. In line with this, Simon and Blume (1996) support the “idea that 
mathematical justification is a cognitive and a social process, the process of working within 
socially constituted and accepted modes of establishing validity to collectively determine 
what is cognitively compelling” (p. 28). This in turn, means that the researchers need to fo-
cus on interactions, in order to identify the social norms regulating the acceptable percep-
tions of justification and validation. The ‘activity perspective’ to reasoning has a similar ba-
sis, according to which we “are inclined to consider students’ ways of doing, thinking, and 
talking about mathematics as fundamental” (Kaput, 2008, p. 9).

In line with the process approach, a fruitful way to view and analyse mathematical rea-
soning is by viewing it as a communication process with others or with oneself, and as a pro-
cess “that allows for inferring mathematical utterances from other mathematical utteranc-
es” (Jeannotte & Kieran, 2017, p. 7). By putting discourse at the core of reasoning, we can 
deploy discursive methods to identify and analyse mathematical reasoning within discur-
sive practices. Such methods have led Jeannotte and Kieran (2017) to identify nine process-
es, eight of which belong to two overarching categories – namely, the search for similarities 
and differences, and validating. The search for similarities contains generalising, conjectur-
ing, identifying a pattern, comparing, and classifying, while validating contains validating, 
justifying, proving, and formal proving. The ninth process, that of exemplifying, supports 
the other processes. The advantage of this framework is that it contains functional defi-
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nitions of concepts that are sometimes hard to identify. In the relevant literature, we can 
find other studies offering analytical schemes; the main difference lies in their focus. For 
instance, Ellis (2007b) suggests an actor-oriented taxonomy (focused on students’ actions) 
for categorising generalisations. This taxonomy contains two main categories: generalising 
actions, which “describe learners’ mental acts as inferred through the person’s activity and 
talk” (p. 233) and reflection generalisations, which contain students’ actual statements. 
Generalising actions include relating, searching, and extending, while reflection generali-
sations contain identifications or statements, definitions, and influence, denoting the “in-
fluence of a previously developed generalisation on new activity” (p. 249). Lannin et al. 
(2011) have also suggested nine essential understandings related to mathematical reasoning:

 ■ developing conjectures
 ■ generalising to identify commonalities
 ■ generalising by application
 ■ conjecturing and generalising using terms, symbols, and representations
 ■ investigating why
 ■ justifying based on already-understood ideas
 ■ refuting a statement as false
 ■ justifying and refuting the validity of arguments
 ■ validating justifications.

We see the above framework as more encompassing than Jeannotte and Kieran’s (2017), 
therefore it can be applied to a variety of situations involving reasoning processes. This 
framework has been effectively deployed in our studies involving eight-year-old students 
(Maj-Tatsis & Tatsis, 2019; 2023), as we will show later. Following other relevant studies, 
we have acknowledged that it is also important to consider the role of the teacher (or the 
researcher) in proposing appropriate tasks and orchestrating discussions. These two topics 
will be discussed in the next sections.

2.4. The Teacher’s Role

Mathematical reasoning is impossible to be established without the help of the teacher or 
a more knowledgeable adult or peer. A number of studies have investigated the conditions 
that enhance reasoning in the mathematics classroom or during peer interactions. Most of 
these studies agree that mathematical reasoning (together with other mathematical process-
es) can be promoted by the establishment of relevant mathematical norms and by working 
on particular tasks; both of these elements are considerably affected by the teacher. For ex-
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ample, Simon and Blume (1996) stress the taken-as-shared nature of knowledge that results 
from justification and reasoning within a community. Mata-Pereira and da Ponte (2017) 
refer to an exploratory approach, in which the students work on non-trivial tasks that re-
quire some kind of investigation and interpretation. During this process, they are request-
ed to present and justify their reasoning, assisted by particular teacher actions. The authors 
claim that in a mathematics classroom, the teacher engages in two types of actions: those 
related to mathematical processes, and those related to classroom management:

Regarding actions related to mathematical processes, inviting actions aim to trigger a whole-class dis-
cussion or a discussion segment, where the teacher encourages students to participate or share their 
responses. Then, the teacher relies mostly on informing/suggesting actions to provide information to 
students or to validate their statements; on supporting/guiding actions to lead students to present infor-
mation; and on challenging actions to encourage students to go further than their previous knowledge. 
In those three sets of actions, the authors refer to several mathematical processes that are involved, 
not necessarily disjointed, such as representing, interpreting, reasoning, and evaluating (Mata-Perei-
ra & da Ponte, 2017, p. 172, emphasis in the original).

This reminds us of the ‘knowledge quartet’, introduced by Rowland et al. (2005) – par-
ticularly the contingency unit, referring to classroom situations which cannot be anticipat-
ed or planned. It consists of the “readiness to respond to children’s ideas and a consequent 
preparedness, when appropriate, to deviate from an agenda set out when the lesson was pre-
pared” (p. 263, emphasis in the original).

In the same line, Drageset (2014) has suggested a detailed analytical framework con-
taining redirecting, progressing, and focusing teacher actions. These categories are related 
to Wood’s (1998) funnelling and focusing actions as well as the IRE (initiation–response–
evaluation) sequence, in which the teacher creates makes the questions, the students are ex-
pected to respond and then the teacher evaluates the responses (Cazden, 2001). Concern-
ing young children, we agree with Yackel and Hanna (2003) that:

… students as early as the primary grades of elementary school, given a classroom environment con-
stituted to support mathematics as reasoning, can and do engage in making and refuting claims, use 
both inductive and deductive modes of reasoning, and generally treat mathematics as a sense-mak-
ing activity – that is, they treat mathematics as reasoning. However, these studies also demonstrate 
clearly that creating a classroom atmosphere that fosters this view of mathematics is a highly complex 
undertaking that requires explicit effort on the part of the teacher (p. 234).

Most of the mentioned studies stress the importance of choosing or designing tasks ap-
propriate for implementation in the classroom. This is an important factor which has been 
at the focus in some of our own studies as well.
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2.5. Task Design with a Focus on Reasoning

The importance of task design has been highlighted in many studies in mathematics educa-
tion, including studies which focus on mathematical reasoning. For instance, Francisco and 
Maher (2005) claim that mathematical reasoning in problem solving can be promoted by es-
tablishing the following conditions: the “role of basic ideas, complex tasks, strands of prob-
lems, students’ ownership of their mathematical activity, justification of ideas and student 
collaborative work” (p. 371). According to the authors of the study, although mathematics 
contains complex relationships between concepts, mathematical reasoning can emerge with-
in basic concepts as well. Concerning task design, Francisco and Maher (2005) acknowl-
edge that although sometimes complex tasks are broken down into simpler sub-tasks, it is 
beneficial to present the whole task to the students first. Additionally, the authors advocate 
the advantages of offering a strand of problems to the students, that is a “series of related 
tasks designed around identified mathematical concepts with comparable levels of difficul-
ty and similar problem-solving structure” (p. 366). They claim that:

the opportunity to revisit the same concepts in different, but related problem situations, helps stu-
dents build rich and durable forms of mathematical understandings of mathematical concepts. It also 
provides a way of enhancing reasoning without the need to tell or show students what to do (p. 371).

2.6. Our Studies on Task Design and Reasoning Actions

In one of our studies, we have investigated the influence of task characteristics on the rea-
soning of young students (Maj-Tatsis & Tatsis, 2019). Two eight-year-old students were pro-
vided with seven tasks. Our choice of tasks was based on their potential to stimulate stu-
dents’ interest, be solvable, or at least approachable, in more than one way and without the 
use of tricks, illustrate important mathematical ideas, serve as first steps towards mathe-
matical explorations, and be extensible and generalisable (Schoenfeld, 1994). Additionally, 
we agreed that the “problems must be accessible, inviting and worthwhile to solve” and the 
“students must have the opportunity to give their own answers in their own words” (van 
den Heuvel-Panhuizen, 2005, p. 3). We also acknowledged that pictures play an impor-
tant role as context-bearers and may serve multiple functions (van den Heuvel-Panhuizen, 
2005). Based on these assumptions, we firstly performed an a priori analysis of the tasks in 
order to identify: a) the mathematical concepts involved and whether they matched those 
of the intended curriculum, b) the role of the images, based on van den Heuvel-Panhuizen’s 
(2005) picture functions (motivator, situation describer, information provider, action indi-
cator, model supplier, and solution and solution-strategy communicator) and c) the func-
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tion of context, based on de Lange’s (1999) assessment framework; we also categorised each 
task as open or closed.

Our a posteriori analysis focused on the interactions that took place among the stu-
dents and the researcher and was based on Lannin et al.’s (2011) framework, supplemented 
by three more activities: reformulating conjectures or justifications, monitoring each oth-
er (a form of collaborative reasoning), concluding and explaining (a form of informal jus-
tification). Based on the results of this analysis, the presence of images in the tasks did not 
affect the solutions. However, the context of the tasks influenced the students’ reasoning. 
Certain tasks were found to be more effective in promoting reasoning than others. Open 
tasks with a limited number of solutions and closed tasks with multiple solution options 
were easy for the students. However, they faced difficulties in shifting from geometric struc-
tures to numerical ones. On the other hand, they showed a range of reasoning processes 
when working on a geometrical task that did not require a shift to numerical properties. 

In a second study (Tatsis & Maj-Tatsis, 2023), which focused on a combinatorial task, 
Lannin et al.’s (2011) framework was used, this time enriched with a framework related to 
solution strategies in combinatorial tasks (English, 1991). Our students, despite their age 
(8 years old), manifested all levels of reasoning actions, from comparing and contrasting 
to generalising and justifying. They were also able to progress from randomly selecting co-
lours (they were engaged in a colouring task) to a systematic strategy. In this study, we have 
observed the importance of the researcher’s role in supporting the students’ reasoning ac-
tions by posing specific questions.

3. Discussion 

In this article, we have highlighted the basic aspects of mathematical reasoning as they ap-
pear in the literature, focusing on analytical frameworks, suggested teacher roles, and task 
design principles. Based on our research interest on early years students’ reasoning, we have 
briefly presented our own studies, in which particular analytical frameworks have been 
used. Our approach to mathematical reasoning in these studies can be characterised as dis-
cursive (Jeannotte & Kieran, 2017), since our focus was on the verbal exchanges that took 
place between the students and between the students and the researcher. We have seen the 
young students’ reasoning evolving during the interactions, strongly affected by the pro-
vided tasks, but also by the researcher’s interventions, usually in the form of questions. It 
seems crucial for the teacher in the mathematics classroom to establish specific social and 
sociomathematical norms that allow for fruitful and meaningful exchanges among stu-
dents while working on tasks that enable them to express, discuss, and elaborate mathe-
matical ideas, including mathematical arguments. These are the core elements of mathe-
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matical reasoning which should characterise all interactions in a mathematics classroom. 
A series of carefully chosen tasks by the teacher may also assist in establishing an atmos-
phere of meaningful interactions where all students have the opportunity to express their 
mathematical ideas, acknowledging the norms that are at place.

We believe that there is room for further adapting or enriching the existing frame-
works, possibly by considering group dynamics in cases when more than two students inter-
act. When considering the teacher’s role and their possible interventions it might be useful 
to consider the issues of authority and politeness that affect the outcome of teacher-stu-
dent interactions in the classroom (Tatsis & Wagner, 2018). We also might need to con-
sider particularities related to specific mathematical content, such as the cases of combina-
torics or geometry. Such content-bounded frameworks may offer important insights into 
the processes related to mathematical reasoning and to mathematical thinking in general.
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ANALYSIS OF TASKS FROM A HEJNÝ METHOD MATHEMATICS 
TEXTBOOK FOR THE SIXTH GRADE 

Summary: In the recent years, studies have presented evidence of the positive effects on pupil learning 
of the so-called Hejný Method for teaching mathematics. This chapter presents a study where mathe-
matical tasks from a Hejný Method electronic textbook for sixth grade are examined from a qualita-
tive perspective and by using content analysis techniques. Tasks are analysed according to the NCTM 
learning expectations they contribute to, the type of PISA contexts in which they are set, and the sys-
tems of representation involved in their statements and promoted in their resolution and implemen-
tation. The analysis reveals a great contribution of the tasks for the achievement of NCTM learning 
expectations and others related to logic and algebraic activity, a predominance of the use of scientific 
and personal contexts versus societal and occupational contexts, the implication of a diversity of sys-
tems of representation in the tasks, and a constant invitation to reflection and discussion frequent-
ly accompanied by manipulation.
Keywords: analysis of mathematical tasks, final elementary education/initial secondary education, 
Hejný Method, National Council of Teachers of Mathematics.

1. Introduction

Hejný Method is a popular name for a specific way of teaching mathematics – scheme-
based education (Hejný, 2012) or genetic constructivism (Kvasz & Pilous, 2020) – based 
on the constructivist paradigm. Following the principles of this method, a series of mathe-
matics textbooks for primary school were written by Milan Hejný and his team at the Fac-
ulty of Education at the Charles University in the Czech Republic. These textbooks were 
approved by the Czech Ministry of Education, Youth, and Sports and, by 2015, they had 
been adopted by 20% of Czech schools: more than 750 out of the 4100 Czech schools on 
the elementary and lower-secondary level. Since then, studies have provided quantitative 
and qualitative evidence of the positive effects of the Hejný Method for teaching mathe-
matics on pupil learning (e.g., Chytrý et al., 2020; Greger et al., 2022; López Centella et 
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al., 2021; Papadopoulos et al., 2017). Hejný Method is an elaborate teaching method in 
which textbooks and their accompanying teaching manuals explaining task implementa-
tion in the classroom play an important role. Thus, a question arises about the characteris-
tics of the tasks included in the textbooks. 

Regarding curricular aspects, Hejný et al.’s textbooks are designed with the Czech ed-
ucational curriculum in mind, whose current version in force is the one proposed by the 
Ministry of Education, Youth, and Sports in 2017 (MECS, 2017) with subsequent revisions. 
At the international stage, the National Council of Teachers of Mathematics (NCTM) is 
a recognised driving force in mathematics education reform whose principles and standards 
have inspired mathematics education worldwide. Its framework has been used in studies of 
teaching and learning mathematics, including the studies of textbooks. NCTM propos-
es the curricular organisation of mathematics education from pre-kindergarten to grade 
12 through five blocks of mathematical content and five mathematical processes (NCTM, 
2000). As for the content, it distinguishes numbers and operations, algebra, geometry, mea-
surement, and data analysis and probability. As for the processes, it considers problem solv-
ing, reasoning and proof, communication, connections, and representation. According to 
the NCTM, selecting appropriate tasks and having pupils solve them is a way to reach the 
learning expectations.

Moreno and Ramírez (2016) propose six descriptors to characterise a mathematical 
task: its goal, its formulation, the materials and resources it involves, the types of grouping 
it foresees, the forms of interactions it promotes, and its timing. In this study, we focused 
on the first three descriptors. 

This study presents the results of the content analysis of the electronic textbook “Math-
ematics-A (6th grade)” (Hejný et al., 2018) in which 252 tasks were identified and analysed 
to answer the following questions:

RQ1. Which NCTM learning expectations are supported by the tasks?
RQ2. What are the main characteristics of the tasks in terms of the resources required 
for their solution, the context in which they are set, and the systems of representation 
involved in their statement and/or promoted in their resolutions?

2. Theoretical Framework

We will first briefly describe the Hejný Method and its basic principles, and then elabo-
rate on the mathematics tasks and their descriptors which are at the centre of our atten-
tion in this study. 
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2.1. Hejný Method

According to Hejný (2012), “scheme-oriented education is based on the construction of 
different schemes that interlink, combine and form a dynamic network of a pupil’s math-
ematical knowledge and skills” (p. 47). As described by Gerrig (1991), the term schemes 
was coined by theorists “to refer to the memory structure that incorporate clusters of in-
formation relevant to comprehension... A primary insight to scheme theories is that we do 
not simply have isolated facts in memory. Information is gathered together in meaningful 
functional units” (pp. 244–245). More precisely, Hejný Method is anchored in the theory 
of generic models (Hejný, 2012), a five-stage model of knowledge acquisition. It starts with 
motivation and contemplates two mental shifts: the first, called generalisation, leads from 
concrete knowledge (isolated models) to generalised knowledge (generic model); the second, 
called abstraction, leads from generic to abstract knowledge. The permanent part of this pro-
cess of gaining knowledge is crystallisation, which consists of integrating new knowledge 
into an already existing mathematical structure. 

Grounded in these ideas, the Hejný Method moves away from teaching structured strict-
ly in blocks of mathematical content. Instead, the notion of what Hejný calls the environ-
ment1 becomes crucial. An environment contains a sequence of connected tasks that revolve 
around the same theme and involve a variety of mathematical phenomena, encouraging ex-
perimentation and discovery. Some environments build on children’s daily experiences and 
others focus on children’s preferences and the activities they enjoy doing. A scheme is not 
understood as a result of learning a particular curricular topic, but as a result of everyday ex-
perience in a given environment (Hejný, 2012). Working in environments is one of 12 key 
principles proposed by the authors to characterise the method. The list of these principles 
is completed by the interconnection of topics, the development of children’s character and 
independent thinking, true motivation, real-life experience, the enjoyment of mathemat-
ics, the promotion of personal knowledge, the teacher’s role as a guide and mediator of dis-
cussion, working with errors, the different levels of difficulty for appropriate challenges, 
and the support for collaboration and teamwork.

The Hejný Method has sparked interest beyond the Czech Republic and is being imple-
mented in a number of alternative schools and in home-schooling. It is introduced to student 
teachers in primary education programmes of the Charles University in Prague and at the 
University of Ostrava. Some of the textbooks based on the Hejný Method created for elemen-
tary and lower-secondary education have been translated into other languages, such as Polish, 
Slovak, and English. There is growing evidence of the effects of the method on pupil learning.

1 h-mat.cz/en/principles/environments These environments meet the requirements of substantial learn-
ing environments as introduced by Wittmann (1995, 2021).
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Greger et al. (2022) conducted a secondary analysis of data from the 2015 and 2019 
editions of the Trends in International Mathematics and Science Study (TIMSS). In addi-
tion to the data usually available in the TIMSS, information regarding the teaching meth-
od used in the individual classes involved in tests in the Czech Republic (verified by the 
Czech School Inspectorate) was considered. The analysis made use of results from 5202 pu-
pils, 265 classes, and 135 published tasks from TIMSS 2015, and 4692 pupils, 263 classes, 
and 70 tasks from TIMSS 2019. Greger et al.’s report shows that pupils from classes that 
signed up to teach mathematics using the Hejný Method did slightly better in the TIMSS 
tests and solved complex problems more successfully than pupils from non-Hejný Method 
classes. Chytrý et al. (2020) carried out a study to compare the mathematical self-efficacy 
and mathematical problem-solving of 1133 fifth grade students in 36 schools in the Czech 
Republic taught with four different teaching methods: Dalton, Hejný, Montessori, and the 
ordinary teaching method. Among its conclusions, it stands out that students taught in ac-
cordance with the Hejný Method achieved better results in both aspects than those from 
ordinary primary schools.

From a qualitative perspective, some research highlights the mathematical abilities 
shown by elementary school students taught with the Hejný Method when exposed to con-
textualised non-standard tasks. López Centella et al. (2021) report the algebraic thinking 
and capacity to argue shown by fifth graders in a task involving different representations 
of equations. Papadopoulos et al. (2020) show functional thinking and the ability to gen-
eralise put into play by fourth graders when addressing a contextualised generalising task 
that involves covariant quantities.

Other studies focus on contributions to learning mathematics from particular en-
vironments from Hejný Method targeting elementary school students. Jirotková et al. 
(2013) describe how the use of the environment called the “Bus” helped first graders to 
“lose their tendency to use irrelevant aspects of language and effectively select and struc-
ture those that are key in a given situation” (p. 978). Using this same environment with 
first graders in Greece, Papadopoulos et al. (2017) conclude that it empowered “both 
their early conceptualisation of natural numbers and their development of important 
mathematical skills such as the mental operations and the meaningful organisation of 
arithmetical data” (p. 303). Hejný et al. (2006; 2013) show pupils’ gains in conceptual 
learning and building a schema in relation to the solution of equations through the use 
of the environments called “Father Woodland” and “Additive triangles”. Kloboučková 
et al. (2013) report how the “Cube buildings” environment, along with its correspond-
ing materials, promoted the development of spatial sense and problem-solving strategies 
in first and second grade pupils, leading to interactions that contributed to the acquisi-
tion of geometric knowledge and skills.
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2.2. Mathematics Tasks

Mathematics tasks are at the heart of mathematics teaching and learning: “In effective teach-
ing, worthwhile mathematical tasks are used to introduce important mathematical ideas 
and to engage and challenge students intellectually. Well-chosen tasks can pique students’ 
curiosity and draw them into mathematics” (NCTM, 2000, p. 18). According to Moreno 
and Ramírez (2016), a “school mathematical task is a structured demand for action that 
the teacher provides to students on an intentional basis” (p. 67). The quality of tasks used 
in mathematics lessons influences the knowledge and skills the pupils can acquire and de-
velop (Larsen & Bartlo, 2009; Margolinas, 2013; Powell et al., 2009); thus, tasks have been 
at the centre of research attention in mathematics education for decades. 

In this study, we rely on the work of Moreno and Ramírez (2016), in which they pro-
pose six descriptors to characterise a mathematical task. We use three of them to describe 
the nature of tasks in Hejný et al.’s textbook. The goal summarises the purposes that the 
teacher assigns to the task: the learning expectations to which it is intended to contrib-
ute and those errors and difficulties that the task is expected to help overcome. The ma-
terials and resources refer to any means that can be used or are proposed to be used in the 
task to learn a specific mathematical concept or procedure (even if it has not been specif-
ically designed for it). The formulation of the task signifies the text (including any pic-
ture, graph, etc.) or instruction that the teacher provides to the students which specifies 
what they are expected to do. In particular, this includes the context in which the task 
is set and the systems of representations involved in its statement. The remaining three 
characteristics (the types of grouping the task foresees, the forms of interactions it pro-
motes, and its timing) will not be followed as they are more related to the actual imple-
mentation process as part of a lesson.

Below, we will elaborate on each task characteristic used in our analysis.

Content and Learning Expectations

As already stated, the NCTM provides an internationally recognised framework for the 
content and learning expectations. For our work, learning expectations for grades 3-5 
are relevant. They are listed below, whereas the specifications for each can be found in 
Appendix A.
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Number and Operations (NCTM, 2000, p. 148) 
NO1. Understand numbers, ways of representing numbers, relationships among num-
bers, and number systems.
NO2. Understand meanings of operations and how they relate to one another.
NO3. Compute fluently and make reasonable estimates.

Algebra (NCTM, 2000, p. 158) 
A1. Understand patterns, relations, and functions.
A2. Represent and analyse mathematical situations and structures using algebraic symbols.
A3. Model problem situations with objects and use representations such as graphs, ta-
bles, and equations to draw conclusions.
A4. Analyse change in various contexts.

Geometry (NCTM, 2000, p. 164)
G1. Analyse characteristics and properties of two- and three-dimensional geometric 
shapes and develop mathematical arguments about geometric relationships.
G2. Specify locations and describe spatial relationships using coordinate geometry and 
other representational systems.
G3. Apply transformations and use symmetry to analyse mathematical situations.
G4. Use visualisation, spatial reasoning, and geometric modeling to solve problems.

Measurement (NCTM, 2000, p. 170) 
M1. Understand measurable attributes of objects and the units, systems, and process-
es of measurement.
M2. Apply appropriate techniques, tools, and formulas to determine measurements.

Data Analysis and Probability (NCTM, 2000, p. 176) 
DAP1. Formulate questions that can be addressed with data and collect, organise, and 
display relevant data to answer them.
DAP2. Select and use appropriate statistical methods to analyse data.
DAP3. Develop and evaluate inferences and predictions that are based on data.
DAP4. Understand and apply basic concepts of probability.
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Context

For the analysis of the context, we employ the framework of the Programme for the Inter-
national Students Assessment (PISA), which understands it as the “aspect of an individual’s 
world in which the problems are placed” (PISA, 2022, pp. 29–30). In general, the choice of 
mathematical strategies to solve a problem depends on the context in which it arises, and it 
is necessary to use knowledge of the context in developing a solution. In this way, the PISA 
emphasises involving a variety of contexts in problems and tasks. It distinguishes the fol-
lowing four categories of contexts (pp. 29–30).

Personal. Tasks in this category focus on activities of oneself, one’s family or one’s peer 
group (e.g., food preparation, shopping, games, personal health, personal transportation, 
sports, travel, personal scheduling and personal finance). 

Occupational. Tasks in this category are centred on the world of work (e.g., measuring, 
costing and ordering materials for building, payroll/accounting, quality control, schedul-
ing/inventory, design/architecture and job-related decision making). 

Societal. Tasks in this category focus on one’s community (local, national or global; e.g., 
voting systems, public transport, government, public policies, demographics, advertising, 
national statistics and economics). Although individuals are involved in all of these things 
in a personal way, in the societal context category, the focus of problems is on the commu-
nity perspective.

Scientific. Tasks in this category relate to the application of mathematics to the natural 
world and issues and topics related to science and technology (e.g., weather or climate, ecol-
ogy, medicine, space science, genetics, measurement and the world of mathematics itself).

Systems of Representations

Representations are indispensable for the learning of mathematics: we use them to think, 
communicate and operate on mathematical ideas (Hiebert & Carpenter, 1992; Rico et al., 
2000). As stated by Duval (1999), its use is essential for mathematical thinking because 
“unlike the other fields of knowledge (botany, geology, astronomy, physics), there is no oth-
er ways of gaining access to the mathematical objects but to produce some semiotic rep-
resentations” (p. 4). In the words of Goldin and Shteingold (2001), the “fundamental goals 
of mathematics education include representational goals: the development of efficient (in-
ternal) systems of representation in students that correspond coherently to, and interact 
well with, the (external) conventionally established systems of mathematics” (p. 1). As de-
fined by these authors, a representation is typically a sign or a configuration of signs, charac-
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ters, or objects that can stand for (symbolise, depict, encode, or represent) something other 
than itself. Systems of representations include the conventional symbol systems of mathe-
matics, such as numeration, formal algebraic notation, the real number line, the Cartesian 
coordinate representation, etc. (Goldin & Shteingold, 2001).

Converting representations is a crucial task in the learning of mathematics. As point-
ed out by Rico et al. (1996), there is no representation system that completely expresses the 
complexity of each mathematical concept: each of them emphasises some properties and 
blurs others. From a didactical point of view, according to Duval (1999), only students who 
can switch from one representation system to another do not confuse a mathematical ob-
ject with its representation and can transfer their mathematical knowledge to other con-
texts different from the one of learning. In this sense, the diversification of representations 
in tasks and the promotion of students’ ability to work with each of them and move from 
one to another is considered positive for the development of their mathematical compe-
tence (Cordero-Siy & Ghousseini, 2022; Gagatsis & Shiakalli, 2004; Heinze et al., 2009; 
Moseley, 2005; Tripathi, 2008).

Materials and Resources

Multiple studies point out the effects of using concrete materials (manipulatives or vir-
tual) in mathematics teaching and learning processes, generally concluding in favour of 
their use (e.g., Carbonneau et al., 2013; Uribe-Flórez & Wilkins, 2017). In particular, 
different authors (Bonilla & Rojano, 2012; Figueira-Sampaio et al., 2009; Otten et al., 
2019), explore children’s learning in solving equations through the use of concrete mod-
els (virtual scale, hanging mobile, etc.). Such studies report significant achievement in 
transferring actions and strategies (restructuring, isolation and substitution) from the 
sign language of the model to the actions of the algebra sign system, as well as a bet-
ter understanding of the properties of equality. For example, Larbi and Mavis (2016) 
and Kablan (2016) describe how students who were taught mathematics through the 
use of manipulatives performed better and scored significantly higher in the post-test 
than those who were taught through a “talk and chalk”/“lectures and exercises” method 
without involving further materials. These studies suggest that the experiences that stu-
dents gain in the embodied learning environment with certain materials provide a ba-
sis for mathematical thinking, which appears to support them when addressing prob-
lem solving in other contexts.
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3. Methodology

We conducted a qualitative and descriptive analysis (Vasilachis, 2009) using content analysis 
techniques from the Didactic Analysis (Rico Romero, 2013). We consider as units of analysis 
the 252 tasks included in the sixth-grade electronic textbook “Mathematics-A (6th grade)” 
(Hejný et al., 2018). The book is structured through 21 environments (briefly described in 
the Appendix B), opening with an introductory section “Appetizer” and ending with an 
“If there is time left” section.

3.1. Content and Learning Expectations

In the first phase of the analysis, we focused on each task’s demand and solving process-
es in order to identify the NCTM learning expectations that the work on each task con-
tributes to achieving. NCTM learning expectations are set according to the educational 
stage: from pre-K to grade 2, grades 3-5, 6-8, and 9-12. The textbook under analysis (He-
jný et al., 2018) is primarily intended for sixth grade students in the Czech education sys-
tem (11 to 12-year-old). We considered the following to pick a relevant set of NCTM learn-
ing expectations. Firstly, both elementary and secondary education in the Czech Republic 
and the United States are organised differently. While in the Czech Republic it consists 
of 13 grades, typically finishing at the age of 18-19 years, in the United States, it consists 
of 12 grades, typically finishing at the age of 17-18 years. Secondly, NCTM learning ex-
pectations are understood as a body of skills on mathematical content that all the students 
should have developed by the end of the corresponding educational stage. Based on this, the 
NCTM learning expectations established for grades 9-12 can be related to Czech grades 
10-13, the ones established for grades 6-8 to Czech grades 7-9, and the ones for grades 3-5 
to Czech grades 4-6. This motivated us to consider the NCTM learning expectations for 
grades 3-5 in our analysis.

3.2. Context, Systems of Representation, Resources, and Materials

In the second phase of the analysis, we focused on identifying the type of PISA context 
(PISA, 2022) in which each task is set, the systems of representation, and the materials 
and resources involved in each task. Both phases required careful reading of the state-
ments and resolution of the tasks. For contexts and learning expectations, we used the 
categories presented in section 3.1. For systems of representation and resources and ma-
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terials, categories originated in an inductive-deductive way (Tables 1 and 2) – some cat-
egories are based on literature (e.g., text, number line), others were particular to the text-
book (e.g., grid). For both, we considered task statements along with the recommended 
materials and implementation suggestions provided for teachers, included in the book.

Table 1. Systems of representation
Category Description

Text Tasks that include verbal statements and communicate information through words

Numerical Tasks that use numbers in their statements and in which numbers play a major role in their 
resolution

Number line Tasks that show a number line in their statements or that invite to draw and work on 
a number line in their resolution

Algebraic and symbolic 
notation

Tasks that include algebraic or symbolic notation whose meaning has been previously 
presented or that promote the use of notational conventions

Geometric construction Tasks in which geometric constructions (like drawing the heights of a triangle, building 
a certain structure using cubes, etc.) play an important role in their statements or resolution

Picture/Drawing2 Tasks that rely on a picture or drawing to formulate their questions or that invite to make 
a drawing for their resolution

Grid Tasks that formulate questions that involve a pattern or structure made from horizontal and 
vertical lines crossing each other to form squares

Graph Tasks that prresent information through a table, pictograph, bar graph, line graph, pie chart, 
or request to represent data using any of the above

Diagram Tasks that invite to work with some kind of schematic structure, possibly involving boxes or 
blanks to fill in, in accordance with a set of described rules

Table 2. Resources and materials
Category Description

Manipulative materials Tasks that encourage using hands-on materials and manipulation of objects for mathematical 
exploration

Pencil and paper Tasks that are essentially aimed at being solved through the use of pencil and paper

Calculator Tasks that explicitly encourage the use of a calculator to provide or check answers

Digital tools
Tasks whose statement or completion explicitly require the use of specific mathematical 

software or applets (for symbolic calculation, graph representation, dynamic geometry, data 
management, programming, etc.)

3.3. Examples of Data Analysis

Below we present an example of how tasks from the textbook were analysed and classified 
according to the criteria and categories described above. The selected task belongs to the 
environment Egyptian division of bread (II). Figures 1, 2, and 3 consist of excerpts from the 

2 Illustrations with purely decorative purposes were not considered.
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textbook showing, respectively, a brief explanation of this form of division, a convention on 
the optimality of the division, and the statement of the selected task.

Figure 1. Brief explanation of the ancient Egyptian division of bread (Hejný et al., 2018)

Figure 2. Convention on the optimality of the Egyptian division of bread (Hejný et al., 2018)

Figure 3. Task from the Egyptian division of bread environment (Hejný et al., 2018)

Regarding NCTM learning expectations, the task shown in Figure 3 is considered to 
contribute to the achievement of the third, fourth, and fifth specifications of learning ex-
pectation NO1 (see Appendix A). Indeed, the use of fractions in the task context contrib-
utes to understand fractions as representations of parts of unit wholes and divisions of whole 
numbers (learning expectation NO1.3), as illustrated in Figure 4.

Figure 4. Fraction as division of whole numbers
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Furthermore, the task requirement invites the use of an area model (learning expecta-
tion NO1.4) to identify different ways of cutting bread according to the task criteria, as 
represented in Figure 5. 

Figure 5. Use of an area model

The portions of bread obtained by a person based on two valid divisions (according to 
the task criteria) can and must be checked to be equivalent (learning expectation NO1.5), 
as shown in Figure 6.

Figure 6. Equivalent representations of the same fraction

Note: in the area model, equality is established between the parts coloured in orange, red, and brown

As for the systems of representation of the task, this involves text and numbers – pres-
ent in its own statement – and drawings – promoted in the resolution of the task. 

The PISA context of the task is considered personal because it involves handling and 
sharing food at a household level. 

Concerning resources and materials, we include the task in the categories of pencil and 
paper and manipulatives, since its completion invites both manual calculations and manip-
ulation of materials such as, for example, a set of fraction circles.

To further illustrate our analysis and the categories considered, Table 3 shows examples 
of tasks (from Figures 7 and 8, numbered from 1 to 9) for each of them.
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Table 3. Examples of tasks for the categories of context, systems of representations and resources
Characteristics Category Task number

Context

Scientific 1-6

Personal 7

Occupational 8

Societal 9

Systems of representations 
(Note: in most tasks, more than 
one system of representation was 

identified)

Number line 1

Algebraic notation 2

Diagram 3

Geometric construction 4

Grid 5

Graph (table) 6

Text and numbers 7

Picture 8

Resources and materials

Pencil and paper 1-9

Manipulative materials 4, 5, 6, 8, 9

Calculator 1

The main manipulatives were sticks in the Wooden sticks environment (to build fig-
ures for geometric reflections and pattern identification), paper in the Origami environ-
ment (to fold and cut it for working with geometric elements and reflecting on their prop-
erties), cubes in the Cubic shapes environment (to build solids and work on their views 
and two-dimensional representations), geoboard in the Grid environment (to create fig-
ures and reflect on their properties), coins in the Coins environment (to work with equa-
tions), and measuring tape. 
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Figure 7. Sample of tasks (Hejný et al., 2018)
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Figure 8. Sample of tasks (Hejný et al., 2018)
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4. Results

4.1. Book Structure and Organisation

The book is structured through 21 environments. Each environment does not focus on con-
cepts from a single NCTM mathematical content block, but rather a single environment can 
promote work on, for example, numbers and operations, algebra, measurement, geometry, etc. 
Figure 9 shows the number of tasks included in each environment. Some environments are re-
visited several times throughout the book: for example, Fractions (I) and Fractions (II), Grid 
(I), Grid (II), and Grid (III), etc. are interspersed between the other environments. Further-
more, at the end of the work of an environment, one to three tasks unrelated to it or related 
to another environment are typically provided. It emphasises the way of working promoted 
by the Hejný Method: content is not intensively studied for a short period and then replaced 
by another group of content, but is continuously explored, with the attention focused on dif-
ferent aspects each time it is revisited. The Hejný Method tries to contribute to the creation 
of schemes in this way. In Hejný’s words (2012), the scheme that each of us have of our flat

is not the result of learning the curricular topic ‘The furnishing of our flat’ in September, ‘Lamps 
and carpets’ in October, ‘The Kitchen’ in November, etc. at school. The scheme is an outcome of our 
everyday experience in the given environment. In some activities our attention focuses on some part 
of the flat (we hang up a picture, clean windows, move furniture, tidy up, …) but all of these particu-
lars are perceived as parts of one whole (p. 46).

Figure 9. Number of tasks included in each environment
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4.2. Learning Expectations

Figure 10 shows the number of times each NCTM learning expectation was identified dur-
ing the analysis of the 252 tasks. As shown in the bar chart, most frequently identified are 
those related to understanding numbers, ways of representing numbers, relationships among 
numbers and number systems (NO1), and those aimed at computing fluently and making 
reasonable estimates (NO3). The learning expectations related to the mathematical con-
tent titled Numbers and operations represent 49.2% of the total NCTM learning expec-
tations identified in the tasks. The second most frequent group of learning expectations is 
related to geometry, which involves identifying, comparing, and analysing the attributes of 
two- and three-dimensional shapes and developing the vocabulary to describe the attrib-
utes (G1). Of the total of NCTM learning expectations identified, the ones related to ge-
ometry represent 25.6%. Most of learning expectations connected to algebraic activity are 
related to representing the idea of an unknown quantity using a letter or a symbol, and ex-
press mathematical relationships and model problem situations using equations (A1). The 
learning expectations related to algebra represent 14,8% of the total NCTM learning ex-
pectations identified in the tasks.

Figure 10. Frequency of NCTM learning expectations identified in the tasks 

NCTM learning expectations about measurement represent 10,4% of the total iden-
tified. Most of them are related to understanding measurable attributes of objects and the 
units, systems, and processes of measurement (M1).
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The number of identified NCTM learning expectations about data analysis and prob-
ability was low (specially compared to other content) and was not represented in the bar 
chart of Figure 10. Many of them were related to the use of tables to represent data or ba-
sic notions of combinatorics. It is worth mentioning in this regard that in the Czech cur-
riculum (MŠMT, 2017), the main curricular reference of the textbook, these contents are 
addressed at higher educational levels (and, therefore, addressed primarily in textbooks 
for other grades). Remarkably, most tasks contribute to achieving more than one NCTM 
learning expectation, and often two, three, or four. Table 3 shows the number of tasks that 
promote the work on a certain number of NCTM learning expectations. Some tasks’ con-
tributions are beyond the learning expectations established by the NCTM and for which 
no NCTM learning expectations were identified. Some of these are related, for example, 
to tessellations, logic, and reasoning about the veracity of a statement.

Table 3. Number of tasks that contribute to the achievement of a certain
                  number of NCTM learning expectations

No. of NCTM learning expectations 0 1 2 3 4 5 7

No. of tasks 16 67 73 58 34 3 1

4.3. Contexts

Figure 11 shows the absolute and relative frequencies of each PISA context in the tasks. A pre-
dominance of scientific and personal contexts versus societal and occupational is observed.

Figure 11. Frequencies of PISA contexts identified in the tasks
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4.4. Systems of Representation 

Figure 12 shows the number of tasks involving each system of representation in their state-
ments or in what could be considered a natural or supposedly expected resolution. 

Figure 12. Frequencies of systems of representation identified in the tasks

In addition to the use of the ordinary verbal and numerical systems of representation, 
the bar chart reveals that a significant number of tasks involve algebraic and symbolic no-
tation, geometric constructions, and pictures and drawings. Likewise, the tasks encourage 
pupils to handle various systems of representations like diagrams, graphs (mainly tables), 
the number line, the grid. Each task involves more than one system of representation and 
multiple tasks request a transfer of information from one representation system to anoth-
er. Such tasks can be found, for example, in the environments Scales and Coins, requesting 
the transcription of pictorially represented equations into algebraic language.

4.5. Resources and Materials

Figure 13 shows the number of tasks identified as particularly designed to be implemented 
using pencil and paper, manipulative materials, and calculator, as well as their correspond-
ing percentages in the total of tasks.
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Figure 13. Frequencies of resources and materials

According to the chart, it can be said that manipulation is emphasised in the textbook. Ma-
nipulatives are usually used for the first discoveries in a certain environment and stop being used 
when they are no longer necessary for a pupil. Through manipulation, students are invited to 
explore different mathematical facts and properties that are then worked on more abstractly. 

Calculator might be used in several tasks and its use is explicitly recommended in some 
of them. No explicit mentions of working with other mathematical software were identified. 

More generally, regarding implementation, it is worth noting that many tasks are planned 
to be discussed orally and in work groups, encouraging collaboration and argumentation 
between peers, regardless of whether they are subsequently addressed with pencil and paper.

5. Discussion and Conclusions

In this study, we explored the mathematical tasks included in the electronic textbook “Math-
ematics-A (6th grade)” (Hejný et al., 2018) with two objectives: first, analysing the NCTM 
learning expectations that they contribute to achieving; and second, analysing the PISA 
contexts in which they are set, the systems of representation they involve, and the resourc-
es and materials used for their completion and resolution. 

Regarding our first objective, most of the NCTM learning expectations associated with 
numbers and operations, algebra, geometry, and measurement were identified in the 252 
tasks of the textbook. For each learning expectation there are frequently several tasks de-
signed to work towards its fulfilment; and, in general, each task contributes to achieving 
several NCTM learning expectations. While there are tasks that allow pupils learn about 
basic combinatorics and practise using tables to organise data, NCTM learning expecta-
tions on data analysis and probability were much less frequently identified in the tasks. The 
Czech curriculum (MŠMT, 2017), of reference for the textbook, includes them at higher 
educational levels and, therefore, they are primarily addressed in textbooks for other grades.

Concerning frequencies of the NCTM learning expectations identified in the tasks, the 
ones related to numbers, operations, and geometry are significantly higher than the others, 
without this meaning a deficit of NCTM learning expectations on algebra or measurement 
(there are many tasks that work on them as well).
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On the other hand, some learning expectations beyond the ones established by NCTM 
were detected in the tasks. These are mainly related to the use of logic and deeper algebra-
ic activity. In particular, we highlight the use of different environments to work on the no-
tion of equality, equation, inverse operation, etc. through diagrams where some missing 
terms must be calculated. Positive effects on the development of mathematical reasoning 
processes for equations have been reported in research studies where similar types of cal-
culation structures were used (Nührenbörger & Schwarzkopf, 2016).

Concerning our second objective, the systems of representations employed in tasks state-
ments or their solving processes are multiple and seem balanced. The use of algebraic and 
symbolic notation, geometric constructions, computational numerical diagrams and tables 
stands out. This contributes to widening the opportunities provided to pupils to read, use, 
interpret, represent, and communicate mathematical knowledge.

As for the contexts, most tasks are posed in an intramathematical context, considered 
scientific within the PISA framework. Nevertheless, a significant number of tasks are also 
set in personal contexts, and a smaller number of them in societal or occupational contexts.

From a didactic point of view, and based on the performed analysis, it is worth men-
tioning the richness of the textbook tasks in terms of encouraging mathematical thinking, 
reflection, and the development of mathematical sense (Lupiáñez Gómez & Rico Romero, 
2015). For future studies, it would be interesting to carry out a similar analysis of tasks fo-
cused on identifying the NCTM learning expectations for mathematical processes: prob-
lem solving, reasoning and proof, communication, connections, and representation. Such 
results would contribute to completing the tasks analysis presented in this chapter.

Finally, regarding the limitations of the study, it must be pointed out that the analysis 
of the tasks was based solely on the statements of the tasks and the related information in-
cluded in the aforementioned electronic textbook. Naturally, each task could involve oth-
er systems of representation, materials, and resources when implemented in class, with the 
teacher as the guide and facilitator of the learning process. Likewise, variations in the imple-
mentation of tasks could have an impact in the learning expectations they help to achieve. 
Differences in the introductory information between the English electronic version and the 
Czech print version of the textbook may impact the interpretation of the tasks.
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Appendix A

Specifications of the NCTM Learning Expectations for grades 3-5 (NCTM, 2000)

NO1.
1. Understand the place-value structure of the base-ten number system and be able to 

represent and compare whole numbers and decimals.
2. Recognise equivalent representations for the same number and generate them by 

decomposing and composing numbers.
3. Develop understanding of fractions as parts of unit wholes, as parts of a collection, 

as locations on number lines, and as divisions of whole numbers.
4. Use models, benchmarks, and equivalent forms to judge the size of fractions.
5. Recognise and generate equivalent forms of commonly used fractions, decimals, 

and percents.
6. Explore numbers less than 0 by extending the number line and through familiar 

applications.
7. Describe classes of numbers according to characteristics such as the nature of their 

factors.

NO2.
1. Understand the effects of multiplying and dividing whole numbers.
2. Identify and use relationships between operations, such as division as the inverse of 

multiplication, to solve problems.
3. Understand and use properties of operations, such as the distributivity of multipli-

cation over addition.
4. Develop fluency with basic number combinations for multiplication and division 

and use these combinations to mentally compute related problems, such as 30 × 50.

NO3.
1. Develop fluency in adding, subtracting, multiplying, and dividing whole numbers.
2. Develop and use strategies to estimate the results of whole-number computations 

and to judge the reasonableness of such results. 
3. Develop and use strategies to estimate computations involving fractions and deci-

mals in situations relevant to students’ experience.
4. Use visual models, benchmarks, and equivalent forms to add and subtract common-

ly used fractions and decimals.
5. Select appropriate methods and tools for computing with whole numbers from 

among mental computation, estimation, calculators, and paper and pencil according 
to the context and nature of the computation and use the selected method or tool.
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A1.
1. Describe, extend, and make generalisations about geometric and numeric patterns.
2. Represent and analyse patterns and functions, using words, tables, and graphs.

A2.
1. Represent the idea of a variable as an unknown quantity using a letter or a symbol.
2. Express mathematical relationships using equations.
3. Model problem situations with objects and use representations such as graphs, ta-

bles, and equations to draw conclusions.

A3.
1. Model problem situations with objects and use representations such as graphs, ta-

bles, and equations to draw conclusions.

A4.
1. Investigate how a change in one variable relates to a change in a second variable. 
2. Identify and describe situations with constant or varying rates of change and com-

pare them.

G1.
1. Identify, compare, and analyse attributes of two- and three-dimensional shapes and 

develop vocabulary to describe the attributes.
2. Classify two- and three-dimensional shapes according to their properties and de-

velop definitions of classes of shapes such as triangles and pyramids.
3. Investigate, describe, and reason about the results of subdividing, combining, and 

transforming shapes.
4. Explore congruence and similarity.
5. Make and test conjectures about geometric properties and relationships and devel-

op logical arguments to justify conclusions.

G2.
1. Describe location and movement using common language and geometric vocabulary.
2. Make and use coordinate systems to specify locations and to describe paths.
3. Find the distance between points along horizontal and vertical lines of a coordi-

nate system.



Chapter 6: Analysis of Tasks From a Hejný Method Mathematics Textbook 165

G3.
1. Predict and describe the results of sliding, flipping, and turning two-dimension-

al shapes.
2. Describe a motion or a series of motions that will show that two shapes are congruent.
3. Identify and describe line and rotational symmetry in two- and three-dimension-

al shapes and designs.

G4.
1. Build and draw geometric objects.
2. Create and describe mental images of objects, patterns, and paths.
3. Identify and build a three-dimensional object from two-dimensional representa-

tions of that object.
4. Identify and build a two-dimensional representation of a three-dimensional object.
5. Use geometric models to solve problems in other areas of mathematics, such as num-

ber and measurement.
6. Recognise geometric ideas and relationships and apply them to other disciplines 

and to problems that arise in the classroom or in everyday life.

M1.
1. Understand such attributes as length, area, weight, volume, and size of angle and 

select the appropriate type of unit for measuring each attribute.
2. Understand the need for measuring with standard units and become familiar with 

standard units in the customary and metric systems;
3. Carry out simple unit conversions, such as from centimeters to meters, within a sys-

tem of measurement.
4. Understand that measurements are approximations and how differences in units 

affect precision.
5. Explore what happens to measurements of a two-dimensional shape such as its pe-

rimeter and area when the shape is changed in some way.

M2.
1. Develop strategies for estimating the perimeters, areas, and volumes of irregular shapes.
2. Select and apply appropriate standard units and tools to measure length, area, vol-

ume, weight, time, temperature, and the size of angles.
3. Select and use benchmarks to estimate measurements.
4. Develop, understand, and use formulas to find the area of rectangles and related 

triangles and parallelograms.
5. Develop strategies to determine the surface areas and volumes of rectangular solids.
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DAP1.
1. Design investigations to address a question and consider how data-collection meth-

ods affect the nature of the data set.
2. Collect data using observations, surveys, and experiments.
3. Represent data using tables and graphs such as line plots, bar graphs, and line graphs. 
4. Recognise the differences in representing categorical and numerical data.

DAP2.
1. Describe the shape and important features of a set of data and compare related data 

sets, with an emphasis on how the data are distributed.
2. Use measures of center, focusing on the median, and understand what each does 

and does not indicate about the data set. 
3. Compare different representations of the same data and evaluate how well each rep-

resentation shows important aspects of the data.

DAP3.
1. Propose and justify conclusions and predictions that are based on data and design 

studies to further investigate the conclusions or predictions.

DAP4.
1. Describe events as likely or unlikely and discuss the degree of likelihood using such 

words as certain, equally likely, and impossible.
2. Predict the probability of outcomes of simple experiments and test the predictions.
3. Understand that the measure of the likelihood of an event can be represented by 

a number from 0 to 1.
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Appendix B

Environments in the electronic textbook Matematika A, učebnice pro 2.  
stupeň ZŠ a víceletá gymnázia (Hejný et al., 2015)

Fractions. It allows to learn about meanings of fractions (part-whole, group-set, ratio, 
division) in several contexts (geometric, metric, numerical) and procedures to split differ-
ent kind of objects in equal parts; to identify the fraction that a part represents in a whole; 
to compare fractions by using the fraction wall; etc. 

Decimal numbers. It proposes to reflect on the meanings of measures expressed through 
decimal numbers; to perceive the relationships between different measurement units of the 
same quantity and their equivalences; to estimate specified amounts of quantities of objects; 
to use different systems of representation (pictorial, verbal, fraction, decimal number) to 
express a quantity; to continue a sequence of decimal numbers in context in order to bet-
ter understand the decimal number system; to operate with decimal numbers; to compare 
and sort decimal numbers; to locate and mark them on a number line; etc.

Cubic shapes. It promotes the development of visualisation skills through the work with 
3D objects (cubes), the identification and interpretation of positions and locations of sol-
ids in the three-dimensional space, the correspondence between three-dimensional bodies 
and two-dimensional representations of them, the characterisation of solids by means of 
their two-dimensional representations.

Coins. It fosters the practice of decomposition of numbers into addends with some re-
strictions; the understanding of the algebraic equivalence through equations relating the 
total value of two different sets of coins pictorially represented; the reflection about the ex-
istence of solution of these kind of equations in the corresponding range of values (those of 
the specified coins) and their resolutions where appropriate; the transference between an 
equation posed in a coins context to an equivalent one in a context of weights; the algebra-
ic writing of an equation pictorially presented.

Egyptian division of bread. It aims to make children reflect about the meanings of frac-
tions, the divisions, the use of models for fair sharings; to recognise equivalent representa-
tions for the same quantity; to discuss the optimality of two different procedural solutions 
for divisions; etc. 

Wooden sticks. It promotes the development of visualisation abilities through the work 
with segments (sticks); the consolidation of the knowledge of properties of flat geometric 
figures; the identification of regularities from geometric constructions; the exploration of 
geometric figures subject to given conditions (e.g. fixed perimeter); the construction of some 
geometric figures from others; etc.
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Arrow graphs. It reinforces numerical computation; understanding of equivalence, of 
composition of arithmetic operations and of inverse of operations; the use of properties of 
decimal number system; the decomposition of a number in factors subject to conditions.

Addition triangles. It promotes the understanding of equalities and operations (addi-
tion, subtraction) with structures of computing-terms; the finding of numbers subject to 
conditions related to their decomposition in addends and composition as addends of others.

Stepping. It facilitates the knowledge of negative numbers, suggests the use of specific 
verbal terminology and symbolic notation (arrows) to represent whole numbers and their 
addition (vertical bars); resolution of equations expressed in the previous notation.

Equations. It focuses on solving linear equations of one unknown; writing algebraical-
ly an equation expressed in certain symbolic notation (e.g., arrows).

Tiles. It includes tasks consisting of tiling flat geometric figures using polyominoes; re-
flecting on the different possibilities of tiling the same floor with various combinations of 
polyominoes.

Neighbours. It proposes to operate with non-negative decimal numbers.
Ancient Indian multiplication. It shows and proposes to practise the ancient Indian al-

gorithm for multiplication.
Table 100. It presents a 10×10 table to perform operations with natural numbers less 

than 100, it introduces symbolic notation to express such operations using properties of 
the decimal number system; it asks for finding a value such that a symbolic expression in 
the introduced notation satisfies a specific condition.

Grid. It invites to identify and name flat figures presented in a grid; to estimate and meas-
ure the length of segments on a grid; to discuss the veracity of statements on the length of 
specific segments on a grid; to use symbolic notation to express that the value of a measure 
is exactly/more than/less than certain value; to discuss the paralellism of sides of certain 
polygons defined through their vertices in a grid.

Spider webs. To find out the positive numbers that need to be consistently added to oth-
ers so that several equalities hold in a diagram; to operate with positive numbers; interpret 
information expressed by colours.

The bus. It encourages reading, interpreting and elaborating tables as an useful system 
of representation of information (in particular, number of passengers that get on and get 
off a bus); operating with natural numbers to solve word problems. 

Origami. It includes tasks focused on creating geometric figures subject to conditions 
by folding, cutting and overlapping paper; showing lines and geometric constructions in-
volving the notions of paralellism, mid-segment, etc. by folding paper; configuring a set of 
geometric figures on a paper to cut them using as few cuts as possible.
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Scales. It is aimed at promoting the understanding of the algebraic equivalence through 
equations relating total value of two set of weights pictorially represented; the algebraic 
writing of an equation pictorially presented and vice-versa.

Number line. Tasks in this environment encourage working on proportional reasoning, 
representing numbers on a number line, operating with fractions, interpreting geometric 
notions (midpoints, segment, endpoints, distance, etc.).

Multiplication squares. It promotes understanding operations (multiplication, divi-
sion) and their different effects, algebraic equivalence, working with structures of comput-
ing-terms with whole and decimal numbers; finding numbers subject to conditions relat-
ed to their decomposition in factors and composition of others by means of their factors.
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Ch a pter 7

WAYS OF SOLVING MATHEMATICAL TASKS BY STUDENTS AGED 
14–15 AS MANIFESTATIONS OF CRITICAL THINKING

Summary: The study aims to examine methods of inference and argumentation, alongside ap-
proaches to geometric proof tasks, which present atypical challenges for 7th-grade students in Pol-
ish elementary schools. Beyond finding solutions, students were required to justify their answers 
and verify the correctness of their solutions. Grade 7, approximately 14 years old, marks the final 
stage of primary education in Poland and serves as a pivotal period for students to initiate inde-
pendent critical assessments of mathematical situations. The chapter provides the analysis of solu-
tions and solution attempts for one of these tasks. The research was initially conducted shortly be-
fore the COVID-19 pandemic and was repeated in spring 2022 following the return to in-person 
classes after over a year of remote learning. The analysis emphasises aspects of critical thinking, 
with additional consideration of how lesson organisation influences the development of critical 
thinking skills among students.
Keywords: critical thinking, problem solving, task analysis, geometry, inference and argumentation.

1. Introduction

Today’s schoolchildren are growing up in an environment of constant technological, eco-
nomic, political and communicative change. They are surrounded by a multitude of visual 
and auditory signals and stimuli. Whatever the job or activity, whatever the age, quick and 
specific, complete and correct responses or feedback are expected today. Speed is not a sup-
portive factor in the ability to make mature and thoughtful decisions. This is all the more 
difficult when one is not trained in the ability to analyse situations requiring decision-mak-
ing. These facts should influence the organisation of the learning-teaching process in which 
the student is constantly put in a situation requiring analysis and evaluation of his or her 
own actions. On the other hand, teachers and principals should be expected to be aware of 
the competences and skills with which a graduate of a modern school should be equipped. 
At the same time, one should not forget not to lose oneself in the process of change, per-
haps weakening the quality and correctness of the substantive message, the depth of un-
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derstanding, and the readiness of learners to undertake challenges that require thinking, 
including mathematical thinking.

2. Theoretical Background to the Research Carried Out

2.1. Critical Thinking as a Competence Needed in Today’s World

Critical thinking is formed through mental effort, which should be organised from an 
early age. “Critical thinking is a type of realistic thinking directed towards the specif-
ic goal of evaluation. (...) The aim of critical thinking is to evaluate, reliably and realisti-
cally, the relevant aspects of a person’s intellectual activity”, Nęcka defines in Cognitive 
Psychology1. Spector (2019a; 2019b), on the other hand, argues that critical thinking 
encompasses a range of cumulative and related abilities, dispositions and other variables 
such as motivation, criteria, context and knowledge. The formation of critical thinking 
is based on experiences, e.g. observing something unusual or out of the ordinary, and 
then through various forms of enquiry that involve observation, inference, argumenta-
tion, proof, testing of conclusions, and reflection arriving upon the formulation of con-
clusions and responses.

The development of critical thinking often starts with simple experiences such as ob-
serving differences, encountering puzzling questions or problems, questioning someone’s 
statements, which then leads to more complex experiences using higher-order mathemat-
ical thinking skills, i.e., logical reasoning, questioning assumptions, considering and eval-
uating alternative explanations.

In order to provoke and shape this type of thinking, knowledge and motivation for de-
velopment are required. If a person is not interested in what needs to be observed or inves-
tigated, there is usually not even an attempt to solve the problem. Therefore, creative rea-
soning and critical thinking require motivation and an inquisitive disposition.

Among the many publications and contributions by educators, researchers in math-
ematics education and teaching practitioners, i.e., teachers and principals, the voice of 
Wagner, an internationally recognised expert in the field of education, has resonated very 
strongly in recent years. He is a long-time Harvard University faculty member, second-
ary school teacher, principal, university professor of teacher education, frequent speak-
er at national and international conferences, and author of two bestselling publications, 
Creating Innovators and The 7 Survival Skills for Work, Learning, and Citizenship in 

1 https://web.swps.pl/strefa-psyche/blog/relacje/18957-myslenie-krytyczne-jak-sie-go-nauczyc-i-wlas-
ciwie-po-co?dt=1672145078588 
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the 21st Century. In his speeches and publications, Wagner pays special attention to the 
seven competencies needed by today’s students to become effective and efficient citizens 
in the 21st century. They are:

 ■ Problem solving and critical thinking,
 ■ Working together in different groups,
 ■ Flexibility and ability to adapt to new conditions,
 ■ Initiative and entrepreneurship,
 ■ Effective communication – written and oral,
 ■ Evaluation and analysis of information,
 ■ Curiosity about the world and imagination (Wagner, 2015).

It is indisputable that the first of these competences is, or should be, part of the process 
of mathematical development at each educational level. The other six competences can also 
stem from a student’s participation in mathematics lessons, as long as he or she participates 
in a properly organised process of mathematical cognition. Curiosity, imagination, critical 
thinking, planning, verifying hypotheses, the ability to correctly select the tools of mathe-
matics and, finally, proper communication using the language of mathematics, both verbal-
ly and in writing, should be evoked while solving mathematical problems or tasks on infer-
ence and proof. A detailed analysis and interpretation of the way in which students behave 
when working on such tasks independently or in teams can provide an insight into the or-
ganisation of the process of shaping students’ mathematical knowledge and activities, ulti-
mately invoking mathematical thinking.

2.2. The Relationship between Critical Thinking and Mathematical
         Thinking

Wagner, already quoted, lists Problem Solving and Critical Thinking as the first competence 
needed by the modern man. Properly implemented mathematics education has an important 
place in the formation of this competence. The proper formation of mathematical think-
ing fosters the development of critical thinking – a competence very much expected in the 
modern world. It is the opposite of automatic and schematic thinking.

It is difficult to have a single definition of this specific activity of the mind. Mathemati-
cal thinking is characterised by a whole set of mental activities undertaken by a person solv-
ing a mathematical task. The manifestations of mathematical thinking include: 
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 ■ Spotting and using analogies,
 ■ Schematisation and mathematisation, 
 ■ Defining, interpreting a given definition and applying it rationally, 
 ■ Deduction and reduction,
 ■ Coding, construction and rational use of mathematical language, 
 ■ Algorithmisation and the rational use of algorithms (Krygowska, 1986).

The Regulation of the Ministry of Education in Poland (MEN) of 23 December 2008 
on the core curriculum for pre-school education and general education in particular types 
of schools states that mathematical thinking is the ability to use the tools of mathemat-
ics in everyday life and to formulate judgements based on mathematical reasoning (MEN, 
2008). Mason (2005), on the other hand, writes in his book that mathematical thinking 
is a dynamic process that expands our understanding as it allows us to deal with increas-
ingly complex ideas. 

The effectiveness of mathematical thinking is strongly influenced by: 

1. The ability to use processes used in mathematical research,
2. The mastery of mental and emotional states and the ability to use them,
3. The understanding of the relevant area of mathematics (Mason, 2005, p. 143).

The same author also provides suggestions on how to influence the effective formation 
of mathematical thinking. Among these directives are:

4. Improving mathematical thinking. This can be achieved by concretising, general-
ising, making hypotheses, justifying,

5. Provoking mathematical thinking. Conducive activities include: creating a gap type 
of challenge, surprise, contradiction, perceived gap,

6. Fostering mathematical thinking. Here, the effect will be achieved by asking ques-
tions, posing and challenging, reflecting,

7. Sustaining mathematical thinking. We understand it as the development of an 
awareness of process flow, of one’s own involvement, of mental states (Mason, 2005).

Each of the above is a guideline addressed to the teacher aware of his/her responsibili-
ty for the development of mathematical thinking in students. The training of all the afore-
mentioned competences and activities and other manifestations of mathematical thinking 
should happen in parallel with the formation of new concepts or with working on other el-
ements of knowledge.



Chapter 7: Ways of Solving Mathematical Tasks by Students Aged 14–15 175

Such recommendations are reflected in official documents regulating work in Polish 
schools (MEN, 2008). The Polish core curriculum for teaching mathematics includes, in 
the list of general requirements, such activities and actions which, when evoked and shaped 
in a student, will foster the development of critical mathematical thinking. These include:

II. Verification and interpretation of the results and assessment of the reasonableness 
of the solution.
V. Reasoning and argumentation.

1. Conducting a simple reasoning, providing arguments justifying the correctness of 
the reasoning, distinguishing a proof from an example.

2. Noticing regularities, similarities, and analogies, and drawing conclusions based 
on them.

3. Applying strategies stemming from the content of the task, devising strategies to 
solve the problem also in multistage solutions and those requiring an ability to com-
bine the knowledge of different fields of mathematics (MEN, 2008).

2.3. Analysis of the Process of Solving Mathematical Tasks in Research 

One way to analyse the phenomenon of critical thinking in students is to analyse their ap-
proaches to solving mathematical problems. Research in mathematics education regarding 
the analysis and description of the process of solving mathematical tasks by both students 
and teachers has been conducted for many years. It is part of the interdisciplinary cogni-
tive science, and studies in this field are geared towards learning about the actual human 
learning process. It is primarily a way of getting to know the thinking process qualitative-
ly and not just quantitatively. This means that they focus not only on quantitative results, 
but primarily on understanding the deep thought processes that occur when solving math-
ematical problems. Achieving a fuller understanding of this process is crucial for improv-
ing teaching methods and developing effective educational strategies.

Research in mathematics education concerns various aspects, such as thinking strategies, 
problem-solving approaches, cognitive barriers or the development of logical or, ultimate-
ly, critical thinking skills. Researchers also try to identify factors influencing the effective-
ness of mathematics teaching and identify best practices. One important aspect of didactic 
research is also the analysis of the role of teachers in the process of imparting mathemati-
cal knowledge. Such research focuses on the teaching methods used by educators, their ap-
proach to the development of students’ mathematical skills and their ways of dealing with 
possible learning difficulties.
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From an interdisciplinary perspective, this research broadens our understanding of cog-
nitive processes by integrating knowledge from cognitive psychology, neuroscience, and 
other disciplines. As a result, they contribute to a better adaptation of teaching methods 
to individual students’ needs, which is crucial for effective mathematics education and the 
development of thinking skills among students.

Here are examples of research in mathematics education on the analysis of the mathe-
matical task-solving process2 :

Research involving the analysis of the written work of:

 ■ participants in mathematics Olympiads (Callejo, 1994; Ciosek, 1978),
 ■ mathematics degree candidates (Ciesielska et al., 2004),
 ■ students graduating from secondary school, mathematics teachers, and mathemat-

ics students solving the same matriculation task (Powązka, 2004),
 ■ students in mathematics education and teachers solving the same set of tasks re-

garding the concept of function (Kortus, 2006),
 ■ students solving tasks about the application of mathematics (Treliński, 1985),
 ■ groups of students, from the perspective of the heuristic issues involved in solving 

a mathematical problem (Schoenfeld, 1979),
 ■ students solving mathematical tasks using a computer or calculator (Ratusiński, 

2003; Herma, 2004; Kąkol & Ratusiński, 2004; Juskowiak, 2004; Duda, 2018),
 ■ students, in the scope of occurrences of critical thinking (Novakova, 2021; Juskowi-

ak, 2021; Kiss & Konya, 2021; Ponte, 2022; Pytlak, 2022).

Research involving observation of individual work:

 ■ students solving an atypical task (Żeromska, 2001),
 ■ students solving a text-based task (Ćwik, 1990).

A detailed analysis of the process of solving a mathematical task allows one to learn 
about working methods and strategies, makes it possible to clarify what triggers thinking 
and what becomes the cause of difficulties and obstacles. Conclusions of such research of-
ten become the basis for the implementation of new educational solutions both at the lev-
el of the lesson unit, the organisation of which is the responsibility of the teacher, and the 
whole system and learning process. Analysis of students’ solutions due to manifestations of 
critical thinking, i.e. argumentation or inference, can certainly become the basis for draw-

2 Examples and categories of research are partly taken from Ciosek (2005, pp. 28–29), entitled “Level 
of task solving at different levels of mathematical knowledge and experience”. 
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ing conclusions about, among others, the types of tasks solved during lessons, the way they 
are solved, the role of the student and the teacher in the process of undertaking the creative 
act of justification, or the readiness (substantive and methodical) of the student to solve 
tasks of the justification type. 

2.4. Selection of Tasks Provoking Critical
         Mathematical Thinking in Polish Textbooks 

There are also studies (often conducted as part of master’s theses) devoted to qualita-
tive-quantitative analyses of the most frequently used textbooks by Polish mathematics 
teachers in grades 7 and 8 in terms of the number of tasks aimed at provoking inference, 
augmentation and proof competences. The study by Szalbierz (2022) shows that there 
are few such tasks therein viable to become a tool for provoking critical mathematical 
thinking and shaping all the aforementioned mathematical activities and competences. 
The textbooks analysed were: “Matematyka z plusem”, publishing house: Gdańskie Wy-
dawnictwo Oświatowe, grade 7 (Bolałek et al., 2020) and grade 8 (Bolałek et al., 2021), 
and “Matematyka z kluczem”, publishing house: Nowa Era, grade 7 (Braun et al., 2020) 
and grade 8 (Braun et al., 2021).

Table 1. Analysis of mathematics textbooks in terms of the number of tasks that provoke inference
                  and argumentation

Textbook Total number 
of tasks

Number of tasks provoking 
inference and argumentation

„Matematyka z plusem” [eng. „Mathematics with plus”], publishing 
house: Gdańskie Wydawnictwo Oświatowe, grade 7  

(Bolałek et al., 2020)
1403 32

(3%)

„Matematyka z plusem” [eng. „Mathematics with plus”], publishing 
house: Gdańskie Wydawnictwo Oświatowe, grade 8 

(Bolałek et al., 2021)
1080 64

(6%)

“Matematyka z kluczem” [eng. “Mathematics with key”], publishing 
house: Nowa Era, grade 7 

(Braun et al., 2020)
964 39

(4%)

“Matematyka z kluczem” [eng. “Mathematics with key”], publishing 
house: Nowa Era, grade 8 

(Braun et al., 2021)
1044 140

(13%)

The data presented in the table and other analyses conducted by students writing their 
master’s theses at the Faculty Centre for the Didactics of Mathematics and Informatics 
under the supervision of the author of this article show that there are too few open tasks, 
problem-type tasks, tasks with excessive and insufficient data, i.e. tasks that provoke obser-
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vation, searching, experience, argumentation and research. There is a lack of atypical tasks, 
i.e. tasks that are new to the student and that do not follow familiar patterns.

Examples of tasks that provoke inference and argumentation are:

1. Justify that the product of two two-digit numbers cannot be a five-digit number. 
(Bolałek et al., 2020, grade 7).

2. In a quadrilateral ABCD, the points E, F G, H are marked successively on the sides 
AB, BC,CD and DA in such a way that AE=BF=CG=DH. Prove that the quad-
rilateral EFGH is a rhombus. (Braun et al., 2021, grade 8).

3. Research 

3.1. Critical Thinking and the Pandemic

This chapter presents an excerpt from a study on a qualitative analysis of the ways in which 
students in grades 7 and 8 solved non-standard, proof, inference and argumentation tasks, 
concerning the way in which students approached the challenge presented to them, the 
path of reasoning taken, the correctness and the way in which they argued the provided 
result (Juskowiak, 2019).

The pandemic, a period of more than a year of remote work, has completely changed the 
way lessons are conducted (Juskowiak, Vetulani 2022; Jaskulska 2021), at first disorganis-
ing the learning-teaching process and reducing it in many cases to simply sending students 
work to be done. Over time, synchronous remote classes started to be arranged on learn-
ing platforms. This has definitely changed the definition of lesson delivery. Numerous new 
remote work tools and applications were introduced to support the introduction of mathe-
matical concepts, lessons either became lectures with elements of demonstration, or a time 
of discussion and chat between students and teachers. Few teachers were able to engage all 
of their students and review their progress on an ongoing basis, and there were times when 
students did not participate at all.

It was suspected, and at the same time expected, that reinforcing the role of student 
autonomy, openness to different sources of information, and the inclusion of a wide range 
of IT tools in task work would enhance the development of critical thinking. A need 
therefore arose to see to what extent these hypotheses were confirmed by the students’ 
performance.
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4. Methodology

The article presents and discusses exemplary solutions to the same geometric task that was 
performed by Polish students in seventh grade (aged 14-15). The discussion will concern 
the features specific to critical thinking found in the solutions. The presented works come 
from more comprehensive research conducted by the author of this article on a group of al-
most two thousand students aged 14 who solved 6 geometrical tasks requiring justification. 
The main aim of the research was to test students’ readiness to demonstrate formal math-
ematical thinking and the ability and means to justify their judgments.

Only an excerpt of the findings is included in this paper, with additional discussion 
focused on analysing the students’ solutions to one of the worksheet tasks in the scope of 
manifestations of critical thinking. 

The research fragment described here addresses the following research question:

Whether and how the implementation of remote work tools during the pandemic influenced the 
course and effect of the process of forming students’ reasoning and argumentation skills, using man-
ifestations of formal thinking.

Studying the performance of students in a specific school context allows for a better un-
derstanding of the effectiveness of the educational process. Comparing the results of stu-
dents using the same textbook, working with the same teachers, on the basis of the same 
working methods and concepts, allows the effectiveness of the given educational materi-
al to be assessed and can help identify strengths and areas for improvement. The time of 
the pandemic, as mentioned earlier, provided an opportunity to incorporate a number of 
new remote working tools, the use of which was expected to change the concept of work-
ing with students, to strengthen the role of student autonomy, and to enhance the devel-
opment of critical thinking. 

The results of the analysis relate to:

 ■ Two groups of students attending the same school (students in grades 7 & 8, aged 
14-15), taught by the same teacher and using the same textbook,

 ■ Solutions to one task from the test sheet3,
 ■ Analyses of work sets from two periods – pre-pandemic and post-pandemic (June 

2022)4.

3 The publication’s limitations do not allow for the presentation of results and conclusions from the 
analysis of the solutions of all tasks.

4 The author of this article continues to conduct research using the above work sheets. The studies have 
been extended to secondary schools and future mathematics teachers.
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The students had 45 minutes to solve the tasks, but the time limit could be extended if 
necessary, upon the teacher’s agreement. They were allowed to use geometric instruments 
and calculators. The teachers, as supervisors, were given detailed instructions on the organ-
isation and conduct of the test.

The research tool was the following task

Content of the task5:

Check what is the ratio of the area of shaded figures to the area of the rectangle.

It is possible to use a variety of ways to look for the answer to this question. One expect-
ed approach might be to divide the whole rectangle into parts, in which the shaded and 
white parts have equal areas:

Figure 1. Drawing proof showing the equality of the shaded and white surfaces across the rectangle

5 This task is taken from the textbook for grade 1 of lower secondary school, Gdańskie Wydawnictwo 
Oświatowe.
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5. Results and Short Discussion

5.1. Examples of Solutions

The analysis identified the dominant ways of working on the task. These are:

 ■ Measurement and billing,
 ■ Inference using the symbolic language of mathematics,
 ■ Solution as a description of the proceedings,
 ■ Transformation.

In addition, distinctions were made:

 ■ No solution and no comment,
 ■ No solution but with commentary,
 ■ No solution but with the correct result,
 ■ No solution, wrong result. 

One example of a student’s solution for each of the approaches is presented below, ac-
companied by short didactic commentary.

5.1.1. Measurement and Account

Figure 2. Example of a solution by measurement and account 

Text translation

The area of the shaded 
figure constitutes 50% of 
the area of the rectangle.
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The student took on the challenge of dealing with a new situation – a task that lacked 
numerical data. He introduced a line of reasoning (successive steps of reasoning) direct-
ly related to the formulated question. The initial entries show that he intended to first de-
termine the size of the whole rectangle, then the size of the areas of two triangles, treated 
without justification as congruent triangles, and then to compare the values so obtained. 
He attempted to carry out this concept by calculation, unfortunately making an incorrect 
assumption at the start of his work regarding the length of the base of the shaded triangle. 
The content of the task did not provide any information on the length of any of the sides. 
The student measured the lengths of the sides of the rectangle and the length of the base of 
the triangle using a ruler. He used the correct formulae and correctly deduced that if the 
value of the area of the shaded triangles equals half the area of the rectangle, then this val-
ue is 50% of the area of the rectangle. 

5.1.2. Inference Using the Symbolic Language of Mathematics 

Figure 3. Example of a solution by inference using the symbolic language of mathematics

The student, noticing the lack of data in the content of the task, independently de-
termined the lengths of all the segments appearing in the figure. He assumed that the 
lengths of the bases of the shaded rectangles and the white triangle between them are 
the same, without justifying this step. Furthermore, by describing the sides a and b with 
the same symbols, he assumed that they were of the same length and were parallel, an 
action he also did not justify. However, he used these symbols twice for two different 

Text translation

Shaded figure – 
½ field



Chapter 7: Ways of Solving Mathematical Tasks by Students Aged 14–15 183

purposes, once describing the lengths of the sides of the triangle that he had introduced, 
and in the second case using the commonly used formula for the area of a rectangle. He 
correctly answered the question in the task using the ratio of the sum of the areas of the 
triangles to the area of the rectangle using the symbolic notations introduced. Finally, 
he created a ratio between the fields thus described using the symbolism he had created 
himself: cf/2cf, which led him to the fraction ½. This result was the basis for the verbal 
answer that the shaded figure was a ½ field.

5.1.3. Solution as a Description of the Proceedings

Figure 4. Example of a solution by description of proceedings

The student has not included any calculations, although the description states that 
he has calculated the area of the rectangle and the areas of the shaded triangles. He de-
scribes the values of the areas with specific numbers, and therefore presumably mea-
sured the lengths of the sides needed to do the calculations. As above, he assumes that 
the lengths of the bases of the shaded triangles are the same. From the statement ‚it is 
easy to see’ it can be inferred that the assumptions made are the result of his observation 
and analysis of the drawing. The student did not justify the correctness of the assump-
tions and conclusions made. 

Text translation

I calculated the 
area of the rectan-
gle (28). It is easy to 
see that the shaded 
areas are divided 
into two triangles. 
Their area is 14 or 
1/2 of the whole 
rectangle.
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5.1.4. Transformation 

Figure 5. Example of a solution by transformation

The last of the students’ approaches consisted of implementing the observation of the re-
lationships of the objects in the drawing. It can be assumed that the student intended to use 
the concept of transforming the drawing by using parallel displacement, although the first at-
tempts to create an adequate drawing failed. The student assumed the parallelism and equal 
length of the corresponding pairs of sides of the resulting triangles, which is evident from the 
description, and not from the accompanying drawings. The author of the solution states that 
the newly created figure is a parallelogram, but bases the justification for his solution on the 
fact that the entire area is made up of 4 identical triangles, two of which are shaded. Howev-
er, there is no justification of the assumptions made and no reference to theory.

5.1.5. No Solution and No Comment 

Figure 6. Example of no solution and no comment

Text translation

From these figures, we 
can form a parallelo-
gram consisting of 4 of 
the same triangles.
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This group of responses came from students who skipped this task completely – pre-
sumably they had no idea what could be done with such a task at all or did not want to 
think about it.

5.1.6. No Solution But with Commentary 

Figure 7. Example of no solution but with commentary

The students often included the following type of entry. The theory of the areas of plane 
figures is introduced in grade 6 of primary school – it can be assumed that the problem was 
not knowledge or lack thereof, but a deficiency in the skills involved in dealing with a com-
pletely new and unusual situation of missing numerical data in an otherwise typical task 
and the need to justify the performed operations. However, it must be assumed that the 
student did not have the knowledge needed to solve this task.

5.1.7. No Solution But with Correct Result 

Figure 8. Example of no solution but with correct result

The student only wrote down the answer. From the markings introduced in the figure, 
it can be suspected that the student assumed the equality of the corresponding areas made 
up of triangles labelled with the same numbers, which in turn are made up of the same two 

Text translation

I do not have the necessary 
knowledge.

Text translation

It’s a half of rectangle’s field.
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triangles. No calculus, no description, no justification of the reasoning carried out. This 
reasoning is intuitive. It can be assumed that the student noticed (assumed) that the trian-
gles with areas denoted by the value 2 are congruent (as this can be perceived), so their areas 
are the same, but the further stage of reasoning required the application of mental manip-
ulation and justification. The student’s work does not provide a basis for assessing whether 
what he presented as the result does stem from a ‘guess’.

5.1.8. No Solution, Wrong Result
 

Figure 9. Example of no solution and wrong result

The above answer that two parts out of five were marked was not an isolated answer. 
There were also responses that the shaded triangles represented two thirds of the area of 
the rectangle. 

Asking which part of the rectangle is the painted area may certainly not have triggered 
geometric thinking in the students, instead invoking an association to tasks from grade 
four, where questions of the same type involved verifying their knowledge and skills in the 
area of ‘simple fractions’. Applying this reasoning when we cannot see or do not know that 
the rectangle/figure has been divided into exactly the same congruent figures will not al-
low the student to get the correct answer.

5.2. Impact of the Pandemic on the Students’ Approach to the Task

The table below shows the results of the analysis of the solutions to the presented task, bro-
ken down by the distinguished types of response. It provides the amount of ways in which 
the surveyed students acted in the time before and after the pandemic.

Text translation

The rectangle is divided 
into 5 parts so the area 
of the shaded figure is 
2/5 of the whole area.

2/5 because these parts 
are coloured in
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Table 2. Summary of approaches to working on the task, before and after the pandemic period

Solution methods Pre-pandemic research
Amount of solutions

Post-pandemic research
Amount of solutions

Measure and calculate 14 2

Reasoning with symbols 4 1

Verbal solution 2 1

Transformation 4 2

No solution, without comment 2 7

No solution, with comment 4 0

No solution, with correct answer 1 6

No solution, with incorrect answer 0 3

Catfish 31 23

Although the comparison is between two small groups, with 31 students before the 
pandemic and 23 after the pandemic, one can take the liberty of noting and formulating 
some regularities:

 ■ Before the pandemic, the dominant way of working was to use measurement and 
calculus strategies; after the pandemic, all four ways of working on the task (meas-
urement and calculus, inference using the symbolic language of mathematics, solu-
tion as a description of the procedure, rectangular transformation) were used a sim-
ilarly low amount of times,

 ■ Before the pandemic, a significant number of students attempted to solve the task, 
whereas after the pandemic a significant number of students did not carry out or 
write down any reasoning. 

6. Summary and Conclusions 

Critical thinking is a desirable competence in all disciplines of life, but despite provisions 
in various documents, such as curricula or core curricula, concerning the development of 
manifestations of critical thinking, activities and topics focusing on this issue are rare, even 
during mathematics lessons. As already mentioned, an effectively stimulated process of de-
veloping mathematical thinking results in the development of critical thinking. The anal-
ysis of the solutions to the task presented in this article shows the difficulties students may 
encounter in implying mathematical operations as part of the process of solving unusual 
mathematics tasks, choosing effective, in their understanding, ways of reasoning, justify-
ing their judgements, reflecting, choosing the appropriate methods or making comments, 
and, finally, asking questions. These skills should be acquired by students in parallel with 
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the process of acquiring mathematical knowledge, and they should face different challeng-
es and new situations at each level of their intellectual development. Upon deeper analy-
sis, it can be seen that students make attempts at analysis and reflective observations. They 
also introduce their own assumptions to trigger a planned and familiar reasoning process 
– this is, unfortunately, a familiar pattern of behaviour that they like to implement some-
what forcefully in unfamiliar cases. Students make correct attempts to use symbolic lan-
guage, the language of mathematics, and the properties of concepts. 

In the case of the task that forms the basis of the analysis presented in this article, it has 
already been recognised that students:

 ■ Mostly give the correct answer,
 ■ When providing answers, they overwhelmingly do not use formal reasoning,
 ■ Mostly use specific measurements with a ruler, 
 ■ Do not see the need to justify their statements,
 ■ Apply faulty reasoning,
 ■ Are unable to separate their reasoning from the specific drawing provided with 

the task.

Despite many interesting ideas for solving the task, students are unable to carry out com-
plete and correct reasoning at the level of formal or even empirical thinking.

A comparison of the students’ approaches to solving the task before and after the pan-
demic period shows significant differences. These differences are both positive and negative. 
The positives include the fact that the strategies used by the students after the pandemic are 
more varied. Perhaps the fact that they were forced to be more independent in their work 
triggered their desire for independent exploration. On the other hand, too many students 
gave up on solving the task. This may be because they are not persistent in their search, the 
lack of an immediate idea discouraging them from working further. 

There is a need for more open tasks, problem tasks, tasks that provoke observation, 
exploration, experience, argumentation, and research. There is a lack of atypical tasks, 
i.e., tasks that are new to the student and do not follow familiar patterns. On the oth-
er hand, it is the teacher’s responsibility to provoke, develop, and support mathematical 
thinking in students. 
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Appendix

The full worksheet used in the research. 

Text translation

1. Divide the rectangle into 
three figures with equal are-
as.

Describe the solution of the 
task:
Justify the correctness of the 
solution: 

2. Divide the triangle into 
three triangles with equal 
areas.

Describe the solution of the 
task:
Justify the correctness of the 
solution: 

3. Divide the rectangle into 
three figures with equal areas 
using two rays coming from 
the apex A. 

Describe the solution of the 
task:
Justify the correctness of the 
solution:
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Text translation

4. Justify that the diagonal of 
a square divides it into trian-
gles with equal areas.

Describe the solution of the 
task:
Justify the correctness of the 
solution: 

5. Check what fraction of the 
rectangle’s area is occupied 
by the shaded figure.

Describe the solution of the 
task:
Justify the correctness of the 
solution: 

6. Points A, B, and C divide 
the circle with center O into 
three equal parts. Justify that 
triangles ABO and BCO are 
congruent.

Describe the solution of the 
task:
Justify the correctness of the 
solution:
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CHALLENGING ASPECTS OF METACOGNITIVE SUPPORT IN THE 
CLASSROOM AND HOW TO PREPARE TEACHERS FOR THEM 

Summary: Supporting students’ metacognition in teaching is both an important goal of teaching 
and a means for improving learning achievement. So far, however, there is a lack of studies on how 
to best prepare teachers for supporting metacognition in the classroom. This chapter explains the 
complexity of metacognitive support and describes an analytical tool that has proven useful in im-
proving teachers’ skills to foster students’ metacognition. It also discusses the findings from a pre-
liminary study in which prospective teachers learned how to support metacognition. Based on the 
theory-based considerations concerning the complexity of metacognitive support and on findings 
from this study, the chapter underscores the need for further research to help teachers improve their 
skills for metacognitive support.
Keywords: metacognitive support, metacognition, teacher noticing. 

1. Introduction

Metacognition refers to a person’s own cognition about cognition and regulation of cogni-
tion (Brown, 1978; Flavell, 1979). Since Flavell (1976; 1979), metacognition has been ar-
gued to be a critical factor in improving students’ learning and enhancing their learning 
achievement (Brown, 1978; Glaser, 1990; Lingel et al., 2014; National Research Council, 
2005; Schunk & Greene, 2018; Veenman & Elshout, 1995; Young & Fry, 2008). 

Students, who behave in a metacognitive way by taking control over their learning pro-
cess, plan, control and evaluate their cognitive activities. This, in turn, enables them to rec-
ognise the need for changing their current cognitive activities or reorganising their knowl-
edge (Gunstone, 1991; Lee, 2005; Tsai, 2001). This kind of behavior becomes increasingly 
important not only in school education but also outside of it. The rapid growth of the 
amount of knowledge, information and technology requires a constant learning process, 
which has to be controlled by the learner to successfully master new challenges in private, 
professional, and social life. Therefore, acquiring skills for an adequate regulation of one’s 
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own cognitive activities becomes a necessity for students to succeed in the life-long learn-
ing in the 21st century. 

In the context of school education, systematic reviews and meta-analyses of interven-
tion studies have provided evidence that promoting students’ metacognition increases 
their cognitive learning achievement (De Boer et al., 2018; Dignath & Büttner, 2008; Ver-
schaffel et al., 2019). Furthermore, a meta-review of studies by Wang et al. (1990) showed 
that metacognition is the most important predictor of learning performance. This finding 
is consistent with the results from a meta-analysis by Hattie (2009). Supporting students’ 
metacognition is therefore regarded both as an important goal of teaching and as a means of 
enhancing teaching effectiveness (Bransford & Donovan, 2005; De Boer et al., 2018; Hassel-
horn, 1992). Consequently, it is not surprising that metacognition is gaining more and more 
attention in various disciplines related to school education (Dignath & Mevarech, 2021).

In his recent reflection on the field of research on metacognition, Azevedo (2020) con-
cluded that there is an urgent need for exploring two questions: How can teachers foster 
metacognition in their students within their everyday teaching and how can the teachers 
be best prepared for this task? Azevedo’s conclusion is based on research findings indicat-
ing that teachers lack knowledge about metacognition and rarely support it in their stu-
dents (e.g., Dignath & Büttner, 2018; Dignath & Veenmann, 2020). Hence, more research 
is needed to overcome the gap between research on metacognition and practice in schools 
(Dignath & Mevarech, 2021). 

To support students’ metacognition, several instructional interventions have been devel-
oped and implemented in teaching (see Mevarech & Kramarski, 2003; Schneider & Artelt, 
2010 for an overview of interventions implemented in teaching mathematics). Positive ef-
fects of these interventions on students’ cognitive learning achievement led to the assump-
tion that it is possible to train teachers in supporting students’ metacognition. However, 
analysing the effects of the training offered to the teachers on the metacognitive support pro-
vided by these teachers in their classrooms was not the focus in these interventions. There-
fore, no direct implications for a future teacher training can be derived. Furthermore, dif-
ferent approaches to support metacognition were implemented in different interventions. 
This makes it difficult to analyse and compare intervention studies with regard to their ef-
fects on the teachers’ support.

Inspired by findings from metacognitive interventions, many researchers put forward 
recommendations for teachers of how to support students’ metacognition in natural class-
room settings. They stress, for instance, the need for engaging students in metacognitive ac-
tivities, particularly in class discussions (Veenman et al., 2006; Zepeda et al., 2019; Zion et 
al., 2005). Supporting metacognition (hereafter: metacognitive support) is a complex pro-
cess, in which teachers have to orchestrate their own instructions and students’ reactions 
to them. This process involves an ongoing and focused observation of interactions in class 
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discussions and cannot be reduced to a collection of easy instructions (Hasselhorn, 1992; 
Zepeda et al., 2019). Understanding its complexity is necessary to help teachers support 
metacognition in their teaching. 

The purpose of this chapter is twofold. First, it explains a variety of aspects of class dis-
cussions teachers have to orchestrate to support metacognition in their students. In doing 
so, the paper sheds light on the complexity of metacognitive support. Second, it discusses 
the question of how teachers can learn to support metacognition in their students. Since 
the extent to which teachers support students’ metacognition depends on what they no-
tice in their classrooms, this discussion is framed by research on teacher noting (e.g., Jacobs 
et al., 2010; van Es et al., 2017).

In the following, first the meaning of metacognition and researchers’ recommendations 
on how to promote metacognition in class discussions are explained. Next, the chapter ad-
dresses the question of how teachers can learn to support metacognition in their classrooms. 
In this discussion, the construct “teacher noticing” is explained. Afterwards, the paper de-
scribes the design of a course aimed at enhancing prospective teachers’ sensitivity to vari-
ous aspects of metacognitive support. It briefly illustrates the results of a pilot study, which 
explored the effects of this course. Finally, implications for further research are given.

2. Metacognition

Metacognition is traditionally defined as a person’s own cognition about cognition and reg-
ulation of cognition (Brown, 1978; Flavell, 1976; 1979). It is generally accepted that a dis-
tinction can be made between “metacognitive knowledge” and “metacognitive skills” (Veen-
man, 2005). Metacognitive knowledge refers to the knowledge one has about the interplay 
between task, strategy characteristics and person. Metacognitive skills, in contrast, refer 
to the actual regulation of and control over one’s learning (Flavell, 1979; Veenman, 2005). 

Metacognitive knowledge can enable an individual to engage in a particular learning sit-
uation in a particular way, based on their current knowledge about this situation. The com-
ponent task consists of knowledge about task difficulty, resources necessary to complete the 
task, knowledge about the goals of a particular task and possible outcomes (Flavell, 1979). 
The component strategy refers to knowledge about approaches that can be used to achieve 
a particular goal. It can inform decisions on how to proceed in a certain situation (Flavell, 
1979). Finally, the component person includes, among other things, the individual’s knowl-
edge and beliefs about themself as a thinker or learner, particularly about their abilities to 
learn in a particular domain or to solve a particular kind of task (Flavell, 1979; Mevarech 
& Fridkin, 2006). According to Flavell (1979), all components of metacognitive knowledge 
overlap and are not clearly distinguishable from each other. An individual who activates 
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this knowledge usually works with all three components of it, as far as these are available 
to them in the moment (Hasselhorn, 1992). Similarly to other kinds of knowledge, meta-
cognitive knowledge can be inadequate or fragmentary, and does not automatically lead to 
an adequate strategic behaviour or to a better performance.

Interestingly, a longitudinal study conducted by Lingel et al. (2014) has generated em-
pirical evidence that metacognitive knowledge related to learning mathematics is of sub-
stantial importance for students’ mathematics achievement and for the development of this 
achievement at the beginning of secondary school. These findings suggest that providing 
students with opportunities to generate and use their metacognitive knowledge in classes 
can improve their learning achievement.

Metacognitive skills, in contrast, refer to the active monitoring, regulation and or-
chestration of cognitive processes, usually in order to achieve a concrete goal or objective 
(Brown, 1987; Flavell, 1976). Learners manifest their metacognitive activities by planning 
and controlling their thought processes and reflecting on them and their results. For in-
stance, when proving a mathematical theorem or solving an equation, students who meta-
cognitively regulate their learning, look for information given in their assignment, specify 
what they are asked for, plan how to best proceed in order to achieve their goals or sub-goals, 
and plan which strategies and previous learning experiences can be useful. While execut-
ing their plan, they control their argumentation, calculations, and their use of representa-
tions. They also control their progress and reflect if there is a need for adaptations. Finally, 
they reflect on their approach, the assignment, and their understanding of what they have 
achieved and learned in the particular situation. This reflection enables them to make their 
learning experience and learning achievement conscious for them and, consequently, to re-
organise their knowledge, if necessary. Of course, metacognitive regulation does not only 
refer to solving concrete problems or tasks. It also manifests in controlling the correctness 
of an argument and reflecting about one’s own knowledge, properties of mathematical ob-
jects, or one’s own conceptions and misconceptions related to them (see examples in Co-
hors-Fresenborg & Kaune, 2007; Nowińska, 2016).

Intervention studies have generated empirical evidence that supporting students’ meta-
cognitive skills can improve student’s learning achievement (e.g., Mevarech & Kramar-
ski, 1997; Mevarech & Kramarski, 2014). This support is, however, a very complex task for 
teachers (Depaepe et al., 2010). 

3. Metacognitive Support in Class Discussions

One challenging aspect of supporting students’ metacognition in natural classroom set-
tings is to help students develop a metacognitive habit toward their learning process, there-
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fore enabling them to spontaneously and adequately regulate their own cognitive activi-
ties and comprehension (Hasselhorn, 1992; Schunk & Greene, 2018). Undoubtedly, such 
a habit develops with practice. Based on instructional interventions, researchers argue that 
teachers’ actions and interactions with students in class discussions have the potential to 
facilitate this practice. They also claim that providing learning materials with integrated 
metacognitive guidance might support students’ metacognition, but – as shown by an in-
tervention study in science education (Eggert et al., 2013) – this is not sufficient to ensure 
that students use this guidance in an appropriate way. Thus, researchers’ recommendations 
related to metacognitive support in teaching stress the crucial role of engaging students in 
metacognitive activities, particularly in class discussions (Veenman et al, 2006; Zepeda et 
al., 2019; Zion et al., 2005). There, students externalise their metacognitive thoughts and 
get feedback on them from their teacher or classmates. According to Zion et al. (2005), 
“metacognitive skills development is typically fostered by asking students to reflect on and 
explicitly monitor their learning performance” (p. 959). Veenman et al. (2006) also argue, 
that engaging learners in a metacognitive reflection on what to do, when to do it, and why 
it is done, and how to thereby achieve a particular cognitive goal, facilitates the develop-
ment of students’ metacognitive skills and metacognitive knowledge. 

Teachers can support students’ engagement in metacognition by integrating metacog-
nitive activities into their own repertoire, for instance, by demonstrating metacognitive ac-
tivities and explaining their significance for students’ learning. This might, however, not be 
sufficient, because observing their teachers’ behavior and metacognitive activities does not 
explicitly challenge the students to enact and internalise the demonstrated behavior (De-
paepe et al., 2010; Schraw, 1998; Veenman et al., 2006; Zepeda et al., 2019). Teachers also 
need to explicitly instruct students to show a certain metacognitive behavior and, moreo-
ver, give them opportunities to regulate their learning activities in a self-determined way, 
i.e. autonomously and without encouragement from their teacher (Kramarski & Mevarech, 
2003; Mevarech & Kramarski, 2003; Papleontiou-louca, 2003; Veenman et al., 2006; Zion 
et al., 2005). When providing metacognitive support, teachers not only need to enhance 
the quantity of students’ metacognitive activities, but also the quality of them – the ex-
tent to which metacognitive activities are elaborate and combined with explanations. If 
the metacognitive activities are executed without an elaborate explanation, they could re-
main superficial. Superficial metacognitive activities might not result in the students iden-
tifying mistakes, misconceptions, and problems in comprehension and therefore recognis-
ing the need to reorganise their current course of action or knowledge. 

Researchers also stress the necessity of helping students to precisely articulate their 
metacognitive thoughts by reflecting on questions like what is important in a certain learn-
ing situation, and why and how the important knowledge or skill can be used in other sit-
uations (Costa, 1984; Kramarski & Mevarech, 2003; Veenman et al., 2006). This reflec-
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tion makes the learning process more conscious for students, which is important to extend 
their metacognitive knowledge. Teachers can make explicit references to these questions 
and stress the importance of asking them. Furthermore, they need to motivate students to 
make the articulation of their answers a habit of learning. 

Addressing recommendations for metacognitive support, Bransford and Donovan (2005) 
further argue that students are better able to regulate their learning if their metacognitive 
knowledge includes knowledge about subject-specific lenses through which individuals in 
a particular discipline view the world and organise their knowledge. Therefore, they claim 
that metacognitive support provided by teachers should also include engaging students in 
discussions on intellectually challenging questions that make the subject-specific lenses vis-
ible to the learners. In mathematics, such questions can refer to epistemological and onto-
logical aspects of knowledge or conceptions of proof or truth (Hiebert & Grouws, 2007; 
Hill et al., 2008; Lee, 2005). 

The described recommendations on how teachers can support students’ metacogni-
tion show the variety and complexity of factors involved in this support. Teachers are 
expected to invest an additional effort in class discussions to ensure adequate and pro-
longed connectivity between students’ cognitive and metacognitive activities, quality 
of metacognitive activities and a clear articulation of what, when, why and how (Veen-
man et al., 2006). 

Another important challenge that teachers have to overcome within their metacogni-
tive support is to orchestrate all interactions in a class discussion. On the one hand, teach-
ers must encourage individual students to externalise their metacognitive thinking. On the 
other hand, they must support students’ interactions with each other and assure a focused 
class discussion. This is only possible if the students and the teacher frame their questions 
and contributions precisely, link them to what has been said or asked so far, elaborate and 
build on previous contributions by themselves or others, and justify why they agree or dis-
agree with the statements made by others (Cohors-Fresenborg & Kaune, 2007; Kramarski 
& Mevarech, 2003; Michaels et al., 2008). Cohors-Fresenborg and Kaune (2007) describe 
this behavior as discursive behavior. They argue furthermore that discursive behavior also 
involves students and teachers making efforts to avoid actions and interactions that might 
impair deep thinking and cause misunderstandings, for instance talking at cross-purpos-
es and providing confusing, superficial comments or inadequate summaries of what oth-
ers have said. These are examples of what Cohors-Fresenborg and Kaune (2007) call nega-
tive discursive activities. 

Despite many recommendations made by researchers so far, the question of how teach-
ers can be prepared for implementing these recommendations in their teaching in a way 
that leads to sustainable improvements in students’ metacognition and learning achieve-
ment remains open. 
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4. Learning to Support Metacognition

Supporting students’ metacognition requires that teachers not only plan how to encourage 
students in metacognitive activities but also that they continuously observe the students’ 
reactions and interactions in class discussions and interpret them from the perspective of 
metacognitive support. These classroom observation and interpretation activities form the 
basis for deciding how to respond to classroom events in the moment in order to promote 
students’ metacognition. This important part of teaching must be considered to answer the 
question of how teachers can learn to consciously support metacognition in their students. 
In the following, this question will be discussed from the theoretical perspective of teach-
er noticing that is not only a common practice in teaching (Jacobs et al., 2010) but also an 
important skill for teaching (van Es et al., 2017).

Teacher noticing refers to teachers’ in-the-moment decision making, which depends 
on what teachers attend to in their teaching and how they reason about what they have 
perceived to make decisions about how to proceed with their lesson (Jacobs et al., 2010). 
Over the last few years, several models of teacher noticing have evolved (see Santagata et 
al., 2021 for an overview). Their common feature is that they differentiate between the fol-
lowing interrelated components: Attending (to noteworthy features of classroom interac-
tion), Interpreting (reason about what is observed) and Decision making in the classroom 
(decide how to respond) (e.g., Blömeke et al., 2015; Jacobs et al., 2010; van Es et al. 2017; 
van Es & Sherin, 2002; 2021). 

Van Es and Sherin (2008) have shown that teachers can improve their noticing by ana-
lysing representations of practice – particularly move the focus of what they attend to (e.g., 
from a focus on teacher’s actions to students’ conceptions) and change their interpretations 
(e.g., from superficial evaluative comments to evidence based interpretative comments). This 
improvement, in turn, enables teachers to make well-grounded in-the-moment decisions on 
how to proceed with their own lessons (Sherin & van Es, 2009). To improve teachers’ no-
ticing, van Es et al. (2017) designed a framework for learning to notice. They tested it in the 
context of noticing “ambitious mathematics teaching” in representations of practice. Its first 
phase focuses on developing what candidates attend to in classroom interactions, the sec-
ond phase emphasises the attention to the details and the reasoning about observed events, 
and the third phase brings together discrete observations and interpretations into a more 
integrated analysis. The authors argue that applying this framework can support teachers 
in their efforts to integrate ambitious instruction into their teaching (van Es et al., 2017). 

Similarly, it seems plausible that improving teachers’ noticing related to aspects of class 
discussions, that have the potential to support students’ metacognition, can help teachers 
integrate metacognitive support into their teaching. To achieve a stronger focus of teach-
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ers’ attention on those aspects, teachers need a conceptual understanding of metacognition 
and activities they are expected to promote in class discussions, thus of metacognitive and 
discursive activities. Their understanding must also include knowledge about aspects of 
class discussions that may hinder students’ development of adequate metacognitive knowl-
edge or an adequate use of metacognitive skills. As argued in the previous section, this re-
fers particularly to negative discursive activities. Furthermore, teachers need to learn how 
to observe and interpret their teaching through a “metacognitive-discursive lens” or – in 
other words – to develop a “metacognitive-discursive vision” for their teaching that guides 
their attention and in-the-moment decisions in the classroom. Its guiding function mani-
fests itselfs in teachers’ sensitivity to details concerning their students’ as well as their own 
metacognitive, discursive, and negative discursive activities, for instance, to the extent to 
which metacognitive activities are well-reasoned or superficial. Following the argumenta-
tion by van Es et al. (2017), we assume that teacher noticing related to these activities can 
be improved by involving teachers in a training course where they are supported in ana-
lysing and interpreting these activities in representations of practice. Due to the complex-
ity of metacognitive support, as explained in the previous section, this is, however, a diffi-
cult learning process for teachers and a challenging task for teacher educators who have to 
design such a process. To make the learning process effective, it may be useful to provide 
an analytical tool (Levin et al., 2009; van Es et al., 2017) that the teachers can use and in-
ternalise as a metacognitive-discursive lens to guide their attention while analysing rep-
resentations of practice. 

The next section provides an example of an analytical tool that has proved useful in 
working with teachers to improve their noticing related to metacognitive support in class 
discussions (e.g., Cohors-Fresenborg et al., 2014; Kaune & Cohors-Fresenborg, 2010; Now-
ińska, 2018).

5. Analytical Tool for Analysing Metacognitive Support in Class Discussions

When observing and interpreting representations of practice in the form of videoed or tran-
scribed lessons from the perspective of metacognitive support, teachers act as critical ob-
servers (hereafter: observer). To guide their attention and support interpretations of what 
they perceive, an analytical tool consisting of two elements has been developed. 

Its first element is a Category System that decomposes metacognition into three categories 
of metacognitive activity: planning (P), monitoring (M), and reflection (R) (Table 3 in the 
appendix). For the reasons explained in the section on metacognitive support in class dis-
cussions, it also includes the categories “discursivity” (D) and “negative discursivity” (ND). 
Each category consists of subcategories, and some subcategories are further split into dif-
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ferent aspects. The subcategories and aspects specify how activities of a particular category 
can manifest in class discussions. For example, the subcategory M5 states that metacogni-
tive monitoring can manifest itself as checking the correctness or consistency of an argu-
mentation or statement (see examples in Transcript linear functions in the appendix). The 
subcategory D1b, stating ones’ own agreement or disagreement with answers or opinions 
proposed by others, is an example of a discursive activity (see examples in Transcript lin-
ear functions in the appendix).

When using the Category System, observers must pay attention to the details of metacog-
nitive, discursive, and negative discursive activities, for instance, whether metacognitive 
activities are elaborate and combined with clear explanations and justifications. The Cat-
egory System offers the possibility to label such activities by extending the code of the re-
spective metacognitive or discursive activity with the prefix r (for reason). In addition, the 
prefix d (for demand) can be used to code instructions that explicitly require students to 
plan, control, reflect, or behave in a discursive way, by adding it to the code for the specific 
metacognitive or discursive activity that was demanded. The purpose of using this prefix 
is to analyse the extent to which learners engage in metacognitive activities in a self-deter-
mined way and the extent to which they do so only upon teacher instruction. When using 
the Category System to analyse class discussions, one must think of it as a network of con-
cepts and codes for interpreting and describing metacognitive, discursive, and negative dis-
cursive activities rather than as a system of strictly distinct categories for labeling easily ob-
servable behaviors. As the coding is based on an interpretative process and most activities 
cannot be interpreted in an unambiguous way (see examples in Transcript linear functions 
in the appendix), the purpose of using this tool is not to find “the right” codes. The purpose 
is rather to consider different possible interpretations of an activity and choose a code that 
best describes its content and intention. In doing so, observers focus their attention on ev-
idence allowing them to state if an activity can be interpreted in a particular way (e.g., as 
reflection) or if it is well explained or superficial. For each local interpretation of an activ-
ity, observers must also consider the consequences this activity may have for a shared un-
derstanding of issues discussed in the class for the other learners. This intensive interpre-
tative process is not less important than its final product – the overview of metacognitive 
support offered by a teacher and of how it is utilised by students. On the one hand, consid-
ering different interpretations for each activity encourages observers to look for finest de-
tails. On the other hand, checking the consistency of the interpretations generated for every 
activity forces them to generalise their detailed observations. This, in turn, contributes to 
the observers understanding of metacognitive, discursive and negative discursive activities 
and enhances their sensitivity to these. 

The second element of the analytical tool is a set of seven criteria to be answered by the 
observer based on their coded transcript or video. Each criterion focuses on one aspect of 
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class discussions regarded as supporting students’ metacognition. The criteria are formu-
lated as questions to guide the observers’ attention in their analysis of class discussions and 
are therefore referred to as Guiding Questions. 

The purpose of using the guiding questions is to evaluate how well the observed class 
discussion supports students’ metacognition and to underpin this evaluation with evidence 
from the coded class discussion. Thus, the Guiding Questions serve to draw connections 
between metacognitive, discursive, and negative discursive activities observed in a class and 
to analyse them globally from the perspective of metacognitive support (see section Meta-
cognitive support in class discussions). The seven Guiding Questions focus on (1) engaging in 
metacognitive activities, (2) combining metacognitive activities with explanations and jus-
tifications, (3) effects of metacognitive activities on students’ understanding of subject-spe-
cific content1 discussed in class, (4) cultivating discursive activities, (5) dealing with neg-
ative discursive activities, (6) engaging in precise, focused discussions, and (7) discussions 
on intellectually challenging questions. 

For each Guiding Question, the analytical tool offers a rating scale composed of 3-5 
answer categories ordered according to the increasing quality of metacognitive support in 
class discussion. Higher quality refers to an increase in student engagement in metacogni-
tive or discursive activities in a self-determined way. The answer categories include exten-
sive descriptions of observable behavioral patterns in teachers’ and students’ activities and 
their interactions. Table 1 presents the guiding questions and a brief description of the key 
aspects of each answer category.

Table 1. Items (Guiding Questions, GQ) and scales (answer categories) for rating metacognitive 
                  support in class discussions 

Engaging in metacognitive activities
GQ1: Do the learners and the teacher utilise metacognitive activities to elaborate on the sub-
ject-specific content of the class discussion and on their understanding of it?

Answer categories: 
Metacognitive activities … 
1. … hardly occur. 
2. … occur mainly in the teacher’s contributions. 
3. The teacher successfully motivates learners to utilise metacognitive activities. 
4. The learners utilise metacognitive activities in a self-determined way. 

Combination of metacognitive activities with explanations and justifications

1 The term subject-specific content refers to subject-specific questions, problems, concepts, methods, 
strategies, representations, conceptions, or ways of reasoning and validating claims that occur in an 
observed class discussion in a certain school subject.
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GQ2: Do the learners and the teacher combine their metacognitive activities with adequate, elab-
orate explanations and reasons?

Answer categories:
Metacognitive activities with adequate, elaborate explanations and reasons … 
1. … hardly occur. 
2. … occur mainly in the teacher’s contributions. 
3. The teacher successfully motivates learners to combine their metacognitive activities with ade-
quate, elaborate explanations and reasons. 
4. The learners combine their metacognitive activities with adequate, elaborate explanations and 
reasons in a self-determined way. 

Effect of metacognitive activities and students’ understanding of the discussed subject-specific content
GQ3: Do the teacher’s and learners’ metacognitive activities contribute to the learners’ under-
standing of the subject-specific content discussed in class?

Answer categories:
Metacognitive activities that contribute to a deeper understanding of the subject-specific content … 
1. … do not occur. 
2. … occur only locally, i.e., in a few teacher’s or student’s contributions. 
3. … occur systematically in a longer discourse involving several students interacting with each 
other and/or with the teacher.

Cultivating discursive activities
GQ4: Do the learners and the teacher engage in discursive activities and by doing so contribute to 
making the shared argumentation well “orchestrated”, comprehensible, precise, and coherent with 
regard to the subject-specific argumentation and conclusions?

Answer categories: 
Discursive activities … 
1. … hardly occur. 
2. … occur mainly in the teacher’s contributions. 
3. The teacher successfully motivates learners to engage in discursive activities. 
4. The learners engage in discursive activities in a self-determined way. 
5. Learners engage in discursive activities in a self-determined way and with a noticeably high 
degree of elaboration of different point of views.
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Dealing with negative discursive activities
GQ5: Do the learners and the teacher make an effort to prevent negative discursive activities from 
hindering mutual understanding and understanding of the subject-specific content discussed in 
class?

Answer categories: 
Negative discursive activities significantly hinder mutual understanding in the class discussion or 
understanding of the discussed subject-specific content … 
1. … and no effort to change negative discursive behavior is made. 
2. … the teacher unsuccessfully makes efforts to change the negative discursive behavior of learners. 
Negative discursive activities occur, but do not directly affect learners’ understanding of the dis-
cussed subject-specific content but … 
3. … the class discussion loses its argument-based and structured character. 
4. … some local individual contributions are difficult to understand.
5. Negative discursive activities have no significant effect on the learning process, or they hardly 
occur.

Engaging in precise, focused discussions
GQ6: Do the learners and the teacher practice metacognitive and discursive activities in such 
a way that coherent and focused discourses – called “discursive debates” – occur in class?

Answer categories: 
Discursive debates …
1. … do not occur. 
2. … are conducted by the learners, but are very short. 
3. … are conducted by the teacher. 
4. … are conducted by the learners and are quite long and elaborate.

Engaging in intellectually challenging discussions
GQ7: Does the teacher provide the learners with opportunities to discuss intellectually challeng-
ing questions?

Answer categories
Intellectually challenging questions …
1. … are not posed. 
2. … are posed, but no metacognitive and discursive efforts are made to clarify them.
3. … are posed, but are not discussed in a clear and coherent way. 
4. … are posed and discussed in a clear and coherent way.
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The necessity to consider different answers for each Guiding Question forces observ-
ers to look for details in the whole class discussion and to generalise their observations. It 
should encourage observers to justify not only why they chose a particular answer for a cer-
tain Guiding Question, but also to justify why the remaining answers do not adequately 
describe the quality of metacognitive support. This also encourages observers to reflect on 
their decisions and how the observed teachers could have proceeded within the class dis-
cussions to improve the quality of their metacognitive support.

The guiding questions have originally been developed in the context of an interdisci-
plinary research study as a rating system to reliably measure metacognitive support in class 
discussions (Nowińska & Praetorius, 2017). In this context, it was important that the ob-
server of videoed class discussions achieve a high level of agreement on their answers to the 
Guiding Questions. This agreement constitutes evidence that the answers do not substan-
tially depend on the individual person using the Category System and the Guiding Ques-
tions. Locally, different observers may use different codes to capture the same activity, but 
since the answers to the Guiding Questions do not depend on the occurrence of the activ-
ities of a particular subcategory, local differences in coding do not automatically cause dif-
ferences in global ratings provided by different observers. 

Over the last few years, the analytical tool has been extensively used in the work with 
prospective teachers with the purpose to deepen their knowledge about metacognitive sup-
port and aspects of class discussions that support or hinder students’ metacognition. 

6. Explorative Pilot Study

The previous sections focused on theory-based implications for designing a training 
course for teachers, where they can learn how to support students’ metacognition in 
class discussions. The core idea is that improving teachers’ ability to notice and inter-
pret features of class discussions that are relevant for metacognitive support can ena-
ble teachers to provide this support in their classes. Due to the complexity of metacog-
nitive support in class discussions, it seems necessary that teachers learn to notice not 
only positive aspects of class discussions that can foster students’ metacognition, but 
also negative aspects, meaning features of class discussions that may impair the effects 
of students’ metacognition, for instance superficial metacognitive activities or nega-
tive discursive activities. To our knowledge, a systematic investigation of the effects 
of such a training course on teachers’ noticing concerning metacognitive support is 
missing so far. 

In the following, we share our first observations from an explorative pilot study with nine 
prospective teachers who took part in a course aimed at learning to support metacognition 
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(Kok, 2022). The main goal of this course was that the prospective mathematics teachers 
improve their noticing skills with regard to both functional (promoting) and dysfunction-
al (hindering) aspects of class discussions that are relevant for supporting metacognition. 
The course took place online due to the pandemic situation in summer 2021. There were 
meetings once a week for 90 minutes, 13 meetings in total. 

The course consisted of two phases. The first phase provided the prospective teachers 
with information about metacognition and its role in learning mathematics, about metacog-
nitive support, and recommendations for how to support metacognition in class discus-
sion. The participants were introduced to examples of metacognitive, discursive, and nega-
tive discursive activities and were taught about the role these activities have in supporting 
students’ metacognition. The goal of this part was to deepen the participants’ conceptu-
al understanding concerning metacognition and metacognitive support. The second phase 
consisted of analysing, interpreting and evaluating transcript-based examples of class dis-
cussions from the perspective of metacognitive support. The participants used the Category 
System and the Guiding Questions – the analytical tool described in the previous section 
– to guide their attention and interpret metacognitive, discursive and negative discursive 
activities. The decision to use transcript based representations of practice instead of videos 
was made for simple reasons. First, the participants could analyse a transcript at their own 
pace, without the dependence on the speed of a video. Second, it was possible to use an-
onymised transcripts from authentic class situations without violating data privacy. Third, 
little effort was needed to locally adapt the authentic transcripts to the needs of the semi-
nar sessions. This was particularly important for transcripts that were intended to embody 
different positive aspects of metacognitive support that we sought to support the prospec-
tive teachers to notice. For this purpose, transcripts of authentic lessons were edited local-
ly to make both functional and dysfunctional aspects of class discussions well observable 
within a shortened version. 

In the course, three transcripts with positive and negative examples of metacognitive 
support were analysed. The prospective teachers had to analyse and interpret each tran-
script by conducting five reflection steps and documenting their individual work in writ-
ing (Table 2). To give each participant the opportunity to engage in a deep discussion, some 
of these steps had to be done as homework before a course session. 
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Table 2. Five reflection steps for analysing class discussions in transcripts 

Step 1 – Homework assignment to be done in writing in the portfolio

 ■ Read the transcript. What do you notice in the class discussion?
- What features of the class discussion did you notice positively?
- What features of the class discussion did you notice negatively?

Step 2 – Homework assignment to be done in writing in the portfolio
 ■ Analyse and code the transcript with the use of the Category System. Write a comment for 

each coded metacognitive, discursive and negative discursive activity to explain why you 
chose the particular code. 

 ■ What do you notice in the class discussion after coding the transcript? How did the result of 
coding the transcript influence what you are able to notice in the transcript? 

Step 3 – Discussion in a course session
 ■ In the whole group discussion during the course session, the participants discussed the 

transcript which they had already analysed and coded. The goal of this discussion was 
to explore different interpretations for each teacher’s and student’s contribution in the 
transcript and to generate a shared interpretation. 

 ■ After the discussion on the local interpretation of each contribution, the participants were 
supported in interpreting the class discussion from a global perspective of metacognitive 
support. The Seven Guiding Questions served to guide this discussion.

Step 4 – Homework assignment to be done in writing in the portfolio
 ■ How has the discussion of the transcript in the course session influenced what you were able 

to perceive in the transcript? 
 ■ How has the discussion in the course session influenced your global interpretation of the 

class discussion?

Step 5 – Homework assignment to be done in writing in the portfolio
 ■ Which functional examples concerning metacognitive support observed in the transcript 

would you like to integrate in your future work as a teacher? 
 ■ Which dysfunctional examples concerning metacognitive support observed in the transcript 

would you like to avoid in your future work as a teacher? 

The data collected in the pilot study consisted of two tests – one written test at the be-
ginning of the training course and one 12 weeks later, at the end of the course. The goal of 
analysing the tests was to capture changes in the participants’ ability to perceive and inter-
pret features of class discussions that are relevant for metacognitive support. The partici-
pants were not informed about the purpose of the tests. The results of the pretests were not 
discussed in the course.
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The tests consisted of two transcripts – A and B. After reading them, the participants 
had to write comments on which features they perceive in the transcripts and how they 
evaluate the quality of them. Transcript A embodied many features of class discussions 
that may hinder students’ metacognition and very few that may support it. Transcript B, 
in contrast, embodied only the latter. The peculiarity of both transcripts is that they show 
smooth and clear teaching at first glance – but only the deep structure of transcript B stands 
up to this impression. Both tests were based on the same transcripts and tasks. The test-da-
ta were analysed by applying a qualitative content analysis (see Kok, 2022 for the discus-
sion of the results). 

With regard to Transcript B, the preliminary results indicated an increase in the num-
ber of relevant aspects concerning metacognitive support that each course participant was 
able to notice. The quality of the participants’ interpretations for these details increased too. 
This was visible in the extent to which interpretations were supported with evidence from 
the transcript and written in a precise and elaborated way. A similar increase with regard 
to aspects of class discussions that can hinder students’ metacognition was expected in the 
participants’ comments to Transcript A. The preliminary results, however, did not indicate 
a clear tendency toward such a change. Compared to the first test, most of the participants 
commented on more activities that must be interpreted as negative discursive activities or 
superficial metacognitive activities in the second test. However, their interpretations of these 
activities were not more elaborate or precise than in the first test. Furthermore, some even 
misinterpreted these events as positive examples of metacognitive support. The results in-
dicated that the participants’ analysed the transcript in the second test with more details 
than in the first test, and their attention to noteworthy features of metacognitive support 
increased, but their interpretation of these features did not improve.

To sum up, the results of the explorative pilot study showed that the participants im-
proved their noticing skills concerning features of class discussions that support students’ 
metacognition, whereas recognising and interpreting features of class discussions that hin-
der students’ metacognition was still a problem for most of them. This is a very important 
result, because teachers who are willing to support metacognition in their students also 
need sensitivity to negative discursive and superficial metacognitive activities. They are the 
starting point for changing students’ learning behavior toward an adequate metacognitive 
regulation. Revealing these problems in the preliminary study was only possible because – 
in contrast to van Es et al. (2017) – we use both functional and dysfunctional examples of 
class discussions in our course and tests.

Our results show once more the complexity of metacognitive support. Further research 
is needed to find out how prospective teachers can be best prepared for functional and dys-
functional activities in class discussions in order to support metacognition.
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7. Further Remarks

Despite the fact that metacognition improves students’ learning, researchers’ understand-
ing of how to best implement findings from metacognitive interventions in classrooms’ 
natural setting still need to be improved. Further research is necessary to help teachers 
support metacognition in their students. This paper explained the complexity of metacog-
nitive support and shared our experience in preparing prospective teachers for promoting 
metacognition in class discussions. We see this as the first step to better understand how 
to improve students’ metacognition. In a new study being in progress now, we have refined 
the design of the course described in the last section and put more efforts to develop the 
participants’ sensibility to the important role of the discursive quality of class discussions 
when promoting metacognition. The analytical tool presented in this paper still plays a cru-
cial role in this study. We hope that findings from this study will help us better understand 
how teachers learn to improve their teaching by putting more attention to metacognitive 
aspects of students’ thinking.
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Appendix

Table 3. Category System for capturing metacognitive, discursive and negative discursive activities
Planning

P1 indication of focus of attention, e.g., with regard to tools / methods to be used or (intermediate) results or represen-
tations to be achieved:

P1a one-step planning activity

P1b several-step planning activity or indication of an alternative approach

P2 planning metacognitive activities

Monitoring

M1 controlling a subject-specific activity

M2 controlling terminology / vocabulary used for a description / explanation of a concept 

M3 controlling notation / representation

M4 controlling the validity or adequacy of tools or methods used, e.g., with regard to a planned approach or a mod-
elling approach

M5 controlling (consistency of an) argumentation / statement, e.g., revealing mistakes or inconsistency or controlling 
an alternative argumentation (which has not been presented yet)

M6 controlling whether the results answer the question, e.g., with regard to the goal of a task or question and the 
answer given to it (controlling the factual and the intended situation) or with regard to the plausibility of the results

M7 analysing a (mis)conception, revealing a misconception

M8 self-monitoring:

M8a with regard to a subject-specific activity

M8b with regard to terminology, description, explanation of a concept

M8c with regard to notation

M8d with regard to tools and methods

M8e with regard to argumentation, statements

M8f with regard to the correspondence between the achieved or intended results or answers and the discussed 
questions

M8g with regard to metacognitive thoughts and activities

Reflection

R1 analysing structure of a subject-specific expression:

R1a without taking into consideration any additional rewriting or reorganisation

R1b with additional rewriting or reorganisation of the given expression

R2 reflection on concepts, analogies, metaphors, conceptualisation

R2a assignment of an object or an issue to a concept; classification of a concept within a concept hierarchy

R2b thinking about the adequacy of a conceptualisation or about a subsumption, analogy, or metaphor related to 
a given concept

R3 a deliberate use of a (subject-specific) representation to express the results of a person’s reflection:

R3a identifying or marking some pieces of a given representation

R3b creating a new representation

R3c like a or b, but with a detailed explanation in order to promote understanding, uncover misconceptions, initi-
ate a process of abstraction or metacognition
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R4 analysing the contexts, goals, effects, and ways of using a subject-specific tool or method; indication of a tool or 
method needed to achieve an intended result

R5 analysing argumentation and reasoning with regard to content-specific or structural aspects

R6 reflection-based assessment or evaluation:

R6a evaluation with regard to the content discussed, e.g., drawing an (interim) evaluation, elaboration on import-
ant or difficult aspects related to the content discussed in class

R6b evaluation with regard to a person, e.g., (one’s own) strengths, failings, mistakes, misconceptions, difficulties in 
understanding

R7 analysis of the interplay between external representations and internal conceptions

Discursivity

D1 use of measures to improve the discursive character of a discussion:

D1a naming of reference points or persons; asking for reference points or persons (in particular to ensure the basis 
of a conversation); indicating missing or wrong references

D1b setting one’s own contribution apart from others or stating agreement with another contribution

D1c repetition of statements said before as a basis for further reasoning or to assure oneself of things meant or 
written by others

D1d actions aimed at improving the structure of the class discussion and facilitating the discourse

D2 education fostering discursive behavior; clarifying, discussing, or deriving rules for fostering discursive behav-
ior; request to respect the rules of a discourse; clarification of breaches of the rules of a discourse

Negative Discursivity

ND1 superfluous contributions:

ND1a asking a leading, or obvious question

ND1b repetition of things already said without adding a new point of view to the discourse (also “teacher echoing”)

ND1x willful disturbance of the class discussion

ND2 use of inadequate, confusing vocabulary 

ND3 violation of the rules for a well-orchestrated discourse:

ND3a statements or questions do not recognizably refer to what was said or questioned or to what is to be discussed; 
the reference point is not explicit, or the argumentation is fragmentary and therefore unclear

ND3b shortcomings with regard to grammar or sentence structure, broken sentences; at first glance, comprehensible 
sentences but it is not clear what is meant

ND3c
introducing alternative statements or proposals without setting them off against others; pretending to repeat 
or summarise a given contribution but making an essential change in the meaning without making this change 
“visible”

ND3d uncommented change of the reference point or of the meaning of the issue discussed

ND3e false logical structure of an argumentation

ND4 no intervention taken in the event of a severe disregard of discursivity rules, in particular when the discourse 
falls into different fragments and loses its argumentative character; ignoring a question or objection

Transcript Linear Functions 

The transcript shows a class discussion in a 7th Grade class. It was developed based on an au-
thentic class discussion in one class in the secondary school called “Gymnasium” in Germa-
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ny (cf. Nowińska, 2016). Some changes in the original transcript were made to present the 
core part of the discussion with many examples of well-reasoned metacognitive activities. 

The teaching unit deals with linear functions. To explain the use of linear functions in 
everyday situations, the teacher uses the following example: 

From a water pipe, water splashes into a cylindrical jar filled with water that is initially 2 cm high. The 
water level in the jar increases by 6 cm per minute. How does the height of water in the jar depend on 
the duration of the filling with water?

After one solution represented by the linear function h(x) = 2 + 6x has already been dis-
cussed in class, the teacher points to another formal representation of a function provided 
by one student group (h(x) = 6x + 2). The subject of the discussion in the transcript is the 
question whether both formal representations of a function are correct.

T. There was another equation in one group. Some in the 
group were of the opinion that the equation should 
not be h(x) = 2 + 6x, but h(x) = 6x + 2 [T. writes 
down h(x)= 6x+2 on the blackboard]

They didn’t quite agree in the group, though. What 
do you think? Alfred.

D1a 
 

 
P2

The teacher points to the formal represen-
tation h(x) = 6x + 2 of a function provided 
by one student group (D1a). In doing so, 
she clarifies the subject for the following 
discussion.
The teacher gives an impulse that challenges 
students’ metacognitive activities (P2) in 
order to evaluate the second formal represen-
tation of a linear function: h(x) = 6x + 2. 

Alfred Um, this is basically the same as the first equation. 
The term is just reversed. 

The equation just doesn’t make as much sense as the 
first one.

R1a
 
R6b

Alfred compares the structure of both 
equations (R1a). Based on this reflection, he 
evaluates which one equation makes more 
sense for him (R6b). 
Since he does not provide any explanation 
for his evaluation, it is unclear what ‘making 
sense’ means for him. 

Lasse I think they are saying that the water level is six centi-
meters at the beginning and that it always increases by 
two centimeters. But that’s wrong, because in the text 
it’s the other way around. rM4

Lasse interprets the term 6x+2 and controls 
whether it adequately describes the increase 
of water; his control-activity includes an ex-
planation (rM4). Unfortunately, the student 
makes a mistake, but his explanation enables 
the classmates to address this mistake as it can 
be seen in Julian’s next contribution. 

T. Will you pick the next one? The teacher manages the class discussions 
by asking Lasse to choose a classmate who 
should respond to his comment.
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Lasse Julian.

Julian No, they don‘t say that because the 6 represents the 
increase in water level per minute and they don’t say 
6 + 2x, they say 6x + 2. 
But according to the wording of the task, you would 
have to write down the function term as it is written 
above, that is 2+6x, because that would be exactly 
transferred. Because first there are the 2 centimeters 
of water, which are already in there, and then always 
the 6 centimeters per minute, which is 6x. And if 
there was written „It’s increasing by six centimeters 
per minute and at the end two centimeters are added”, 
then you could take the second equation. I would 
say: From the given task, you would have to take the 
first one.

rD1b

rM5

D1a

rM4

First, Julian clearly states and justifies his 
disagreement with Lasse’s answer (rD1b). He 
verbalises his control regarding this answer 
and explains the mistake made by Lasse 
(rM5).
Next, he clearly states the reference point of 
his following explanation (D1a) – “the word-
ing of the task”. At the end of this contribu-
tion, he refers to “the given task” again. In his 
further explanation, he controls and justifies, 
why the function with the term 2+6x does 
match the situation described in the text, 
whereas the other with the term 6x+2 does 
not (rM4). From mathematical point of view, 
his justification is not correct. 
His detailed explanation enables the class-
mates to follow his reasoning. This is visible, 
for instance, in a later contribution by Julian.

T. Will you pick the next one?

Julian Josef.

Josef Well, I would say that, in general, you can swap two 
numbers during addition. That means that both 
function terms should be correct, because the result is 
always the same. 
Except, the first one makes a little more sense, because 
at the beginning there are already two centimeters of 
water in there and then it increases by six centimeters 
every minute. And it’s not like that: At the beginning, 
there is nothing in it and it always increases by six 
centimeters per minute, and at a certain point, when 
you turn off the tap, it automatically increases by 
another two centimeters. The second term is perhaps 
not quite as reasonable, but in terms of the result it is 
also correct, I think.

rM4

D1a

rR7

 

M4

First, Josef controls both solutions, and 
justifies why both terms are correct (rM4) 
He clearly states the reference point of his 
reasoning (“the results”, “in terms of the 
results”) (D1a).
Next, Josef analyses both solutions. Since the 
purpose of this part of his contribution is 
not the controlling of the terms correctness, 
it is not coded as monitoring. He rather 
evaluates his understanding of both terms 
as descriptions for the increase in the water 
level. Thus, he engages in a reflection. This 
can be interpreted as his personal evaluation 
of which term is easier to understand for him 
(rR6a), or as a general reflection about inter-
pretations and internal conceptions that can 
evolve in one’s mind while thinking about 
these terms (rR7). Here the second interpre-
tation has been chosen. Josef ’s reflection is 
combined with an elaborate explanation. 

T. Alfred.

Alfred Yes, indeed, what Josef says is true. Of course, it 
doesn’t matter which term you take, but you’d better 
take the upper one because it makes more sense.

M5
rD1b

Alfred controls the answer given by Joseph 
(M5). He justifies his agreement with it 
(rD1b). 
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T. What would you suggest if I find the lower solution in 
the exam? Should I subtract points? Yes or no? Maria.

dR6a

The teacher encourages the students to reflect 
and evaluate both solutions from the perspec-
tive of the teacher herself. Her question is not 
coded as a request for monitoring. 
Having heard different students’ positions re-
garding the correctness and their understand-
ing of both formal representations of the 
function, it seems plausible that the teacher’s 
intention now is that the students reflect on 
both positions and combine them to a final 
consistent evaluative statement (dR6a). 

Maria I would say no, because in principle the second solu-
tion is almost the same as the first one, only that the 
numbers are swapped. Nothing changes in the result 
if you calculate 2+6x or 6x+2. The result is always 
the same.

rR6a

Maria evaluates the second solution from 
the perspective of the function value. Her 
evaluation is justified (rR6a). 

T. Julian.

Julian Yes, but um, Josef said that would mean that you 
increase by six centimeters per minute and then add 
two centimeters at the end when the tap is off. That is 
illogical and therefore one point should be lost.

rD1b

rR6a

D1c

Julian justifies his disagreement with Maria’s 
position (rD1b). He evaluates the formal 
representation of the function from the 
perspective of Josef ’s interpretation (rR6a). 
By repeating parts of Josef ’s argumentations 
(D1c), he makes his contribution easy to 
follow. 

T. Josef.

Josef Yes, I would still say, although it doesn’t make quite 
as much sense, that you don’t subtract points from 
the rating. rD1b

R6a

Josef reacts to Julian’s comments by speci-
fying and justifying his own position in the 
discussion (rD1b). He states that his own 
interpretation of the second solution is not 
relevant for scoring this solution. His con-
tribution can be interpreted as an evaluative 
reflection about the relevance of his previous 
argument for the final scoring of the solution 
(R6a).

T. Mhm. You have mentioned different arguments. One 
relates to the result and the other to the fit of the term 
to the story in the wording of the task. 
We now need to clarify how we should take these 
arguments into account when evaluating the two 
functional equations.
First, about the result: At the beginning of the school 
year, we talked about the question about when two 
terms are equivalent. And these two terms are equiva-
lent. Why? Enno.

R5

P1

drR2

The teacher clarifies the focus of the 
arguments provided by the students so far, 
thereby reflecting about the content of their 
argumentation (R5). 
Next, she clarifies what the students should 
focus on in the following discussion (P1) and 
asks the students to reflect and justify one 
mathematical property of both terms (drR2); 
with other words: she demands a reasoned 
answer.

Enno We can apply the commutative law in this case. rR2a Enno answers the teacher’s question (rR2a). 
His answer can be interpreted as a reflection 
about properties of both terms provided as 
solutions. However, it cannot be said for sure 
to which extent his answer is based on deep 
metacognitive reflection, and to which he 
only recalls his factual knowledge here. 
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T. Sure, and with two terms that are equal in value, I can 
never subtract points, because the result is calculated 
correctly. Unless I had a very special task like for 
instance: Write the function equation in such a way 
that a student who has problems with the task can 
understand your function particularly well. And you 
are right, for a student who is reading the text and 
comparing it step by step with the term, the upper 
term 2+6x would be easier to follow than the lower 
one. Problem clarified?

rR6a

The teacher provides her final evaluation of 
the discussion provided by the students so far. 
To this end, she first refers to the argument 
concerning the result calculated by each term 
in the formal representation of the function 
for a certain value of x. Next, she clarifies the 
role of the second argument mentioned by 
the students. For this, she gives an example of 
a “special task” where the order of 6 and 2x 
in a solution would be important, and would 
lead to a lower scoring for the solution with 
the term 6x+2. The teacher’s contribution is 
an example of an articulation of what was im-
portant, correct and relevant in the previous 
students’ contribution and why (rR6a). 

The seven guiding questions focus on (1) engaging in metacognitive activities, (2) com-
bining metacognitive activities with explanations and justifications, (3) effects of metacog-
nitive activities on students’ understanding of subject-specific content2 discussed in class, 
(4) cultivating discursive activities, (5) dealing with negative discursive activities, (6) engaging 
in precise, focused discussions, and (7) discussions on intellectually challenging questions. 

From the perspective of the seven Guiding Questions, the class discussion presented 
in the transcript embodied positive aspects of metacognitive support. (1) The students en-
gage in metacognitive activities in a self-determined way. The teacher provides a good op-
portunity for these activities. The students seem to be used to control their classmates’ rea-
soning. (2) The students combine their metacognitive activities with adequate, elaborate 
explanations and seem to be used to do this in a self-determined way. (3) The metacogni-
tive and discursive activities observed in this class have the potential to support the stu-
dents’ understanding concerning the use of functions to describe a functional relationship. 
Quite important are the final comments provided by the teacher. (4) The students behave 
in a discursive way when they react to their classmates’ contribution. They do this without 
direct instructions from the teacher. (5) Furthermore, no negative discursive activities can 
be observed in the class, and (6) the discussion is led by the learners as they interact with 
each other in a focused way. (7) Although no challenging questions – in the sense of the 
seventh Guiding Question – can be observed in the transcript, the students’ and teacher’s 
metacognitive and discursive activities make the learning effects achieved in the short dis-
cussion well visible for the students. 

2 The term subject-specific content refers to subject-specific questions, problems, concepts, meth-
ods, strategies, representations, conceptions, or ways of reasoning and validating claims that 
occur in an observed class discussion in a certain school subject.
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Summary: The aim of this research was to assess the knowledge of teachers (or lack thereof) from the 
perspective of students. A qualitative approach with a focus group interview was chosen as the data col-
lection method. The focus group consisted of five Lithuanian ninth grade students. The participants 
mentioned a significant influence of previous experiences on their learning attitudes, defined what it 
means and how it feels to understand a topic, and noted that learning gaps result from superficial un-
derstanding, which is one of the reasons behind rational numbers being considered one of the most dif-
ficult topics. The participants mentioned both emotional/psychological and teacher-related aspects as 
reasons behind their learning challenges, as well as the need for teacher development. This article also 
discusses how these themes are related to mathematical knowledge for teaching and teacher competence. 
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1. Introduction

Good mathematical knowledge is associated with critical and analytical thinking, creative 
problem solving, effective information processing, reasoning, and argumentation skills 
(Jablonka & Niss, 2014). Unfortunately, despite the benefits, negative attitudes towards 
mathematics are widespread from early school age (Fiss, 2020). One of the reasons for this 
is, unsurprisingly, the teaching of mathematics (Lane, 2014; Askew & Venkat, 2019).

Despite the same foundations, school mathematics cannot be identified with a more gen-
eral understanding of mathematics (Watson, 2008). School mathematics is taught based on 
curricula, formal requirements, and developmentally-appropriate abilities (e.g., Van Hiele, 
1986). This means that the mathematics teacher needs to be able to adapt the concept that 
is being taught to the perceptions of the student at that age, selecting meaningful education-
al tools and responding to the student’s existing knowledge, gaps, and level of understand-
ing. It is obvious that pure mathematics knowledge (content knowledge), although essen-
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tial (Lee, 2007; Hill et al., 2008), is not enough for quality mathematics teaching (Oonk 
et al., 2015; Loewenberg-Ball, 2000).

Mathematics teachers need to be able to teach even the most complex topics (e.g., De-
paepe et al., 2018), but in order to do so successfully, they need to be knowledgeable about 
the different approaches to the topic at hand, the strategies of interpretation, and the use of 
didactic approaches (Ball et al., 2005). Such knowledge is famously defined as pedagogical 
content knowledge (Shulman, 1986). This knowledge is manifested not only in the teach-
er’s ability to (re)organise their content knowledge, to apply it to the situation at hand, and 
to help students understand the topic at hand, but also in the teacher’s identification of stu-
dent’s perceptions (errors) and the ability to respond to a challenge appropriately and select 
a solution (Cochran, 1997). 

However, pedagogical content knowledge, while mostly tied to teaching mathemat-
ics, is just part of the overall knowledge that mathematics teachers must have to be able 
to work efficiently. According to Shulman, other types of necessary knowledge include: 
general pedagogical knowledge, knowledge of learners and their characteristics, and 
knowledge of educational ends, purposes and values, and others (Shulman, 1986). An-
other widely used description, mathematical knowledge for teaching [MKT], as defined 
by Ball et al. (2008), shares similar understanding. They define mathematical knowl-
edge for teaching as a fusion of content knowledge and pedagogical content knowledge. 
Their definition of pedagogical content knowledge includes: knowledge of content and 
students, knowledge of content and teaching, and knowledge of content and curriculum 
(Ball et al., 2008). For this study, pedagogical content knowledge is understood as de-
fined by Ball et al. (2008). 

This study focuses on students’ perceptions of teachers’ knowledge. Teaching is a de-
manding activity that involves interactions between teachers and students (Borko, 2004). 
Therefore, the teaching-learning experience needs to be examined not only from the teach-
ers’ (or observers’) perspective, but also from the learners’ perspective. The aim of the study 
was to assess the manifestations of teacher knowledge (or lack of knowledge) from the stu-
dents’ perspective and thereby evaluate important aspects that students are likely to notice 
during the learning process.

The research questions were as follows: (1) how do students explain the understand-
ing of mathematical topics; (2) which topics do the students consider challenging; (3) how 
do the aspects that students relate to the quality of teaching relate to pedagogical content 
knowledge.
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2. Methodology

A qualitative, descriptive approach was chosen for this research. A focus group interview 
was chosen as the method of data collection as it provides insight and understanding of 
the studied phenomena. The focus group interview encourages interaction and discussion 
between participants so that their shared experiences are highlighted. The focus group in-
terview method also allows for differences between groups of individuals to be highlight-
ed (Puchta & Potter, 2004; Wilkinson, 1998). 

The focus group met on December 14, 2022 in a school in Kaunas, Lithuania. The du-
ration of the interview was 40 minutes. The approach was to use a semi-structured inter-
view structure, where the main questions were formulated in advance, but follow-up ques-
tions were also asked during the interview.

The main interview questions were as follows:

 ■ How did you feel when you were succeeding in mathematics? E.g., you were study-
ing, and the topic was clear to you.

 ■ What made you realise that you really understood how to approach a topic?
 ■ Were there difficult topics that you did not understand, that remained unclear for 

a long time (and maybe still do)? What was the topic? How did you find it unclear, 
difficult? 

 ■ Why, do you think, are these topics (still) unclear? How do you feel when you are 
dealing with them?

The interview was moderated and recorded by the researcher (two devices were used – 
the audio recording was done both on a mobile phone and on a computer). The focus group 
members were informed about the recording of the interview and the use of the interview 
data in compliance with all ethical and confidentiality requirements of the research. The 
participants consented to the recording of the interviews. The discussion was transcribed 
on the same day by attributing the statements to the group members. After the transcrip-
tion, the data were pseudonymised.

Five ninth-grade students and a moderator took part in the study. The group was di-
verse in terms of gender and mathematics achievements – ranging from struggling stu-
dents to high-achievers. All participants had attended more than one educational institu-
tion in the last four years.
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3. Findings

The transcribed interview was analysed using the qualitative methodology approach. Five 
themes emerged from the analysis of the transcribed focus group participants’ statements:

1. Previous experiences have a substantial effect on students’ learning attitudes, 
2. Understanding the topic includes knowing how and why the procedures work, and 

why you are learning the topic, 
3. Challenging topics emerge from the shallow understanding, 
4. Both emotional/psychological and teacher-related aspects were mentioned as the 

reasons behind the challenges,
5. Teacher development and the establishment of a connection between the teacher 

and pupils are necessary. 

All of the mentioned themes are explained in-depth below.

3.1. Learning Attitudes and Previous Experiences

The focus group members noted that previous experiences have had a strong influence on 
their current attitudes towards learning and the likelihood of success. Some of the partici-
pants noted that the difficulty of learning mathematics is defined differently among them 
and is based on previous learning experiences – gaps from previous years and the need for 
more effort to achieve better results. Even students with more learning challenges noted 
that mathematics can be interesting and enjoy the feeling of understanding, but also noted 
that the success of learning can quickly become discouraging, and motivation disappears – 
“When I fail, I give up, I get nervous, I can’t deal with that stuff anymore”. The participants 
agree that mathematics is learnable (“When I have the determination to learn and to try, 
I understand everything”), but they differ in their assessment of the effort such a goal re-
quires, “I need to put a lot of effort” vs. “I often succeed, I understand quickly”. 

3.2. Understanding

There is a consensus among the participants as to what it means to understand the topic be-
ing taught. In addition to being clear – “There is nothing to do, it’s just clear” and not hav-
ing any questions when solving the exercises – “When I can solve the exercises”, the stu-
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dents emphasise a deeper understanding of the topic – “It is clear to me when I understand 
exactly what is going on. All the formulas and the topic itself, and why I am learning it” 
and the ability to explain “When I can explain what I am doing, why I am doing it”, “Func-
tions are a very good example, because there you really need to understand how the graph 
works, you need to understand it in depth”. Also, the confidence – “I was not afraid to be 
wrong – then I understood what I was really doing in mathematics”.

3.3. Challenging Topics

The participants agreed that one of the most challenging topics was rational numbers and 
mathematical operations with them, also relationships between fractions and decimal num-
bers. Equations and functions were also mentioned as the topics where achieving a deep un-
derstanding of the topic was more challenging. Looking back at previous classes, all agreed 
that the long division algorithm was challenging – “I decided a long time ago not to use the 
long division algorithm because I just don’t understand how it works”. Interviewees men-
tion that those challenging topics are not as challenging when you really take the time to 
learn them and do not have gaps from the previous topics to deal with. 

3.4. Reasons Behind Challenges in Learning Mathematics 

The participants pointed to the emotional/psychological causes of learning challenges: 
‘When you don’t understand, the topics get deeper, more difficult, <...> fear sets in’. Gaps 
of knowledge were the main focus of attention, with participants unanimously agreeing 
that gaps pose a major challenge for further learning: “It is very difficult when you don’t 
have the basics” and pointed to the cyclical nature of the subject of mathematics – “Top-
ics <...> kept coming back at a more complex level” – which makes the problem of gaps in 
mathematics particularly relevant. 

The participants mentioned both the general negative emotions experienced in mathe-
matics lessons – “Up to that point, all of my experiences with mathematics had been so neg-
ative, solely negative, that I didn’t even think there could be anything positive” – and those 
stemming from the relationship with the teacher: “I was scared to ask her something”, “My 
gaps were created when I was scared to ask the teacher”. 

All of the participants emphasised the role of the teacher in the teaching/learning pro-
cess. When talking about their previous learning experiences, the participants pointed to 
the circumstances of their work resulting from teachers slowing down their development 
process. Some of the participants highlighted the lack of explanation: “My teacher did not 
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explain anything at all”, “She just read what was written in the book” or the lack of vari-
ety in explanation, “If you ask something, the teacher says ‘I have explained it before and 
I will not explain it again, now find the answer to your question by yourself ’”, “My teach-
er used to say ‘If something is unclear to you, ask’, but if you ask, she would either say ex-
actly the same thing or say ‘I have explained this already, how could you not understand’”, 
“I have just explained this very thing, how can you not understand”. 

3.5. Teacher Orientation and Focus in Mathematics Lessons 

The participants in the discussion pointed to the need for teacher development – the ability 
to work in different contexts and to use tools to achieve the teaching/learning goal. One of 
the interviewees noted that during the pandemic, teachers were challenged by “Being quar-
antined – the teacher had very minimal knowledge of using all kinds of internet functions”. 

However, other members of the focus group concentrated on the teacher’s work in the 
everyday environment: “The teacher who was teaching <...> didn’t really understand what 
was going on with mathematics”, “They just tell you to write the numbers, but why are you 
doing that, to understand the topic – often it just slips by and you get lost, you don’t real-
ise what’s going on”. 

Almost all the participants did not blame the teachers: “It wasn’t really the teacher’s 
fault, she tried her best, as much as she could, and she didn’t know much – she didn’t know 
how to teach”, but discussed how to work as a teacher in the current system: “I can’t even 
think of a way to teach mathematics in this system – one person and many pupils, with 
a very limited time and difficult topics”, “Teachers have to come to the school without be-
ing afraid to do as they please – because, most probably, they know better”. 

When discussing the aspects of the educational process that need improvement, the 
participants shared what helps them to learn: ‘One-on-one time with the teacher’, ‘Solv-
ing problems at the blackboard’, ‘Quietness’, but most of all, they highlighted a good learn-
ing atmosphere – ‘Not being afraid to ask different questions’ – and a classroom that is be-
ing managed: ‘It disturbs me when everybody is talking loudly’, ‘It is very disturbing when 
others are shouting’.

3.6. Overview of the Results

The observations of the focus group interviewees are corroborated by researchers in mathe-
matics education (e.g., Hill et al., 2008; Lee, 2007; Wu, 2010; Lortie-Forgues et al., 2015). 
The need for teacher development is noted, both in terms of mathematics teaching – didac-
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tic knowledge, the ability to answer students’ questions, to plan tasks in a meaningful way, 
to engage in mathematical discussions – and classroom well-being – creating the right at-
mosphere, a good teacher-student relationship, classroom management.

4. Discussion

4.1. Interpreting the Results from the Perspective of Teacher Knowledge

The five themes that emerged from the analysis of the focus group interviews all relate to 
the knowledge of mathematics teachers, particularly pedagogical content knowledge (as 
defined by Ball et al., 2008). 

Prior experiences affect students’ learning abilities by influencing how capable they 
feel in learning mathematics. While prior experiences are something that has already hap-
pened and teachers have no way of correcting them, they could respond accordingly to fix 
the problem in its current state. Mathematical knowledge for teaching is the kind of knowl-
edge that would be useful in these situations, specifically knowledge of content and students 
to identify which problems are most likely to occur, and knowledge of content and teaching 
to find a way to solve the problems.

The students mentioned understanding the subject as an important factor. This is di-
rectly related to the teacher’s abilities to explain in a way that can be understood and to use 
mathematical knowledge for teaching. Being able to explain in a way that is easily under-
stood is not only a skill, but also requires specific knowledge – how to address a misunder-
standing, how to recognise and correct the mistakes of the pupils. 

Participants cited the superficiality – lack of depth of the subject – as a gateway to not 
being able to fully understand the topic, and lacking the necessary understanding for when 
the same topic comes up again. For a teacher to successfully address this problem, they must 
have specialised content knowledge and knowledge of content and students; they must also have 
knowledge of content and teaching in order to choose the right teaching methods. To ensure 
that all efforts are in line with the objectives of the national/international curriculum, they 
must have knowledge of content and curriculum.

4.2. The Issue with Rational Numbers

The topic of rational numbers was mentioned by every single participant as being very dif-
ficult.
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Consistent with the findings from previous studies, this research shows that fractions 
and fraction operations are one of the most difficult topics for students (Behr et al., 1993; 
Lamon, 2005; Ni & Zhou, 2005; Vamvakoussi et al., 2012; Lortie-Forgues et al., 2015; Wu, 
2010), and it is therefore not surprising that this topic has been widely studied by research-
ers in mathematics education (McMullen et al., 2015; Vosniadou & Verschaffel, 2004). Of 
course, the question arises: if researchers, teachers, and the students themselves are aware 
of the problems the students face, why are they not being addressed?

Regarding this topic, researchers point out that many learning challenges begin with 
the concept of fractions (e.g., Lemonidis et al., 2017; Norton, 2019). Many researchers sug-
gest that the right approach is to start with introducing young learners to fractions using 
real-world contexts, emphasising the relationship between each part and the original quan-
tity, but also, at the same time, developing an understanding that the parts into which the 
whole is divided must be equal (Depaepe et al., 2018; Getenet & Callingham, 2019; Kar-
akus, 2018; Sahin et al., 2016; Sahin & Korkmaz, 2019; Saran, 2018; Taylan & da Ponte, 
2016; Zolfgari et al., 2021). 

Rational numbers are a challenging and demanding subject for students. Good basic 
knowledge enables fluency and understanding of the individual steps, making it essential. 
Therefore, it is important that teachers not only have content knowledge (to know how to 
solve the tasks), but also mathematical knowledge for teaching – because the most important 
aspect of teaching is not knowing how to do it, but how to lead students to understanding.

4.3. Math Anxiety

Participants in the focus group interviews reported feeling discouraged, losing motivation, 
and being afraid of making mistakes and failing. All of these feelings can be traced back to 
the phenomenon of math anxiety (Ashcraft & Ridley, 2005). 

This phenomenon has been shown time and again to be a significant cause of learning is-
sues, which is inevitably followed by negative consequences such as low grades, shallow un-
derstanding, lack of motivation, etc. (Ramirez et al., 2018). Students who suffer from math-
ematics anxiety are more likely to perform worse, and those who perform worse are also 
more likely to develop more mathematics anxiety. The relationship is bidirectional (Carey 
et al., 2015) and can therefore be seen as even more problematic.

There is evidence of possible prevention-based interventions to reduce the level of math-
ematics anxiety related to the culture of the organisation (how students feel about their 
learning environment) (e.g., Hooper et al., 2016). Creating an accepting, safe culture is 
highly dependent on teachers, so it is not surprising that teachers play an important role in 
preventing mathematics anxiety. According to Lin-Siegler et al. (2016), normalising fail-
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ure spurs students to push through the more difficult times. Experiencing positive feelings 
when dealing with mathematics leads to higher mathematics achievement (e.g., OECD, 
2013) and can also be seen as a factor that strongly depends on the teacher. Even more, the 
enjoyment of mathematics represents a positive emotion that has a positive impact on aca-
demic performance – which in turn is something that the teacher can influence. 

Cumulative scientific evidence supports the findings of this study, as it underlines the 
importance of the teacher in students’ perceptions of mathematics and the power of teach-
ers in changing students’ perceptions.

4.4. Future Implications

The current study is a small study that provides insight into the students’ perspective. The 
results are consistent with the findings of previous studies that addressed issues such as lack 
of pedagogical knowledge of mathematics teachers and the importance of a safe, accept-
ing learning environment. 

The idea of this study should be replicated with other sample groups in order to com-
pare the results and explore the issues that have been raised in more depth. 
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PRE-SERVICE TEACHERS’ KNOWLEDGE OF STUDENTS’ MISCONCEPTIONS 
ABOUT AND DIFFICULTIES WITH FUNCTIONS

Summary: This study presents a part of research focusing on the evaluation of a course for pre-ser-
vice teachers (PSTs) aimed at developing mathematics teachers’ specialised knowledge of functions. 
The course was developed as part of the FunThink project. In this paper, we focus mainly on pre-ser-
vice teachers’ knowledge of students’ misconceptions about and difficulties with (M&Ds) functions. 
The research was carried out with 13 PSTs as part of a compulsory course at the Pavol Jozef Šafárik 
University in Košice. The PSTs solved a set of eight mathematical tasks and answered nine questions 
(some of them following the tasks) in pre-post test design. This paper describes the results of a quali-
tative content analysis of the answers to two of these questions. This analysis showed that the course 
partly helped to improve the PSTs’ knowledge about students’ M&Ds. On the other hand, it helped 
to identify some shortcomings in the course’s design. The analysis of the PSTs’ answers to selected 
questions will help us refine the design of the course to best help teachers to improve their knowledge 
about M&Ds in relation to functions. 
Keywords: functions, misconceptions and difficulties, pre-service teachers, Mathematics Teacher’s 
Specialised Knowledge model.

1. Introduction

The topic of function is one of the most important areas in mathematics education and 
in mathematics curricula in different countries. The development of functional think-
ing is important in both private and professional life (e.g., Vollrath, 1986; Leinhardt et al., 
1990; Thompson & Carlson, 2017). On the other hand, several studies confirm the per-
sistent difficulties that students have with functions. The reason for students’ difficulties 
with functional thinking may be due to the abstract nature of “functions”, which are acces-
sible only through specific representations such as a graph, a formula, a table, or due to the 
need to transition between mathematics and the real world (e.g., Hadjidemetriou & Wil-
liams, 2002; Ostermann et al., 2018). It is very important for the mathematics teacher to 
be aware of these students’ misconceptions about and difficulties with (M&Ds) functions 
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without a temporal qualification. Based on this awareness, they can then manage the stu-
dents’ learning process in such a way that the students’ M&Ds are avoided.

This study is part of the larger FunThink Erasmus+ project focused on the develop-
ment of functional thinking. In the current study, we focused only on pre-service teachers’ 
(PSTs’) knowledge of students’ M&Ds with functions. Within this study, we developed 
a tool to investigate the specialised knowledge of PSTs, focusing on functional thinking. 
The complexity and diversity of knowledge and information in mathematics makes it dif-
ficult to determine what a mathematics teacher who teaches at lower secondary and upper 
secondary level should know before entering the profession. Therefore, we focused only on 
the topic of functions (mainly linear functions) in Slovak, Polish, and German schools. We 
chose these countries because we prepared the same course for PSTs within the FunThink 
project. These countries are similar both in curricula as well as PSTs training at universi-
ties. Our tool consisted of eight specific mathematical tasks and nine questions (about func-
tions, M&Ds, and the previous eight tasks) which were to be solved and answered by PSTs 
at the beginning and end of the Didactics of Mathematics course (the research tool can be 
requested from the authors of the article). In designing the tool, we assumed that teachers 
need to have a deep and broad understanding of school mathematics in order to be able to 
offer challenging mathematics to their students (e.g., Zakaryan & Leikin, 2004). In this 
article, we focus on two questions that address students’ M&Ds from the perspective of 
Slovak PSTs. Therefore, our research question being addressed is: Did the course aimed at 
developing PSTs’ functional thinking, scaffold the Slovak PSTs’ knowledge of students’ 
M&Ds about functions?

2. Theoretical Background

2.1. Functional Thinking

Dealing with mathematical functions encompasses the ability to manipulate the formu-
las representing them: it involves dealing with the notion of function in its versatility and 
developing a rich concept image which includes aspects such as: representation, generali-
sation, causality, regularity, and covariation. In recognition of this versatility, the concept 
of functional thinking has emerged (FunThink Team, 2021). Functional thinking is con-
sidered a way of thinking in terms of relationships, interdependencies, and change, and is 
the process of building, describing, and reasoning with and about functions (Blanton et al., 
2015; Pittalis et al., 2020). 

In the FunThink project, we focus on enhancing functional thinking in a compre-
hensive and transnational perspective, drawing on the specific and complementary ex-
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pertise of the partners. Our professional partners are based in Germany, Poland, the 
Netherlands, and Cyprus, and we share a common vision that mathematics education 
can be significantly improved by enhancing functional thinking from primary to up-
per secondary school.

Following Pittalis et al. (2020) we distinguish four aspects of functional thinking which 
are related to different perspectives on functions:

1. Input-output aspect: This view on function as an input-output machine stress-
es the operational and computational character of the function concept. It in-
cludes exploring how a particular input value will lead to an output value (Fun-
Think Team, 2021),

2. Covariation aspect: This aspect concerns the notion that “two quantities varying si-
multaneously such that there is an invariant relationship between their values that 
has the property that, in the person’s conception, every value of one quantity deter-
mines exactly one value of the other” (Thompson & Carlson, 2017, p. 444),

3. Correspondence aspect: This view on function concerns understanding the rela-
tion between the independent and dependent variables (correlation between vari-
ables) and being able to represent it. This view helps answer questions on the glob-
al character of the relationship,

4. Function as a mathematical object: “A function is a mathematical object which can 
be represented in different ways, such as arrow chains, tables, graphs, formulas, and 
phrases, each providing a different view on the same object” (Doorman et al., 2012, 
p. 1246). This aspect is hierarchically the most difficult to understand, but this view 
of a function is important for the purpose of comparing a function with other func-
tions or with other mathematical objects.

In Slovakia, the concept of a function is introduced in elementary school as an input-out-
put system, followed by the covariation and correspondence aspects, which continue in sec-
ondary school and possibly reach the object aspect. In the latest Slovak mathematics text-
books (Kubáček, 2010) for secondary schools it is recommended to introduce the concept 
of function descriptively. Based on the analysis of textbooks focusing on aspects of the con-
cept of function (Krišáková & Slabý, 2022), all four aspects of the function – 1) input-out-
put, 2) covariation, 3) correspondence 4) object are adequately covered therein. However, 
the aspect of covariation is not covered sufficiently or is missing in the textbooks for mid-
dle schools. Moreover, our PSTs have been trained with older secondary school textbooks 
in which the correspondence and object aspects dominate.
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2.2. Misconceptions and Difficulties Related to
         the Concept of Function

According to Hadjidemetriou and Williams (2002), misconceptions may be part of a faulty 
cognitive structure that causes, lies behind, explains, or justifies the error. “A misconception 
may develop as a result of overgeneralising an essentially correct conception or may be due 
to interference from everyday knowledge” (Leinhardt et al., 1990, p. 5). Students’ miscon-
ceptions can lead to problems and learning difficulties. Several M&Ds arise in the context 
of functions for both PSTs and learners, and are the focus of this paper. In our research, we 
mainly focus on whether the course aimed at developing PSTs’ functional thinking scaf-
folded their knowledge of students’ M&Ds (errors) regarding functions. “Whereas science 
misconceptions often originate in children’s observations and interpretations of real-world 
events, misconceptions of functions and graphs often are intertwined with previous formal 
learning” (Leinhardt et al., 1990, p. 31).

Difficulties and misconceptions about functions can be eliminated by promoting the 
development of functional thinking in students from an early age. Therefore, the develop-
ment of functional thinking in students should start in the early grades and be improved 
gradually and extended over a long period of time (Warren, Cooper, & Lamb, 2006). It 
is therefore very important that these M&Ds are well managed, diagnosed, and then cor-
rected by PSTs.

Several articles have described misconceptions about functions (e.g., Leinhardt et al., 
1990; Hadjidemetriou & Williams, 2002; Ostermann et al., 2018). In this article, we will 
draw on the work of Leinhardt and colleagues (1990). They discuss difficulties together 
with misconceptions and describe them in more detail in the following eight categories:

1. What is and is not a function – including, for example, inaccurate ideas about what 
graphs of functions should look like; ideas that only patterned graphs represent 
functions, that functions given by more than one rule are not functions, that func-
tions must be given by formula,

2. Linearity – the tendency to define a function as a relation that, when represent-
ed graphically, produces a linear pattern; the tendency to connect any two consec-
utive points by a straight line; overgeneralisation of the properties of linear func-
tions to other functions,

3. Continuous versus discrete graphs – “representing or interpreting continuous data 
in a discrete manner and representing or interpreting discrete data in a continuous 
manner” (Leinhardt et. al., 1990, p. 34),

4. Representations of functions – M&Ds about transitions between ordered pairs, 
equations, graphs, tables, and verbal descriptions of relationships,
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5. Concept of variable – “ideas that changing the symbol for the variable in a func-
tional equation changes some critical aspects of the function; focusing on arbitrary 
symbol substitution but missing the central idea of a functional relationship be-
tween two variables; manipulating letters in equations without understanding the 
variable” (Leinhardt et al., 1990, pp. 42–43),

6. Notation – M&Ds “related to the unique notational systems inherent in both the 
graphical and algebraic symbols that are used to represent functions” (Leinhardt 
et al., 1990, p. 43); M&Ds in setting up two axes for a Cartesian coordinate sys-
tem; scaling problems; confusing the two axes of a graph; thinking that graphs al-
ways go through the origin,

7. Correspondence – each y value must map to one and only one x value,
8. Relative reading and interpretation – M&Ds in constructing and interpreting graphs 

that represent real situations including slope-height confusion, graph as a picture 
misconception, and interval/point confusion.

2.3. Misconceptions and Difficulties in Pre-Service Teachers’ 
        Education

Different models of knowledge of mathematics teachers emphasise the need for teachers 
to be aware of their students’ M&Ds. In the Mathematical Knowledge for Teaching mod-
el (Ball, Thames, & Phelps, 2008), this knowledge is part of Pedagogical content knowl-
edge, particularly the Knowledge of Content and Students. Our course, which focused on 
developing PSTs’ functional thinking, was designed within the Mathematics Teachers’ 
Specialised Knowledge model (MTSK) by Carrillo and colleagues (2018). In this model, 
knowledge of students’ M&Ds is part of the sub-domain of the Knowledge of Features of 
Learning Mathematics (KFLM). As noted by Carrillo and colleagues, the KFLM sub-do-
main includes knowledge about learning styles and, accordingly, includes theories about 
students’ cognitive development. As such, this sub-domain considers teachers’ knowledge 
of their students’ ways of thinking and doing, particularly in mathematics, their errors, ar-
eas of difficulty, and misconceptions. In essence, this sub-domain involves an awareness of 
what students struggle with, an understanding of the process of learning different content, 
and what their strengths are, both in general and in relation to specific content.

One of the ways in which PSTs can develop their KFLM is by working with concrete 
student solutions, analysing videos of students presenting their thinking, or interviewing 
students. Research shows that if teachers are exposed to different aspects of students’ think-
ing during their training, this can later influence how they understand their thinking, how 
they respond to students in class, and how they adapt their teaching to the current state of 
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students’ thinking (e.g., Wickstrom, & Langrall, 2020; Clements et al., 2011; Cobb et al., 
1990). We have drawn on this research to design our course for PSTs, focusing primarily 
on the shift regarding M&Ds in connection with the concept of function.

3. Methodology

3.1. Participants and Context

The study involved 13 PSTs from the Pavol Jozef Šafárik University in Košice (four men 
and nine women) aged 22-23 years. They are first year master’s students and all have a bach-
elor’s degree in mathematics combined with another subject (4 PSTs – Mathematics and 
Geography, 2 PSTs – Mathematics and Biology / Physics / Slovak language, 1 PST – Math-
ematics and Chemistry / Informatics / Psychology). Note: Interdisciplinary studies are im-
plemented as a mutual combination of two science disciplines. 

The PSTs participated in the research as part of a compulsory course – Didactics of 
Mathematics – in the winter semester of the academic year 2022/2023. Informed consent 
was obtained from all participants involved in the study. It involved consent to the pro-
cessing of personal data which will be used in accordance with the research objectives: dia-
logues and task solutions will be transcribed; participants’ names will be changed; and all 
materials can be used for research purposes.

The course consisted of 26 lessons divided over 13 sessions (each lesson lasted 45 min-
utes, so one session lasted 90 minutes). The aim of the course was to develop mathemat-
ics teachers’ specialised knowledge concerning functions according to the MTSK model.

3.2. Data Instrument and Collection

The data collection procedures used in this study included the PSTs’ written solutions to 
eight tasks and nine questions focused on functional thinking and M&Ds regarding the 
concept of function and some properties of linear function. The research tool was devel-
oped in collaboration with colleagues from Poland and Germany who are participating in 
the FunThink project. The complete research tool is available on request from the authors.

At the beginning of the course (given to the PSTs during the first session) the PSTs solved 
the tasks and answered the questions in the research tool. These tasks and questions were com-
pleted again by the PSTs at the end of the course (during the last, thirteenth session). Neither 
the correctness of the solutions nor the PSTs’ answers from the pre-test were discussed or pub-
lished during the course, and none of the tests formed part of the final assessment.
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In our research, we focused on two questions from the research tool, particularly ques-
tions 8 and 9 (Figures 1 and 2). 

Firstly, we collected the data from each country and, consequently, we conducted a qual-
itative content analysis (Mayring, 2015). In order to create an appropriate code scheme, we 
used both a deductive and an inductive approach. During development, we considered both 
theoretical frameworks (Leinhardt’s classification of M&Ds and the MTSK model) as well 
as the research question. We then coded the individual responses of the PSTs, modifying 
the coding scheme twice and changing some of the codes. We sent the third version of the 
coding scheme to our colleagues within the FunThink project (from Germany and Poland), 
who tried to use it to code the responses of the PSTs of the same research tool from their 
countries. Our Slovak team (both authors) re-coded the answers of the PSTs. The next step 
was a joint discussion with our aforementioned colleagues about the individual categories 
and problematic classifications of the PSTs’ answers. The most important change was the 
division of the code concerning representations of function into three. On this basis, we 
modified the coding scheme again, which became its final form (Table 1). Both authors 
re-coded the responses of the Slovak PSTs. The final coding, as well as all previous encod-
ings, was independently coded by both authors. Subsequently, small discrepancies in cod-
ing were discussed until unanimous agreement was reached. We used the program atlas.ti 
for coding. The PSTs were unaware of the coding of M&Ds (neither of the categories nor 
of the fact that we would be coding them). 

Figure 1. Question 8 from the research tool

Figure 2. Question 9 from the research tool
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The coding scheme is described in Table 1. The short description of M&Ds is in the sec-
ond column of the table. The code used for each M&D is in the third column. In the last 
column, the citation of the article shows the relation to the theoretical background. The 
categories 1-8 are taken from Leinhardt et al. (1990). The only difference is that we have di-
vided the category Representations of Functions (REP) into three categories, namely Rep-
resentations of Functions (1REP), Linking Representations (LREP), and Modelling (MOD). 
We proposed this division based on the PSTs’ responses and a joint discussion with our 
colleagues from Germany and Poland. As the aspects of functional thinking are related to 
different perspectives on functions, we decided to create four categories according to the 
four aspects of the concept of function as described by the authors Doorman (2012) and 
Pittalis (2020). Moreover, the PSTs also mentioned M&Ds related to aspects of functions 
in the pre-test. The remaining categories arose from the need to classify all PST responses.

We coded all of the PSTs’ observations of M&Ds from the research tool and then cate-
gorised them. We note that these are the M&Ds that the PSTs think will occur in the stu-
dents’ solutions, not the M&Ds of the PSTs themselves.

Table 1. Categories and codes of misconceptions and difficulties 
1. What is and what is not a function F/N

Leinhardt, Zaslavsky, Stein (1990)

2. Linearity LIN

3. Representation of functions 1REP

4. Linking representations LREP

5. Modelling MOD

6. Concept of variable VAR

7. Notation NT

8. Continuous vs discrete graphs CvsD

9. Input-output aspect 1A

Doorman (2012),
Pittalis et al. (2020)

10. Covariation aspect 2A

11. Correspondence aspect 3A

12. Function as a mathematical object 4A

13. General GEN

14. Other meaningful answers Oth+

15. Meaningless or incomprehensible answers Oth-

16. No answer or I do not know BLK

Categories 1, 2, 6, 7, and 8 are taken directly from Leinhardt et al. (1990) without mod-
ification and we interpret them in the same way. Other categories are explained below. We 
will also describe each category we have created using a specific example from the PSTs’ re-
sponses (Table 2).
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Table 2. Examples of M&Ds of the PSTs for each category
Description of M&Ds Examples of M&Ds of the PSTs

What is and what is not a function? (F/N)

(i) Misclassification of graph among functions – assigning two values to 
one – value. 

Figure 3. Example of M&Ds of the PSTs, category F/N_1

(ii) Students are not able to identify whether it is a function based on 
the graph.

Figure 4. Example of M&Ds of the PSTs, category F/N_2

(iii) Function = graph.

Linearity (LIN)

(i) Students state that the graph of a linear function is any line.

Figure 5. Example of M&Ds of the PSTs, category LIN

(ii) Direct proportion = linear function (but the function in the picture 
is not a direct proportion).

Continuous versus discrete graphs (CvsD) 
(i) If the student draws a graph from the table and does not connect the 
resulting graph (e.g., pouring water into a glass of 100 ml – continuous 
graph).

Representations of functions (1REP) 
Representations of functions include 
different M&Ds with a single representation 
(it refers to only one of the representations: 
a graph, a formula, a table).

(i) Students are not able to draw a graph.
(ii) Students do not understand what the formula (of the function) 
describes.
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Linking representations (LREP) 
This category includes M&Ds in moving 
from one representation (graph, formula, 
table) to another representation (graph or 
table – transitions between representations 
only within mathematics). Note: We include 
transitions from graph, formula, and table 
to formula in the Correspondence aspect 
category (code 3A).

(i) Two formulas of functions and two graphs are given, and the stu-
dents are not able to assign which graph belongs to which rule.

Figure 6. Example of M&Ds of the PSTs, category LREP_1

(ii) Transitions between table, formula, and graph.

Figure 7. Example of M&Ds of the PSTs, category LREP_2

Modelling (MOD) 
This category includes M&Ds with 
transitions from verbal description to 
other representations and vice versa; also 
M&Ds with interpretations of an abstract 
mathematical solution. In this category, we 
also include misconceptions described in 
Leinhardt et al. (1990) as Relative reading 
and interpretation.

(i) Students are not able to interpret the slope of a line and that the 
slope of a line depends on the growth of the function – the greater the 
slope, the greater the speed (e.g., when we have a graph of path versus 
time).
(ii) Students are not able to interpret graphs correctly (for example, if 
they were to relate the shape of the glass to a graph of the function of 
the height of the water in the glass versus time when the water is poured 
evenly into the glass).

Concept of variable (VAR) (i) Confusion about the meaning of the coefficients in the formula.

Notation (NT)

(i) Thinking that graphs always cross both axes.
(ii) The student is confused by the fact that the graph does not start at 
the coordinates [0,0].
(iii) Lack of awareness that f(x) is another notation for y.

Input-output aspect (1A)

(i) Students are not able to fit numbers into a formula of the function to 
find the intercepts.
(ii) Students will not be able to assign input-output.

Figure 8. Example of M&Ds of the PSTs, category 1A

Covariation aspect (2A)

(i) Not understanding why in the function x changes by 1 and f(x) 
changes by 2.
(ii) Students are not able to discern how x varies with f(x) from the table 
and, if they do, they may not be able to write it down in a dependency.

Correspondence aspect (3A)

(i) Students do not know how to form a formula from the graph, they 
do not know what a formula is.
(ii) Students are not able to discern from the table how x varies with f(x) 
and, if they do, they may not be able to write it down in a dependency.

Function as a mathematical object (4A) (i) Student are mistaken about the types of functions if they are not 
modified in their basic form.
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General (GEN)
This category arose from the need to include 
M&Ds reported by PSTs that were not relat-
ed to the concept of function.

(i) The student does not know how to start solving the problem; 
misunderstanding of the task; the student calculates by using other data 
out of inattention.

Other meaningful answers (Oth+)
Meaningful M&Ds related to functions that 
cannot be classified in any of the above cate-
gories are represented in this category. 

(i) Pupils do not know the rules for modifying expressions with powers, 
logarithms.

Meaningless or incomprehensible answers 
(Oth-)
M&Ds of PSTs that made no sense or were 
unclearly written.

(i) Misunderstanding of parents and their comments on student’s 
learning.

No answer/ I do not know (BLK)

4. Results 

In Table 3, we can see which students’ M&Ds were reported by the PSTs in the pre-test 
(blue star) and post-test (red star) sections (there is an indication of the occurrence of 
a category in the PSTs’ response, not the frequency of M&Ds for each category). 

If we look at the columns in Table 3, the important information that can be ascer-
tained is that in all but one category (LREP) the number of occurrences in the PSTs’ 
responses increased. We can also see a high frequency in categories 3A and 4A in both 
the pre-test and the post-test. On the other hand, the category CvsD is poorly covered. 
No PST mentioned it in the pre-test and only one in the post-test. The categories LIN, 
VAR, and 2A were rarely mentioned in the pre-test, although there is a substantial im-
provement in the post-test. The categories in grey in Table 3 are not particularly rele-
vant for our research, they only serve as information about the completeness of the data 
we collected.

If we look horizontally at the individual PSTs, for almost all of them there was a shift 
in the number of M&Ds for each category, but some of the M&Ds mentioned in the 
pre-test were not mentioned in the post-test. For example, Betty identified an M&D 
in the 1REP category in the pre-test but did not identify any M&D that we could in-
clude in this category in the post-test. Eleven PSTs (all except Betty and Heidi) identi-
fied M&Ds in a greater number of categories in the post-test compared to the pre-test.



Trends in Mathematics Education Research244

Table 3. Classification of pre-test and post-test M&Ds reported by PSTs 
PST Categories of misconceptions and difficulties

F/N LIN 1REP LREP MOD VAR NT CvsD 1A 2A 3A 4A GEN Oth+ Oth- BLK ∑

Abby ** * ** * * ** ** ** ** * * 6/9

Betty * * * * * ** ** * 4/3

Caleb * * * * * * ** ** ** ** * * 6/8

David ** * * * * ** * * ** ** ** * * 4/10

Eli * * * * * * * ** 2/7

Fiona * * * * * ** * ** 3/5

Grace * * * * ** * * * 3/4

Heidi ** * * * ** ** * * 5/4

Ian ** * * * * ** ** * * ** * * 6/8

Joe * * * * * * * * * * ** 3/6

Kate * * * ** ** ** * * 4/6

Lisa * * * ** * * ** * 3/4

Macy ** ** * * * * * ** * * 4/8

∑ 6/8 1/5 7/8 6/6 4/5 2/8 4/8 0/1 3/6 2/7 11/10 7/10 8/6 9/3 0/1 0/0

For ease of illustration, we have plotted the frequency of each category in the pre-test 
and post-test PSTs in a bar chart (Figure 9) which corresponds to the final column of Ta-
ble 3. The most valuable progress can be seen in David’s, Eli’s, and Macy’s answers. They 
mentioned students’ M&Ds in 10 (6 are different than in the pre-test), 7 (6 are different 
than in the pre-test), and 8 (5 are different) more categories than in the pre-test.

Figure 9. Number of categories identified by PSTs pre-test and post-test
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The following graph (Figure 10) shows the number of all M&Ds identified by the PSTs 
before and after the test (total number of M&Ds identified by the PSTs). Again, we can see 
a great deal of improvement for David, Eli, and Macy in the post-test. They mentioned 16 
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(12 M&Ds more than in the pre-test), 12 (10 M&Ds more than in the pre-test) and 13 (8 
M&Ds more than in the pre-test) M&Ds of the students. Contrary to the previous graph, 
we can also see progress for Betty, who reported more M&Ds in the post-test than in the 
pre-test, but only in the same category. Only Heidi did not make any progress in her an-
swers, on the contrary. It is also worth noting that progress is observable for almost all PSTs 
(except Heidi and Betty) independent of coding categories.

Figure 10. Number of all M&Ds identified in PSTs pre-test and post-test
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5. Conclusion 

The results show that the course has partly helped to improve the PSTs’ knowledge of stu-
dents’ M&Ds. All but one PST made at least some progress. There was also a shift in the 
number of categories of M&Ds reported by PSTs. On the other hand, many M&Ds that 
are commonly found in students and reported in research were also rarely (LIN, LREP, 
MOD) or hardly ever (CvsD) mentioned by PSTs in the post-test. Nor did the PSTs men-
tion the misconception that each y-value must correspond to one and only one x-value (de-
scribed by Leinhardt et al. (1990) as Correspondence). Another finding relates to PSTs’ 
rather general descriptions of types of M&Ds. For example, they very often mention prob-
lems with reading from a graph but only one PST in the post-test specifically describes the 
misconception known as Slope/height confusion and only one mentions the misconcep-
tion of Iconic interpretation (interpreting a graph of a situation as a literal picture of the sit-
uation). Both are categorised as MOD (Modelling). None of them mention interval/point 
confusion, where a student focuses on a single point instead of an interval. This is impor-
tant information for us to keep in mind when we run the course again. An important aim 
for us is that each PST is aware of the known M&Ds before they start designing and teach-
ing their lessons, so that they can prevent these M&Ds in their students. 
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The limitation of the study is its relatively small sample size. Results in other groups 
of PSTs might be different. Therefore, it would be interesting to include results from oth-
er partners within the FunThink project to obtain more generalisable data. Regardless 
of this limitation, the results help us see which kind of mathematics teachers’ specialised 
knowledge concerning students’ M&Ds about functions was less covered in our course. 
The analysis of PSTs’ answers to the chosen questions will help us refine the course de-
sign in this aspect in order to best help teachers to improve their knowledge about M&Ds 
concerning functions.
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SLOVAK PRE-SERVICE MATHEMATICS TEACHERS’ KNOWLEDGE 
ABOUT LINEAR FUNCTION DEFINITION AND THEIR BELIEFS ABOUT 
MATHEMATICS

Summary: This paper presents an investigation into pre-service mathematics teacher knowledge and 
beliefs in the context of a teacher course focused on the development of functional thinking. More 
specifically, it is focused on their Knowledge of Topic, Knowledge of Practices in Mathematics, and 
Beliefs about Mathematics as described in the Mathematics Teachers’ Specialised Knowledge model. 
Such investigations can shed light on course development and inform research that still needs answers 
about connections between beliefs, knowledge, and practice. In this study, the following research ques-
tions are posed and answered: How do pre-service teachers define a linear function? Are pre-service 
teachers consistent with their own definition when discussing the linearity of a given function? What 
tendencies are visible in pre-service teachers’ beliefs about mathematics? To answer these questions, 
qualitative methodology was used, where pre- and post-test answers of 13 course participants were 
analysed. On the one hand, the results revealed the prevalence of Platonist beliefs about mathematics. 
On the other hand, only a few of the pre-service teachers used the correct definition of a linear func-
tion (1 out of 13 in pre-test, 3 out of 13 in the post-test). Moreover, consistency of the definition and 
the argument used to decide about the (non-)linearity of the function was dependent on the context.
Keywords: Model MTSK, linear function, beliefs about mathematics, knowledge of topic.

1. Introduction

A quote from mathematician Georg Cantor states that the “essence of mathematics lies in 
its freedom”. As with anything else, freedom does not equate to doing whatever comes to 
one’s mind. It means making decisions and then accepting all consequences, in other words, 
being responsible. Often, we claim that the definition of a mathematical concept is a matter 
of convention, and, to some extent, it is arbitrary. For example, we can define a rectangle as 
a four-sided flat shape with straight sides where all interior angles are right angles. A conse-
quence of this definition is that a square is a special case of the rectangle. This is a space in 
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which teachers can practice mathematical freedom with students and teach them to antic-
ipate consequences. Hopefully, not only in a mathematical context. A necessary condition, 
however, is that the teachers are responsible enough to make use of this freedom.

There are different models of (mathematics) teachers’ knowledge which can help us con-
ceptualise what teachers need to know to be able to enjoy the freedom of mathematics: start-
ing from Shulman (1986), continuing, among others, with Mathematical Knowledge for 
Teaching (Ball et al., 2008), Knowledge Quartet (Turner & Rowland, 2011), and Mathe-
matics Teachers’ Specialised Knowledge (Carrilo et al., 2018), the last of which directly ad-
dresses the knowledge about practices of building mathematical knowledge in a logically 
correct way. For this reason, this paper will assume the terms of this model. 

2. Theoretical Background

2.1. Mathematics Teachers’ Specialised Knowledge Model

The model Mathematics Teachers’ Specialised Knowledge (MTSK) is an analytical model 
which helps researchers gain insight into the teacher’s knowledge, specifically the elements 
which this knowledge if made of and the interactions between them (Carrillo et al., 2013; 
Carrillo et al., 2018). The MTSK model (Figure 1) consists of three main parts: Mathe-
matical Knowledge (on the left-hand side), Pedagogical Content Knowledge (on the right-
hand side), and Beliefs (in the middle). 

Mathematical Knowledge covers the “whole universe of mathematics, comprising con-
cepts and procedures, structuring ideas, connections between concepts, the reason for, or 
origin of, procedures, means of testing and any form of proceeding in mathematics, along 
with mathematical language and its precision” (Carrillo et al., 2013, p. 2990). It is divided 
into the following subdomains: Knowledge of topics, Knowledge of the structure of math-
ematics, and Knowledge of practices in mathematics.

Pedagogical Content Knowledge “is comprised of the knowledge relating to mathe-
matical content in terms of teaching-learning” (Carrillo et al., 2018, p. 240). It is also di-
vided into three subdomains, which are: Knowledge of mathematics teaching, Knowledge 
of features of learning mathematics, and Knowledge of mathematics learning standards.

The third part of the model includes teachers’ Beliefs about mathematics and their Be-
liefs about mathematics teaching and learning. “These are represented at the center of the 
figure to underline the reciprocity between beliefs and knowledge domains” (Carrillo et al., 
2018, p. 240). 
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In this paper, we are only concerned with the subdomains: Knowledge of Topics, Knowl-
edge of Practices in Mathematics, and Beliefs about Mathematics, so we only characterise 
these parts of the model in more detail. 

Figure 1. Mathematics teacher’s specialised knowledge model (Carrillo et al., 2018)

2.2. Knowledge of Topics (KoT)

This subdomain describes how mathematics teachers should know the topics of the math-
ematics they teach. It includes the knowledge they teach their students, but their under-
standing of it is deeper, more rigorous, and uses formal mathematical language. Naturally, 
the level varies across the school where the teacher is employed. As the topics can vary ac-
cording to each country’s curriculum, KoT is also specific to each country. However, a com-
mon similarity is that KoT consists of the following four categories:

1. Procedures – knowledge about how, under what conditions, and why something 
is done, and the key features which result in doing it.
e.g., Knowing the mathematical apparatus for determining the missing coordinate 
of a point when a function is given by its formula.

2. Definitions, properties, and foundations – knowledge of descriptions and char-
acterisations of a concept, and knowledge of the relationships between concepts and 
their properties within a given topic.
e.g., Knowledge of the definition of a function, a linear function, a function of con-
stant and direct proportionality.
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3. Registers of representation – knowledge of the different ways a topic can be rep-
resented (graphic, algebraic, arithmetic, and so on).
e.g., Knowledge of how a linear function can be represented (with a table, word, 
graph, equation, and nomogram), transitioning between representations.

4. Phenomenology and applications – knowledge of the applications of specific con-
tent, and the different contexts in which we may encounter that content.
e.g., Recognition of a linear function in a real context. 

Since KoT is specific to the mathematical and cultural context, let us focus on the Slo-
vak curriculum concerning linear function. Moreover, due to the topic of the paper, we 
restrict ourselves to the definition of linear function – the second category. According to 
Slovak curriculum documents intended for lower secondary schools, pupils in Grade 9 are 
expected to know the concepts of linear dependence, linear function, and graph of a linear 
function. At the same time, they are meant to be able to work with these concepts and to 
determine the second coordinate of a point on the graph (Štátny pedagogický ústav, n.d.). 
In the target requirements for the mathematics matriculation examination, the standard 
specifies knowledge of the concept of a linear function and further specifies work with a lin-
ear function (Štátny pedagogický ústav, 2016).

When taught on the topic of functions, students also develop what is known as func-
tional thinking. Functional thinking, simply put, considers a way of thinking in terms of 
relationships, interdependencies, and change. There are four aspects of functional thinking 
which are related to different perspectives on functions (Pittalis et al., 2020): 

1. Function as an input-output assignment: Such a view of functions emphasises 
the operational and computational nature of the concept of function. It involves 
an examination of how a particular input value will lead to an output value. How-
ever, it does not require an awareness of the causal relationship between input and 
output (Pittalis et al., 2020). Suitable function representations are the input-calcu-
lation-output arrow chain or the input-output table.
e.g., The total amount to pay as a function of the number of objects (candies, tick-
ets) bought.

2. Function as a dynamic process of covariation: A function, covariationally, is a con-
ception of two quantities varying simultaneously such that there is an invariant rela-
tionship between their values having the property that, in the person’s conception, 
every value of one quantity determines exactly one value of the other (Thompson 
& Carlson, 2017, p. 444). Suitable representations may be the function value table 
or the function graph, which can be scrolled through or traced.
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e.g., In a linear function, the rate of change of the functional value per “unit” is the 
same.

3. Function as a correspondence relation: The correspondence relationship involves 
identifying the correlation between variables, using a function formula to predict 
distant values, and finding the value of one variable relative to the value of anoth-
er variable (Pittalis et al., 2020). Such a view of function is an extension of the first 
aspect of the concept of function. For example, in an input-output table, the corre-
spondence approach involves finding a numerical relationship between input and 
output values in addition to finding an explicit representation of the rule.
e.g., Determine the coordinate of the intersection of the graph of the function 
y = 3x + 5 with the x-axis and the y-axis.

4. Function as a mathematical object, with its specific representations and proper-
ties which can be dealt with. Each representation provides a different view of the 
same object. This perspective is needed to compare a function with another func-
tion or with another mathematical object (FunThink Team, 2021).
e.g., Observation of how the coefficient b affects the properties of the linear function.

These aspects highlight the key characteristics of function and can provide a founda-
tion for teaching function and developing students’ functional thinking.

From the given description of the MTSK, it is clear that one more subdomain is direct-
ly connected to the concepts’ definitions. Or, to be more precise, linked to the process of 
defining. Namely, Knowledge of practices in mathematics (KPM).

2.3. Knowledge of Practices in Mathematics (KPM)

The term practice can be used in various ways by researchers. In this case, it means the work-
ings of mathematics rather than the process of teaching it. KPM is defined as “any mathe-
matical activity carried out systematically, which represents a pillar of mathematical crea-
tion, and which conforms to a logical basis from which rules can be extracted” (Carrillo et 
al., 2018, p. 243). It can be either general or topic-specific. 

1. General KPM includes knowledge about how mathematics is developed beyond 
any particular concept.
e.g., Understanding the meaning of necessary and sufficient conditions,

2. Specific KPM is a particular instance of general KPM. It is associated with the pe-
culiarities of the topic in question.
e.g., The use of proof by contradiction in proving the irrationality of some numbers.
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Delgado-Reboledo and Zakaryan (2020) suggest that among other categories: “The 
KPM includes […] the knowledge of how to define something in mathematics and the char-
acteristics of a definition” (p. 571). Some of the characteristics of the definition are neces-
sary due to the requirements of logic, while some are part of general culture. Van Dormo-
len and Zaslavsky (2003) suggest that the necessary features of definitions are:

1. Criterion of hierarchy: “Any new concept must be described as a special case of 
a more general concept. One or more properties must be used to describe this spe-
cial case” (p. 94). 
e.g., Before we define a linear function as a function with a specific property, it is 
necessary to define a function.

2. Criterion of existence: A definition tells us what a concept is, but usually it does 
not say whether there exists an instance of such a concept within the current sys-
tem […] It must be proven that at least one instance of the newly defined concept 
exists in the current context (p. 94). The authors further state that the consequence 
of this criterion is that a well-defined concept needs to be followed by an example.
e.g., We could possibly define a quadrilinear function as a function f in whose graph 
is a line and there exist       . Yet, such 
a function does not exist. Its definition would lead to logical paradoxes. 

3. Criterion of equivalence: When one gives more than one formulation for the same 
concept, one must prove that they are equivalent. In practice, this means that one 
must choose one of the formulations as the definition and consider the other for-
mulations as theorems that have to be proved (p. 95).
e.g., The linear function can be defined by its general equation or by its graph. What-
ever we choose, we should be able to prove the respective feature as the consequence 
of the definition.

4. Criterion of axiomatisation: Some general concepts cannot be defined based on 
even more general concepts. Those concepts are implicitly defined in terms of axioms.
e.g., In geometry, such concepts are point, line, and plane.

5. Criterion of minimality “demands that no more properties of the concept be men-
tioned than is required for its existence” (p. 96). If the definition does not meet this 
criterion, i.e., it also contains redundant properties, then the “definition” consists 
of the definition and at least one theorem.
e.g., The definition of linear function where both features are stated – equation and 
graph – contradicts this criterion. 

6. Criterion of elegance is the most subjective of all the criteria. It is a choice between 
two equivalent definitions: which one looks nicer, needs fewer words or fewer sym-
bols, and so on.
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7. Criterion of degenerations: “Degenerations are instances of a concept that we do 
not expect to be included when defining the concept. They are a logical outcome of 
the definition” (p. 99). We may change the terms of the definition so that such cas-
es are not included. However, we must be careful not to disturb the development 
of the theory. Van Dormolen and Zaslavsky (2003) state these degeneracies are of-
ten accepted because it is difficult to predict the consequences of rejecting them. 
“Anyway, it should be shown that, if the definition allows for degenerations, prop-
erties that are proved for “normal” instances also apply to degenerations” (p. 99). 
e.g., Usually, when defining a quadratic function (   ), 
we exclude a = 0, because it contradicts our perception of the quadratic function. On 
the contrary, when defining a linear function ( ) it is arbitrary 
whether we include or exclude a = 0.

The last criterion is, from our perspective, the sub-criterion of the next requirement, 
which is missing from the list. Based on the definition, one has to clearly distinguish wheth-
er the object belongs to a set of defined objects. For instance, whether a square is or is not 
a rectangle or whether a constant function is or is not a linear function. Here, one more 
characteristic of definition becomes clear – definitions are arbitrary, and one can choose 
which definition one uses. The definition can be chosen, although its consequences are given. 

As mathematicians, we often believe that each concept we use has a definition that ful-
fills the above-mentioned criteria. Yet, it is not true. Historically, many concepts were very 
well developed before the definition was established. Pinto and Tall (1996) recount two 
distinct purposes of the definition in mathematics:

On the one hand, a concept which is already familiar to the student is given a definition to identify 
the concept. In this case, the concept determines the definition. On the other hand, in formal math-
ematics, the definition is used to construct the properties of the mathematical concept that it defines. 
In this case, the definition determines the concept (p. 140).

School mathematics usually heads from concept to definition. At some point, students 
need to know the “name” of the concept, and which image they construct. They study its 
properties and connections with similar concepts, and discuss whether the concept is a spe-
cial case of some other concept, or whether those are disjunct sets of objects. However, stu-
dents do not always need a formal definition. Similarly, mathematicians who are just discov-
ering a new concept for which it takes time (sometimes centuries) until it has an established 
definition. Formal mathematics, conversely, starts with a definition and ends with the con-
cept – its properties, examples, counter examples, and applications.
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This dichotomy of approaches causes problems when providing textbook definitions. 
These “school” definitions sometimes only describe or characterise the concept and there-
fore do not fulfill some of the criteria stated by Van Dormolen and Zaslavsky (2003). We 
can see these difficulties in Slovak teaching materials when defining linear function.

2.4. Definition of Linear Function

Let us now analyse different definitions of linear functions stated in different textbooks 
and teaching materials used by Slovak teachers. It is worth noting that not all of them are 
labeled as “definitions” in textbooks. In those cases, it is out of the question whether the au-
thors mean a definition or mathematical statement. This is exactly the point where we can 
see confusion between the concept image (Tall & Vinner, 1981) and its definition. From 
the perspective of what will come next, we spotlight the criteria of minimality and degen-
eration. In Table 1, we can see that three definitions (2, 3, and 4) do not satisfy the criterion 
of minimality. These definitions combine standard equation and graph of linear functions. 
Most of them accept a constant function as a special case of a linear function, although Bero 
and Berová (2015) exclude it. None of the definitions explicitly mention that the domain 
can be a subset of real numbers. However, Šedivý and colleagues (2004) admit that a graph 
of the linear function can be not only a straight line, but also part of a straight line. In addi-
tion, Hecht et al. (2001) use time as an example of the domain and therefore accept a subset 
of real numbers to be the domain of the linear function. Three definitions do not operate 
with the domain at all. Additionally, we can see that the standard definition of the linear 
function in Slovak context is based on the formula. This highlights the function as a cor-
respondence relation. Only one definition (6) supports the dynamic process of covariation.

Table 1. Definition of Linear function in Slovak teaching materials

Definition of Linear function Resource

Does it deal with possible 
degenerations? Criterion of 

minimality
constant

1

The notation of the linear dependence 
of two quantities x and y in the form 

y = k ⋅ x + q, where k and q are arbitrary 
real numbers, is called the equation of 

this linear dependence.

Kolbaská, 2014, p. 47
textbook recommended by 
the Ministry of Education

yes not clear Yes

2

A linear function is a function given by 
y = k ⋅ x + q, where k, q, are arbitrary 

real numbers, k ≠ 0. The graph of 
a linear function is a line.

Bero & Berová, 2015, p. 57
textbook no not clear No
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3

A linear function is any function given 
by the formula y = k ⋅ x + q, where k, q, 
are arbitrary real numbers. The graph of 

a linear function is a line.

Kohanová et al., 2016, 
p. 45

textbook
yes no (as 

a conclusion) No

4

A function in the form: y = k ⋅ x + q, 
where k and q are arbitrary real numbers 
and its defining domain is the set of all 

real numbers, is called a linear function. 
The graph of a linear function is a line 

or part of a line (if the domain is 
bounded).

Šedivý et al., 2004, p. 32
textbook yes

no and 
yes (as 

a conclusion)
No

5

A linear function is any function given 
by the equation y = a ⋅ x + b, where 

 , the defining domain is the 
set .

Vavrinčíková, n.d., p. 2
online material yes no Yes

6

Linear functions are those functions 
where the rate of change of the 

functional value per “unit” (usually 
time) is the same.

Hecht et al., 2001, p. 23
textbook not clear not clear Yes

7

The function        
is called a linear function. The numbers 

a, b, are denoted as the coefficients of 
the linear function.

Krynický, n.d., p. 1
online material not clear no Yes

Our cursory observation implies that, in some textbooks, the concept of a linear func-
tion is not well defined in terms of the criteria of the definition and correctness of the con-
tent. Those could more or less work as descriptions of the concept image of linear func-
tions. To some extent, the precision of the definition is related to beliefs about mathematics, 
which are part of MTSK.

By a completely correct definition of a linear function, we mean definition 5, although 
we could accept the following formulation: A linear function is any function given by the 
equation y = a ⋅ x + b where , the defining domain is the set , or its subset. An 
important aspect is how the examples where, for instance, + is a domain, are treated. Al-
ternatively, the covariance approach could be used (definition 6) to define linear function. 
However, this textbook definition should be completed with information about possible 
rates of change (is “0 change” the change?) and also specify the domain to be considered 
fully correct.

2.5. Beliefs about Mathematics 

To study pre-service teachers’ beliefs, we drew on the classifications in Carrillo and Con-
treras (1994) who provided a categories system and descriptors for a more detailed charac-
terisation of the teacher’s beliefs of mathematics and its teaching. To identify teachers’ be-
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liefs about mathematics, there are three tendencies, the names of which were adapted from 
Ernest (1989, as cited in Carrillo & Contreras, 1994):

1. Instrumentalist – Mathematics is like a bag of tools, made up of an accumulation 
of facts, rules, and skills to be used in the pursuance of some external aims. Thus, 
mathematics is a set of unrelated but utilitarian rules and facts. 

2. Platonist – Mathematics is a static but unified body of knowledge, a crystalline 
realm of interconnecting structures and truths, bound together by filaments of log-
ic and meaning. Mathematics is discovered, not created. The aims of mathematical 
knowledge are internal. 

3. Problem solving – Mathematics is a dynamic, continually expanding field of hu-
man creation. Mathematics is a process of inquiry, and its results remain open to re-
vision. The aim of mathematical knowledge is intellectual development.

It would be expected that holders of different beliefs about mathematics will have a dif-
ferent approach to the role of definitions. It seems that the Platonist tendency should most-
ly support the direction going from definition to concept. However, this tendency will be 
especially strict about fulfilling the criteria of a good definition.

3. Methodology

3.1. Context of the Study and Data Collection

The presented study was conducted in the context of the FunThink Erasmus+ (Enhancing 
functional thinking from primary to upper secondary school) international project. Three 
main objectives were set. Firstly, designing learning environments through which it will 
be possible to develop functional thinking in primary and secondary school pupils. Sec-
ondly, creating a course for pre-service teachers that empowers them to develop the func-
tional thinking of their future pupils. The third objective was to create an online platform 
where materials will be available to a wide professional audience (FunThink Team, 2021). 
This study is anchored in a pilot version of the course that was conducted in the Slovak Re-
public. The course lasted 14 weeks with a weekly allocation of 90 minutes. It was attended 
by 13 pre-service teachers in the first year of their master’s study. For them, it was the first 
course directly related to the didactics of mathematics (pedagogical content knowledge). 
Pre-service teachers were aware of the conducted research based on the course and agreed 
to participate. The structure of the course was as follows (Table 2):
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Table 2. Structure of the pilot version of the course in the Slovak Republic
Week Module Topic

1 Introduction Course description
Pre-assessment (test and lesson plan development)

2
KoT

Independent solutions of tasks focused on Knowledge of 
Topic

3 Discussion about tasks and their solutions

4
Functional thinking

Aspects of Functional thinking and representations of 
functions

5 Aspects of Functional thinking in tasks, solutions, and 
definitions

6

Design principles
of FT project

Inquiry and Digital tools

7 Situatedness

8 Embodiment

9 Pre-service teachers’ task design

10
Formative assessment

Functional thinking in students’ solutions

11 Teacher’s reaction to incorrect answer (video analyses)

12 Curriculum Aspects, representations, and application of function in 
Slovak curriculum

13
Outro

Post-assessment (test and lesson plan development)

14 Feedback in terms of MTSK

The data on which this article is based was collected during the pre- and post-assessment 
tests (sessions 1 and 13). The pre-service teachers’ solutions and answers from the pre-test 
were not discussed during the course; their accuracy was not disclosed. None of the tests 
were part of the final assessment, thus the research participants’ motivation was not affect-
ed by the pressure of getting a better grade. 

Before the course, as part of their undergraduate studies, they were to gain a deep math-
ematical understanding mainly of advanced mathematics. Most of the mathematics cours-
es they have taken were constructed in the manner of Definition – Theorem – Proof. One 
of the more important courses deals with mathematical logic. Thus, we can say that from 
a mathematical point of view, these pre-service teachers were taught in a Platonist way.

In this context and concerning the stated theoretical background, we pose the follow-
ing research questions: 

RQ1: How do pre-service teachers define the linear function? Does it change after the course?
 ■ How – in the sense of fulfilling criteria of definition,
 ■ How – in the sense of the aspects of functional thinking used.
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RQ2: Are pre-service teachers consistent with their own definition when discussing the lin-
earity of a given function? Does it change after the course?

 ■ Consistent – in the sense of accepting the consequences of their own definitions,
 ■ Consistent – in the sense of using the same concepts in the definition and the ar-

gumentation.

RQ3: What tendencies are visible in pre-service teachers’ beliefs about mathematics?

3.2. Research Tools and Data Analyses

The pre-test and post-test contained eight identical tasks and nine questions, from which 
we analysed those which helped us answer our research questions (Table 3). The data was 
analysed by two authors (MK and VH) who first coded the data independently, then com-
pared, refined, and unified the coding. The code for each task is stated in the results section.

Table 3. Tasks and questions
No. Task / Question Purpose of the task

T2

Decide whether the functions below 
are linear. Justify your reasoning.

In these tasks, we wanted to 
see whether their decision and 

argumentation about the linearity of 
the given functions is consistent with 

their definition of linear function.

We focused on the domain of the 
function (F – Is the function linear 

even though 0 is excluded from 
the domain?) and the range of 

the coefficients (C – Is a constant 
function a special case of the linear 

function?)
T8

Define the following concept. If you 
consider it important, state more 

definitions.
Linear function:

Q1 Write down your personal definition 
of mathematics.

Using these questions, we wanted to 
find out what perspectives pre-service 
teachers have on mathematics, as well 
as what they think is the importance 

of teaching functions.

Q2

What is the difference and what are 
the similarities between mathematics 
as a science and mathematics as the 

subject you will teach?

Q6
What do you consider to be the goal 
of teaching about functions? Expand 

your answer.
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4. Results

4.1. Definition of Linear Function

Table 4 presents the codes we used in the data analysis of Task 8, where pre-service teachers 
were asked to define a linear function. Table 5 summarises the results of the coding. Green 
or blue cells represent pre-test results, and green or yellow cells represent post-test results. 

Table 4. Coding for Task 8

No. Codes

T8

Correctness
• Domain

 ■ Real numbers
 ■ Real numbers or a subset of 
 ■ Unspecified

• Redundancy

Underlying concept
• Equation

 ■ a, b from 
 ■ b from , a from  – {0}
 ■ a, b unspecified

• Graph
 ■ Line
 ■ Line or its part

• Polynomial (exponent)
• Constant rate of change

Table 5. Definition of Linear function in pre- and post-test
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In the pre-test, only one of the participants gave a completely correct definition of the 
linear function. The difficulties included redundancy of the information given in the defi-
nition (n = 4). The criterion of minimality was mostly broken by using an equation and 
a straight line to define linear function. Except for one pre-service teacher, no one indicat-
ed the domain of the function within the definition. One participant, Jana, stated a defini-
tion which was not describing linear function at all. Her definition had more semblance to 
a one-to-one function. Pre-service teachers relied mostly on an equation (n = 8) or a graph  
(n = 5). Three of them perceived linear function as a special case of a polynomial function. 
Among those who rooted their definition in an equation, most (n = 10) stated that coef-
ficients are real numbers, one of them expelled slope equal to 0, and two of them did not 
specify the range of the coefficients. 

In the post-test, we identified a correct definition in the responses of four participants. 
Redundancy was again present (n = 5). Interestingly, this was a repeated error for only one 
participant. The other three made some progress. However, four others now made this er-
ror. In addition, five participants had already indicated the domain in this test: three as 
a set of real numbers, and two as an arbitrary subset of real numbers. Each participant used 
an equation as a basic concept for the definition and the polynomial approach disappeared, 
however, one pre-service teacher suggested a definition based on a constant rate of change. 
Four participants used the concept of the straight line for defining linear function. Two of 
them also accepted part of the straight line to be the graph of a linear function.

In both tests, we observe a clear tendency to define the linear function using a formu-
la. Only one pre-service teacher in the post-test (Karol) used the covariational approach. 
These and the previous observations are in alignment with what we perceived in the Slo-
vak teaching materials, even though the pre-service teachers were not systematically in-
structed to study them.

4.2. Consistency between the Definition and Decision 

We mentioned in the theoretical introduction that definitions are arbitrary, however, the 
consequences of the choice of definition are given by logical rules. Therefore, we look close-
ly at the pre-service teachers’ consistency between their own definition of a linear function 
and their decisions about the linearity of three functions given by equations (tasks 2C, D, F). 
Table 6 presents the codes we used in the data analysis of Task 2. For this analysis, we pre-
sumed, if not stated otherwise, the domain for x and the range for a, b to be real numbers. 
The results are displayed in Table 7, in the rows “Is it LF?” 
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Table 6. Coding for Task 2

No. Codes

T2

Is it a linear function in the terms of the definition given by the pre-service teacher in T8?

-   yes     (1)
-   no     empty cell
-   difficult to decide    (?)

Is it a linear function (test answer)?
-   yes    (1)
-   no    empty cell
-   it depends on the definition   (?)

Argument
-   equation (range of coefficients) 
-   graph (line or line or its parts)
-   polynomial
-   rate of change
-   constant function (implies linear)

Firstly, we notice that the number of consistent answers tended to increase from pre-
test to post-test: from 8(+1) to 10, from 9 to 11, and from 2 to 7(+1) for the given func-
tions. Next, the most difficulties appeared with the task 2F, where the domain of the func-
tion was  – {0}. Even though some of the pre-service teachers discussed the domain of 
the given function in the pre-test, their decision ended up inconsistent (Adam, Emil, Fany, 
Heňa, Ivana). In the post-test, the discussion about the domain always led to consistency 
with one’s own definition.

Moreover, we analysed their argumentation and its match to the one used in their defi-
nition (see rows Arguments, Table 7). The meaning of the codes (blue, yellow, and green 
colors) is explained next the table. 

Again, here we can see a minor shift towards more consistent argumentation. If we count 
the amount of the same concepts used in the definition and the argumentation, we can see 
that for task 2C, the number of matches increased from 3 to 8, for task 2D, from 8 to 9, for 
task 2F, from 5 to 11. Using a different concept in the argument and the definition is not 
necessarily an error. We perceive using the “line argument” to explain the decision about 
the linearity of the function while defining a linear function using only the concept of the 
equation as being a bit problematic from the perspective of logic. In this case, pre-service 
teachers should be asked how they know the graph is a line. We assume a circular argument 
(“because it is a linear function”) could possibly occur. Similarly, using the argument “it is 
a constant function” without mentioning it in the definition. In the given context, we were 
not able to discern more information. It is a possible enhancement for our future research. 
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Table 7. Consistency between the definition and the decisions in pre- and post-test
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Furthermore, the pre-service teachers used more than the one necessary argument to 
correctly argue their decision only several times (2C pre-test: 0, post-test: 2, 2D: pre-test 
and post-test: 0, 2F: pre-test: 1, post-test: 2). This redundancy of arguments appeared only 
in formulas which could possibly be interpreted as a linear function. It is likely that the 
pre-service teachers felt the need to provide a “stronger” argument to justify their decision.

4.3. Beliefs

Table 8 presents the codes we used in the data analysis of Question 1, 2, and 6. Table 9 dis-
plays the results of coding for Questions 1, 2, and 6 in both tests. The color green stands 
for a code present in both tests. The color blue is used when the code was visible only in the 
pre-test, and yellow is used when the code was observed only in the post-test.

Table 8. Coding for Question 1, 2 and 6

No. Codes
Q1 Beliefs tendencies about mathematics:

• Instrumentalist
 ■ External aims of mathematical knowledge

• Platonists
 ■ Internal aims of mathematical knowledge

• Problem solving
 ■ Intellectual development as an aim of mathematical knowledge

Q2

Q6

Table 9. Beliefs tendencies about mathematics in pre- and post-test

Important information derived from the data is the following: Firstly, the beliefs of in-
dividual pre-service teachers did not show a clear tendency in most cases. Seven of them 
showed all three tendencies, five of them showed two tendencies, and one pre-service teach-
er showed beliefs from only one tendency (when including both pre- and post-test). We do 
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consider differences between the tests as the change of beliefs, because the tool was not ad-
justed for identifying “non-beliefs”. Therefore, we cannot say whether the pre-service teach-
er did not hold a particular belief, or it simply did not appear. Secondly, this variability was 
primarily due to beliefs from the “Aims” category. When omitting this category, one pre-ser-
vice teacher revealed all three tendencies, six proclaimed two tendencies, and five showed 
only one tendency. Thirdly, “Platonistic” emerged as the strongest tendency in this group 
of pre-service teachers. Their experiences in mathematics courses during their undergrad-
uate studies could easily justify this result.

5. Conclusions and Discussion

Thompson (1992, p. 131) stated that “to look at research on mathematics teachers’ beliefs 
and conceptions in isolation from research on mathematics teachers’ knowledge will nec-
essarily result in an incomplete picture”. Our research demonstrated this statement once 
again. If we observed only the beliefs of our pre-service teachers, we would expect exact defi-
nitions and precise argumentations. Instead, we found a small number of correct definitions 
and many inconsistent decisions. Somehow, we are in a paradoxical situation, in which we 
have pre-service teachers whose beliefs claim that mathematics must have a system and re-
spect clear rules while simultaneously not following this requirement. The reasons behind 
this dichotomy can differ from one subject to another and require deeper research includ-
ing interviews with the participants. 

Firstly, we can challenge the information about the Platonist beliefs of pre-service teach-
ers. Even though these were clearly present in their answers and supported by university 
courses, they are not necessarily central in the belief system of pre-service teachers. More-
over, the connection between beliefs and behavior is not straightforward. Even salient be-
lief is filtered several times and it takes several steps to transform a belief into intention, 
and intention into behavior (e.g., Bosnjak, Ajzen, & Schmidt, 2020). In this context, one 
of the “filters” is pre-service teacher knowledge. 

In general, knowing the definition of a linear function is part of KoT, because the Slovak 
curriculum requires this piece of knowledge to be taught. Therefore, at first sight, we could 
say that problems in definition formulation and argumentation of decisions were caused 
due to a missing piece in this subdomain. However, the majority of the participants were 
able to formulate definitions of a linear function (except one pre-service teacher in the pre-
test) that described their concept image of a linear function. This concept image was cor-
rect. Most of them used plausible arguments when deciding whether the given equations 
represent linear functions or not. However, the definitions and arguments lacked precision 
and clarity, and did not respect the criteria of a good definition. 
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This leads us to the conclusion that the more challenging subdomain might be KPM, al-
though we cannot be sure whether it is a problem of personal or enacted knowledge (as sug-
gested by Carlson et al., 2019). From the perspective of course design, it matters if pre-ser-
vice teachers do not have the knowledge about the criteria of definitions, or they do not 
enact this knowledge when defining a concept. One way or another, our research states 
that the unclear borders between concept image and concept definition of a linear func-
tion, which is present also in Slovak teaching materials, need to be addressed in a specific 
way. In further research, we will uncover what is behind the problems of pre-service teach-
ers and re-design the course, and/or provide feedback to our colleagues, informing them 
to do so in their courses.
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AN EXPERIMENTAL STUDY ON MIDDLE SCHOOL PRE-SERVICE 
MATHEMATICS TEACHERS’ ALGEBRAIC KNOWLEDGE FOR TEACHING 

Summary: In this study, our primary objective was to investigate the impact of algebraic instruction 
centered on problem-solving and emphasising the cultivation of algebraic habits of mind. The aim was 
to evaluate the effectiveness of this instructional approach in enhancing the proficiency of pre-service 
elementary mathematics teachers in algebraic teaching. The research employed a quasi-experimental 
method and involved 66 pre-service teachers enrolled in the elementary mathematics teachers’ edu-
cation department at a state university, all of whom were taking the Algebra teaching course. Partici-
pants were randomly assigned to either the experimental group (31 participants) or the control group 
(35 participants) in a randomised pretest-posttest control group design. The data collection instru-
ment utilised was the Elementary Patterns, Functions, and Algebra-Content Knowledge (PFA) test. 
Mean scores and ANCOVA values were computed for the data analysis. The study revealed that the 
pre-test mean of the pre-service teachers in the control group exceeded that of the pre-service teach-
ers in the experimental group. However, upon examining the post-test averages, it became evident 
that the pre-service teachers in the experimental group outperformed those in the control group. The 
ANCOVA results indicated a statistically significant difference between the post-test average scores, 
adjusting for the pre-test scores of the pre-service teachers in the experimental and control groups. 
These findings suggest that the training provided to the experimental group significantly contribut-
ed to the enhancement of the pre-service teachers’ algebraic knowledge for teaching.
Keywords: algebra knowledge for teaching, Algebraic Habits of Mind (AHoM), problem-based al-
gebra teaching, middle school pre-service mathematics teachers.

1. Introduction

Algebra is a fundamental branch of mathematics that plays a crucial role in developing stu-
dents’ abstract thinking skills. Research suggests that for pre-service teachers to teach al-
gebra effectively, they must have a strong understanding of algebraic concepts (Magiera et 
al., 2013). To help students develop algebraic thinking, teachers need to support their un-
derstanding and connections between mathematical ideas (NCTM, 1997; Kieran, 2007). 
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However, there is still a lack of research on effective strategies to enhance pre-service teach-
ers’ proficiency in this area (Magiera et al., 2013).

Teachers’ knowledge and skills are key factors influencing the success of instructional 
practices (Borko & Putnam, 1996; Mewborn, 2003). Therefore, well-designed teacher ed-
ucation programs that focus on both subject knowledge and pedagogical knowledge are 
essential for improving algebra instruction (Ball & Bass, 2000). Effective teacher training 
programs should be structured to integrate both mathematical content and pedagogical 
strategies (Hill, 2010).

This study explores the impact of problem-based algebra instruction on the algebra teach-
ing knowledge of pre-service elementary mathematics teachers. Specifically, it investigates 
how an instructional approach based on Algebraic Habits of Mind (AHoM) influences 
pre-service teachers’ ability to teach algebra. By comparing a traditional teaching approach 
with problem-based instruction, this research aims to assess the contribution of AHoM-
based teaching to the development of pre-service teachers’ algebra knowledge for teaching.

2. Theoretical Framework

Within the purview of this study, we aim to investigate the transformation in the algebra 
teaching proficiency of pre-service elementary mathematics educators, specifically focusing 
on problem-based algebra teaching within the conceptual framework of Algebraic Habits 
of Mind (AHoM). The study is theoretically grounded in the frameworks of Mathemati-
cal Knowledge for Teaching (MKT) and AHoM. 

2.1. Mathematical Knowledge for Teaching 

There has been a noteworthy surge in research examining teachers’ pedagogical knowledge 
and the requisite competencies within this domain (Darling-Hammond, 2006; Fernán-
dez-Soria, 2013; Morris et al., 2009). Within this scholarly discourse, Ball et al. (2008) 
focused on Shulman’s (1987) delineation of subject knowledge and pedagogical content 
knowledge, specifically advancing the conceptualisation of mathematical knowledge for 
teaching. This concept has transitioned from a mere depiction of what teachers ought to 
know and execute in the mathematics teaching domain (Ball & Bass, 2003) to an intricate 
model that classifies various facets of teacher knowledge (Ball et al., 2008). The researchers 
delineate six distinct categories, while acknowledging the inherent challenge of unequivo-
cally demarcating the boundaries between them (Ball et al., 2008). 
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Figure 1. Domains of Mathematical Knowledge for Teaching (Ball et al., 2008)

The conceptualisation of teacher knowledge, encompassing the distinctive attributes 
of knowledge essential for effective teaching and the processes through which this knowl-
edge is acquired and reinforced during teacher preparation, has undergone significant evo-
lution over the past three decades. Predominantly, paradigm shifts have occurred within 
the domains of teacher knowledge, specifically content knowledge and general pedagogi-
cal knowledge (Magiera et al., 2017). While Shulman’s seminal theory (1986) delineates 
a foundational knowledge base requisite for proficient teaching, the present study by Hill 
et al. (2008) is grounded in the evolved practice-based theory of Mathematical Knowledge 
for Teaching (MKT). MKT not only aids educators and pre-service teachers in cultivat-
ing the decision-making acumen vital for effective classroom instruction (Johnson, 2009), 
but it also furnishes a robust theoretical framework and practical applications for teacher 
education programs (Hill et al., 2005). 

2.2. Algebraic Habits of Mind

Algebra, within the field of mathematics, is concerned with symbols and generalised nu-
merical entities extending beyond basic arithmetic operations to address equation-solv-
ing, analyse functional relationships, and elucidate the structure of a representation system 
comprising expressions and relations (Lew, 2004). Practitioners of algebraic discourse com-
monly opt to initially emphasise specific properties before delving into the implications of 
these properties, for instance, some direct attention towards abstract features that distin-
guish algebra from arithmetic. From this standpoint, algebraic thinking is characterised as 
the ability to operate on an unknown quantity as if the quantity is known, as opposed to 
arithmetic reasoning, which involves operations on known quantities’ (Langrall & Swaf-
ford, 2000). Others emphasise the role of problems in algebra, defining algebraic think-
ing as the capability to represent quantitative situations in a manner that renders relation-
ships between variables visible. Driscoll (1999) posits that possessing algebraic thinking 
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involves contemplating functions and their workings, along with considering the impact 
of system structure on computations. These dual facets of algebraic thinking are nurtured 
by specific habits of mind.

Figure 2. Algebraic Habits of Mind (Driscoll et al, 2001)

Driscoll (1999) conceptualised the habits of mind of building rules to represent func-
tions and abstracting from computation under the Doing-Undoing habit of algebraic think-
ing (Figure 2). It includes a set of sub-habits that encourage algebraic thinking about alge-
braic concepts and making sense of algebraic problems in every habit. 

Doing-Undoing: This algebraic habit of mind serves as a framework for the other two 
habits. Students should be able to conclude an algebraic operation as well as work back-
wards from the result of an algebraic operation to reach its starting point. With this hab-
it of mind, students do not only focus on reaching the result, but also think about the pro-
cess. For example, if x2 – 1 = 0, they should be able to find the solution of this equation as 
well as the equation with roots x = 1 and x = –1.

Building Rules to Represent Functions: This habit of mind involves recognising and 
analysing patterns, investigating and representing relationships, generalising beyond spe-
cific examples, analysing how processes or relationships change, and looking for evidence 
of how and why rules and procedures work. Driscoll (1999; 2001) describes the processes 
in Figure 2 that characterise the algebraic habit of building rules to represent functions in 
a mathematical situation. More specifically, Driscoll identifies the features that provide in-
sights into the specific processes underlying the act of analysing patterns and relationships 
in a mathematical situation and describing them using a functional rule.

Abstracting from Computation: It is the habit of thinking about computation independently 
of the numbers used. Abstraction is important for this habit of mind. Abstraction is the pro-
cess of extracting mathematical objects and relationships based on generalisation. For exam-
ple, when calculating the sum of the numbers 1 + 2 + 3 + ... + 50, students can regroup the 
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numbers to get 51 and reach the result as 50 + 1 = 51; 49 + 2 = 51; 48 + 3 = 51, .... In this pro-
cess, it is important to allow students to think in different ways and to find different solutions.

In the literature pertaining to algebraic thinking, numerous studies have investigated 
aspects such as assessing students’ algebraic thinking skills (Chimanoi et al.; Kaput, 1999), 
examining its developmental trajectory (Driscoll, 1999), and determining levels of profi-
ciency in algebraic thinking (Hart et al., 1998). Drawing inspiration from Cuoco et al.’s 
(1996) exploration of beneficial cognitive approaches to mathematical content, denoted as 
‘habits of mind’, Driscoll (1999) construed algebraic thinking as the cognitive process in-
volved in contemplating quantitative situations that facilitate the clarification of relation-
ships between variables. Presenting a theoretical framework, Driscoll (1999) delineated the 
requisite habits that students must cultivate to develop proficiency in algebraic thinking. 
He argued that as students acquire the ability to interpret symbols, they take a pivotal step 
in expressing generalisations, unveiling algebraic structures, establishing relationships, and 
formulating mathematical situations. However, the inquiry arises as to whether this frame-
work exerts an influence on the development of algebra teaching knowledge among pre-ser-
vice elementary mathematics teachers.

This study endeavors to investigate the impact of problem-based algebra teaching on 
the advancement of pre-service elementary mathematics teachers’ knowledge of algebra 
teaching within the conceptual framework of habits of mind related to algebraic thinking. 
Magiera et al. (2013) assert the importance of prioritising the design of robust teacher ed-
ucation programs that effectively foster the development of algebraic thinking in primary 
school students. In this context, the research aims to scrutinise the effect of problem-solv-
ing-oriented algebra teaching grounded in the acquisition of AHoM on the enhancement 
of pre-service elementary mathematics teachers’ knowledge of algebra teaching. Aligned 
with the research objective, the investigation seeks to answer the following question:

– Is there a statistically significant difference in the post-test achievements related to al-
gebraic teaching knowledge between pre-service elementary mathematics teachers who re-
ceived problem-based algebra teaching within the framework of acquiring algebraic habits 
of mind and those who did not?

3. Method

In this investigation, a quasi-experimental model involving both experimental and control 
groups was employed. Experimental research is designed to explore causal relationships 
between variables (Evans, 2005). However, educational research, as outlined by Campell 
and Stanley (1963), often necessitates the use of a quasi-experimental model due to the ab-
sence of random group selection in this context (Campell & Stanley, 1963). In light of this 



Trends in Mathematics Education Research276

consideration, the utilisation of a quasi-experimental design is deemed appropriate, allow-
ing for the examination of potential differentiation in the algebra teaching knowledge of 
pre-service elementary mathematics teachers by applying distinct educational processes to 
the experimental and control groups. Additionally, the research design, to be implement-
ed within the scope of this study, is succinctly outlined in Table 1.

Table 1. Research design
Groups Pre-test Education process Post-test

Experimental group (n=31)
MKT-PFA 

(A form)

Algebra teaching based on problem solving within 
the framework of AHoM MKT-PFA 

(B form)Control group 
(n=35)

Algebra teaching within the scope of the curriculum 
of Council of Higher Education (CoHE)

The “Mathematical Knowledge for Teaching-Elementary Patterns Functions and Al-
gebra-Content” (MKT-PFA) was developed in English by Ball and Hill (2009) as part of 
the “Learning Mathematics for Teaching Project” conducted at the University of Michi-
gan. This assessment tool aims to evaluate the algebra teaching knowledge of pre-service el-
ementary mathematics teachers. The test comprises two equivalent forms, namely A and B 
forms, with 29 items in Form A and 27 items in Form B, three of which are common to 
both forms. The MKT-PFA test was adapted into Turkish for the purpose of this study. 
Pre-service elementary mathematics teachers participating in the experimental and control 
groups were administered the MKT-PFA (Form A) prior to the commencement of a 12-
week algebra teaching practice, and the MKT-PFA (Form B) following the completion of 
the same teaching practice.

In this study, the instructional intervention applied to the experimental group was 
designed based on the Algebraic Habits of Mind (AHoM) framework. As outlined in 
the theoretical framework, AHoM emphasises problem-solving approaches that promote 
algebraic reasoning, such as Doing-Undoing, Building Rules to Represent Functions, 
and Abstracting from Computation (Driscoll, 1999). These habits were explicitly em-
bedded in the instructional activities throughout the 12-week intervention. Pre-service 
teachers in the experimental group engaged in structured problem-solving tasks that re-
quired them to analyse patterns, generalise relationships, and think flexibly about alge-
braic structures. In contrast, the control group received traditional instruction aligned 
with the Council of Higher Education (CoHE) curriculum, which primarily focused 
on procedural fluency rather than conceptual exploration. This quasi-experimental de-
sign allows for an investigation into whether problem-based algebra instruction within 
the AHoM framework leads to a significant improvement in algebra teaching knowledge 
compared to conventional methods.
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3.1. Participants

The research was conducted during the spring semester of the 2021/2022 academic year 
with pre-service elementary mathematics teachers enrolled in the “Algebra Teaching” course 
within the elementary mathematics teaching program at the education faculty of a state 
university in Turkey. The course, “Algebra Teaching”, is bifurcated into morning and af-
ternoon sessions. The researcher designated the morning session as the experimental group 
and the afternoon session as the control group. Consequently, the study comprised a total 
of 66 pre-service elementary mathematics teachers, with 31 assigned to the experimental 
group and 35 to the control group. The assignment of students to their respective groups 
was executed through a random allocation process.

3.2. Data Collection Tools

In the process of adaptation, the initial step involved the translation of items in the A and 
B forms into Turkish. Subsequently, four meetings were conducted with a group compris-
ing two academics specialising in mathematics education and five mathematics teachers 
pursuing doctoral studies, to finalise the translation. Adaptations were made with con-
siderations for general culture, school culture, mathematical language, and other contex-
tual nuances as recommended by Delaney et al. (2008). Following the adaptation, algebra 
teaching knowledge tests, totaling 53 items, were administered to 183 pre-service elemen-
tary mathematics teachers enrolled in the elementary mathematics teaching department 
of a state university in Turkey.

The reliability of the adapted data collection tool to Turkish was assessed using the Kud-
er Richardson 20 and 21 formulas (KR-20, KR-21), which serve as indicators of the test’s 
internal consistency (Wallen & Fraenkel, 2013). The KR-20 values for the adapted A and B 
forms were .784 and .799, respectively. According to Wallen & Fraenkel (2013), a KR20 
reliability coefficient of .70 and above is recommended for attaining a reliable score. Ad-
ditionally, point-biserial correlation estimates in both the USA and Turkey yielded highly 
similar results for Form A (r = .658; t = 4.540; p = 0.0001) and Form B (r = .721; t = 5.215; 
p = 0.0000). Consequently, it can be affirmed that the Turkish version of the algebra teach-
ing knowledge tests exhibits reliability and validity, rendering it suitable for assessing the 
knowledge of teachers and pre-service elementary mathematics teachers in the domain of 
algebra teaching.
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3.3. Data Collection Procedure

For the purposes of this study, conducted within the framework of the Algebra Teaching 
course, a total of 66 pre-service elementary mathematics teachers were randomly assigned 
to either the experimental or control group. Subsequently, the participants were adminis-
tered the Algebra Teaching Knowledge Test (Form A). The pre-service elementary math-
ematics teachers comprising the experimental group underwent a 12-week instruction-
al intervention, where algebra was taught through a problem-solving approach within the 
conceptual framework of Algebraic Habits of Mind (AHoM). Throughout this period, the 
pre-service teachers engaged in weekly problem-solving activities designed to apply AHoM 
principles. As an illustrative example, the provided problem in Figure 3 necessitated gener-
alising the operations utilised in arithmetic, facilitating a seamless transition from mathe-
matical concepts to algebraic reasoning.

Figure 3. Something Nu Problem (Driscoll, 1999, p. 55)

Something Nu
Consider the operation of counting the factors of a whole number. This function is usually 
called “ν” (the lowercase Greek letter for “nu”). For example, the number 6 has the factor 1, 2, 3, 
and 6, so ν(6) = 4. Here’s some practice:

1. If the input to ν is 5, what is the output? What if the input is 12?
2. What is ν(24)? ν(288)? ν(23 × 32 × 54)?
3. Find some numbers that ν takes to 6.
4. Classify all numbers n so that ν(n) = 3. Classify all numbers n so that ν(n) = 2.
5. What can you say about a number m if ν(m) = 12?
6. Find two numbers n and m so that ν(nm) = ν(n)ν(m). Find two more. Compare with the 

findings of others.

This study involves a deliberate emphasis on fostering Algebraic Habits of Mind 
(AHoM) among pre-service elementary mathematics teachers, with an explicit encour-
agement for them to think in terms of constructing rules for representing functions. The 
instructional approach includes framing the ‘number of factors’ as a functional relation 
and delving into the concepts of input and output within the context of the Something 
Nu problem. Challenges such as “Find some numbers that takes to 6” prompt engage-
ment with the notions of doing-undoing. The overarching goal is to enhance the pre-ser-
vice teachers’ proficiency in AHoM. Additionally, the participants received guidance on 
developing AHoM alongside algebraic teaching by addressing guiding questions during 
problem-solving activities.

In contrast, the pre-service elementary mathematics teachers in the control group un-
derwent a 12-week algebra instruction, following the framework established by the Coun-
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cil of Higher Education (CoHE, 2018). This curriculum covered various aspects of alge-
braic thinking, emphasising its importance in mathematics teaching. The content included 
the pre-algebraic period, the arithmetic-algebra relationship, generalised arithmetic and 
functional thinking, basic algebraic concepts, different representations in algebra teach-
ing, and the teaching of variables, algebraic expressions, equations, and inequalities. Fur-
thermore, the instruction involved organising course content, utilising appropriate teach-
ing materials and strategies, and assessing student knowledge of these topics, including 
understanding and interpreting students’ thinking about concepts, identifying difficul-
ties, errors, misconceptions, and exploring the practical connections of these topics with 
daily life and other courses.

3.4. Data Analysis

Tabachnick et al. (2007) proposed that a group is considered normally distributed when 
the skewness and kurtosis values for the normality distribution fall within the range of -1.5 
to +1.5. Therefore, both the experimental and control group pre-service teachers in this 
study are deemed independent, and the MKT-PFA post-test scores for both groups exhibit 
a normal distribution (experimental group skewness=-1.036, kurtosis=.601; control group 
skewness=-.394, kurtosis=-.956). Following the analysis, it was determined that the var-
iances between the groups with respect to the pretest scores of the students in the experi-
mental and control groups were homogeneous (F(1, 66)=2.379, p=.128>.05). This implies 
that the slopes of the regression lines, calculated for predicting post-test scores based on 
pre-test scores for both groups, are equal. Consequently, it is inferred that the necessary as-
sumptions for the Analysis of Covariance (ANCOVA) are satisfied. Given the fulfillment 
of these assumptions, descriptive statistics were computed for both groups’ post-test scores, 
and subsequently, ANCOVA was conducted to ascertain whether there existed a statisti-
cally significant difference in student achievements between the groups.

4. Results

In this study, descriptive statistics were computed for both groups, and the Analysis of Co-
variance (ANCOVA) was conducted for the post-tests. The aim was to investigate wheth-
er there was a statistically significant difference in the performance of pre-service elemen-
tary mathematics teachers in the Algebra Teaching course, as assessed by the MKT-PFA 
test, between the experimental and control groups (Table 2).
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Table 2. Averages of MKT-PFA Pre-Test and Post-Test Results
Groups N % sd

Pre-test
Experimental 31 21.81 .80 3.45

Control 35 23.47 .77 1.91

Post-test
Experimental 31 25.34 .93 1.88

Control 35 24.47 .91 1.68

When Table 2 is examined, it is seen that the pre-test averages of the pre-service ele-
mentary mathematics teachers in the control group are higher than the pre-test averages 
of the pre-service elementary mathematics teachers in the experimental group. When the 
post-test averages of the algebra teaching knowledge test are examined, the post-test aver-
age score of the pre-service elementary mathematics teachers in the experimental group is 
=25.34 and the post-test average score of the pre-service elementary mathematics teachers 
in the control group is =24.47. However, when the pre-test scores are checked, it can be 
said that there is a change in the post-test scores of the pre-service elementary mathematics 
teachers in the experimental and control groups.

The ANCOVA results for the significance of the difference between the post-test scores 
of the pre-service elementary mathematics teachers in the experimental and control groups 
according to their average scores are given in Table 3.

Table 3. ANCOVA Results of MKT-PFA Post-Test Scores
Source Sum of squares Df Mean square F value p Eta square

Model 277.576 1 7.167 100.194 .000 .809

Pre-test 57.807 1 3.204 24.964 .000 .284

Group 31.379 1 2.781 13.551 .000 .177

Error 145.882 63

Total 235.068 66

p<0,05

When Table 3 is examined, it is seen that the difference between the post-test mean 
scores of the pre-test scores of the pre-service elementary mathematics teachers in the ex-
perimental and control groups according to the ANCOVA results is statistically signifi-
cant (F (1, 63) = 13.551, p<.05). Therefore, the increase in the pretest-posttest achievement 
scores of the pre-service elementary mathematics teachers in the experimental group is sta-
tistically significantly higher than the increase in the achievement scores of the pre-service 
elementary mathematics teachers in the control group. On the other hand, the fact that 
the eta square value, which is an indicator of practical significance, is 1.77, indicates that 
the effect is very close to high (Cohen, 1988).
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5. Discussion and Conclusion

This study examined the impact of problem-based algebra instruction on the algebra teach-
ing knowledge of pre-service elementary mathematics teachers within the framework of Al-
gebraic Habits of Mind (AHoM). The findings indicate a significant improvement in the 
algebra teaching knowledge of pre-service teachers in the experimental group after com-
pleting the instructional process. This suggests that problem-based algebra teaching, struc-
tured around AHoM, positively contributes to pre-service teachers’ understanding and in-
structional skills in algebra.

The positive outcomes observed in the experimental group can be attributed to the in-
structional approach, which encouraged pre-service teachers to analyse and explore alge-
braic thinking through guided questions. This aligns with previous research emphasising 
the importance of providing teachers with opportunities to interpret and evaluate students’ 
mathematical reasoning (Stump, 1999; Asquith et al., 2007; Lynch & Star, 2014). Addi-
tionally, studies have shown that mathematical knowledge plays a critical role in shaping 
effective teaching practices and improving student learning (McCrory et al., 2012; Hill & 
Ball, 2004).

While the results highlight the benefits of AHoM-based instruction, there are some 
limitations to consider. The study was conducted with pre-service teachers from a single 
university, which may limit the generalizability of the findings. Furthermore, this research 
focused specifically on problem-based instruction within the AHoM framework, and its 
effects in other instructional contexts remain an open question. Future studies could ex-
plore AHoM’s impact at different levels of teacher knowledge or examine how teachers’ al-
gebraic habits align with those of their students.

Despite these limitations, this study provides valuable insights into how problem-based 
algebra teaching can enhance pre-service teachers’ instructional knowledge. The findings 
support the integration of AHoM into teacher education programs as a means to develop 
stronger algebra teaching practices.
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REDUCTIVE REASONING OF PEDAGOGY STUDENTS IN THE PROCESS 
OF SOLVING A TEXT TASK ENTITLED: HOW MANY PEARLS WERE IN 
THE CASKET?

Summary: Everyone needs the ability to solve problems. In school education, the formation of this 
skill can and should be implemented by solving text tasks. The teacher, in order to teach task solving, 
should have such a skill himself. The article presents the results from a study of the ability to solve a 
certain task by students of pedagogy – future teachers of early childhood education.
Keywords: text task, solving a task, reductive reasoning, pre-service teachers of early childhood ed-
ucation.

1. Introduction

Everyone, regardless of their role in life, needs a broad-based ability to see and solve prob-
lems in a variety of life and work situations. And at the same time, the ability to think logi-
cally and critically is important. This is a lifelong learning skill and the earlier we start learn-
ing it, the better the results we will achieve. It is therefore not without reason that the core 
curriculum of 14 February 2017 states that ‘Primary education is the foundation of educa-
tion’ (Podstawa Programowa [Core Curriculum], 2017). The purpose of this education is: 

the development of competences such as creativity, innovation and entrepreneurship; the develop-
ment of skills of critical and logical thinking, reasoning, argumentation and inference (...) equipping 
students with a body of knowledge and the formation of skills that enable them to understand the 
world in a more mature and structured way (Podstawa Programowa [Core Curriculum], 2017, p. 11). 

In view of this, the most important skills developed as part of general education in pri-
mary school include: proficient use of the tools of mathematics in everyday life, the ability 
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to think mathematically, the ability to search for, organise and use information from var-
ious sources responsibly and the ability to critically analyse and evaluate it, the ability to 
solve problems in various fields with the conscious use of methods and tools derived from 
computer science and programming (ibid., pp. 12–13).

The mentioned goals can be achieved, among other things, in mathematics education 
through solving text tasks, as tasks of this type constitute a special case of a problem situ-
ation. The ability to solve them therefore, in addition to its educational value, has a great 
practical dimension being a paradigm of action in any problem situation.

While solving tasks and problems1, students acquire the ability to analyse facts, synthe-
sise events, estimate risks, make rational decisions, improve abstract thinking, learn to con-
duct correct deductive and reductive reasoning, make inferences not only in familiar but 
also new situations, both simple and complex, typical and atypical (ibid. p. 26). Thus, learn-
ing mathematics serves to develop logical and critical thinking. Logical and critical think-
ing is what we need most nowadays and what will be useful in the as yet unknown future 
in both our private and professional lives. Therefore, the greatest challenge facing schools 
and teachers is to educate pupils to be people who think logically and critically. It is about 
thinking understood as a process of “modifying the uncertainty of judgements (judge-
ments) under the influence of information obtained both through logical and experimen-
tal analyses” (Nosal, 1988, p. 16).

2. Deductive and Reductive Reasoning

Reasoning is the resolution of issues by means of inference or the derivation of one sentence 
from another on the basis of a logical result relation (Dictionary of the Polish Language, 
1981, p. 126). Thus, it is a process in which certain beliefs are followed by further beliefs, 
linked to the previous ones by logical inferential relations (Czyżewski, 1993, p. 399). The 
process of reasoning can be presented orally or in writing and takes the form of a sequence 
of sentences in which premises and conclusions are distinguished. The premise is the sen-
tence that is the beginning of the reasoning, i.e., it is the basis for the recognition of its re-
sults, while the result of the reasoning is the conclusion.

A special role in reasoning is played by conditional sentences, called implications, which 
have the form if p then q, where p and q are sentences. A sentence p is called the predeces-
sor and a sentence q the consequent of an implication. There are differences between inter-

1 Word problems are a good tool for developing pupils’ competences. Solving them contributes to de-
veloping the habit of critical thinking, which facilitates the evaluation of different situations, verify-
ing whether there are grounds for a thesis or not, and thus makes it possible to arrive at the truth.
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preting an implication in natural language and its formal (mathematical) sense. These dif-
ferences are exhaustively discussed by Helena Siwek (2005, pp. 255–259).

In logic and mathematics, the relation which exists between the sentence p and the 
sentence q when it is excluded that the predecessor of p is true, while the successor of q is 
false, is called the relation of the resultant. We say then, that from the predecessor of an 
implication its corollary follows, and the sentence p is called the predicate of the sentence 
q, while the sentence q the corollary of the sentence p. The relation itself is called the re-
lation of the predicate to the corollary. The premise and the conclusion are related to each 
other by the relation of the result, i.e., the relation of the rationale to the corollary. There 
are two possibilities of opposing these parts of the reasoning: premise – conclusion, rea-
son – consequence. This leads to two types of reasoning: deductive and reductive. Deduc-
tion is reasoning in which the premise is the rationale (the antecedent of the true implica-
tion) and the conclusion is the consequent (the successor of the implication). Reduction, 
on the other hand, is reasoning in which the premise is the consequent, while the con-
clusion is the rationale. Thus, deduction is direct reasoning, i.e., based on known rea-
sons (causes), consequences (effects) are inferred. Reduction, on the other hand, is re-
verse reasoning, i.e., from the consequences (effects) one deduces their rationale (causes), 
and not from the rationale about the consequences; in this reasoning one goes backwards 
from the facts to their causes. 

Deductive reasoning is very natural and is often called cause-and-effect thinking. It 
takes the form of a true implication, e.g., If there is no electricity on the grid, then the light 
bulb does not light up. The sentence there is no electricity on the grid, is the cause of the bulb 
not being lit, while the sentence the bulb is not lit, is the effect of there being no electricity on 
the grid. The first of these sentences is the premise of deductive reasoning and at the same 
time the rationale for the corollary, which is the sentence bulb is not lit, while the sentence 
bulb is not lit is the conclusion and corollary of the fact that there is no electricity in the grid. 
This is because we conclude that the absence of electricity in the grid is always the cause of 
the bulb not being lit. Reasoning in the opposite direction: i.e. reasoning in which, on the 
basis of the established fact that the light bulb is not lit, we believe that this condition was 
caused by the lack of current, is reductive reasoning.

In solving tasks in grades I-III of primary school, we mostly use deductive reasoning. 
We use it in all typical calculation tasks: e.g., components are given, find their sum; deter-
mine the difference of a given minuend and a given subtrahend; factors are given, determine 
their product; determine the quotient of a known dividend and divisor. The same is true of 
most text tasks. E.g., in solving the tasks: Adaś had 5 zlotys, he bought juice for 3 zlotys. How 
many zlotys does he have left? and Staś has 4 lorries and 5 more cars. How many cars does he 
have? deductive reasoning is used. In all such tasks, the premises (data from the task) are at 
the same time the causes and the conclusions are the effects of the known causes; the con-
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clusions are the calculated quantities that were unknown and about which the task asks. 
Most pupils are good at solving tasks of this type, as logical thinking emerges in children in 
late childhood. This makes it possible to make cause-and-effect inferences. A child at this 
age is able to explain phenomena and predict theoretical consequences of various events 
(Stefańska-Klar, 2006, p. 135). 

Tasks requiring reductive reasoning (backwards) are somewhat more difficult, as solv-
ing them involves reversing the actions (activities) referred to in the task. In order to solve 
tasks of this type, the child must develop the ability to internally reverse the given actions 
or a certain state of affairs. That is, the child must reason operationally. 

Consider an example of a task: There were a few zlotys in the piggy bank. When I put 
3 zlotys into the piggy bank and counted all the money, it turned out that there were 10 zlo-
tys. How many zlotys were in the piggy bank at the beginning?

Solving this task reductively, we start from the final state: there were 10 zlotys at the 
end. Since there was that much after the previous addition of 3 zlotys, so going backwards, 
we have to reverse the addition action, i.e., take away 3 zlotys from the 10 zlotys. This leaves 
7 zlotys. So there must have been 7 zlotys at the beginning. Not all early childhood educa-
tion pupils are able to reason this way straight away. Some guess the unknown, others find 
it using memorised facts (7 + 3 = 10), others use trial and error. However, despite a certain 
degree of difficulty, there can be no lack of such tasks in early childhood education, as they 
are essential for developing the skills of reductive reasoning so important both in mathe-
matics and in many practical situations, e.g., medical diagnosis2.

3. Skills of Students – Future Early Childhood Education Teachers – 
     In Solving a Pearl Reduction Task (Quantitative Analysis)

The ability to solve text tasks, is a key competence. Teachers and also pedagogy students, 
as future teachers, should be able to solve such tasks in order to use them with children. In 
doing so, it is important that they not only know how to solve them somehow, but also that 
this solution is accessible to pupils in the younger grades.

In March 2023, during my first classes in the subject “strategies for mathematics educa-
tion in grades I-III”, I asked fourth-year students of pre-school and early childhood peda-
gogy at University of the National Education Commission in Krakow to solve the follow-
ing task in writing:

2 Based on the effects of the patient’s illness, the doctor must determine the cause of the illness (deter-
mines what caused the symptoms of the illness). 
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The Maharaja gifted 3 of his daughters with pearls stored in a casket. To the eldest he gave half the 
contents of the casket and one pearl, to the younger half the rest and one pearl, and to the youngest 
half the remaining pearls and 3 more pearls and then the casket remained empty. How many pearls 
did the Maharaja have in the casket and how many pearls did each daughter get?

A prerequisite for correctly solving a task is understanding its content. This under-
standing consists of the verbal (linguistic) layer of the task text (the ability to read the 
text with comprehension is important here) as well as the conceptual layer connected with 
understanding the mathematical concepts contained in it. In this case, it is necessary to 
understand what “half ” means (the result of dividing into 2 equal parts). You also need 
to understand that the size of the half depends on the size of the whole being divided. 
In the task, each time (in the case of each daughter) the maharaja divides a different size 
and, in addition, reduces the remainder by 1 (in the case of the first two daughters) or 
by 3 (in the case of the last daughter). However, the ability to read with understanding 
alone is not sufficient. What is also needed is the ability to mathematise the situations 
presented in the task, which represents the greatest difficulty for a large group of solvers. 
The difficulty is related to the fact that often the same words from the mother tongue 
can be translated differently into the language of mathematics and vice versa, many dif-
ferent words can be translated into the language of mathematics in the same way. The 
ability to make such a translation should grow with experience and therefore with the 
age of the solver. The longer we study, the more experience we have and the more skill we 
have in this area. Do students, who have a lot of experience (after all, they have almost 15 
years of schooling behind them), know how to read with understanding and know how 
to mathematise the situation described in the problem? 

Furthermore, reductive reasoning should be used in solving this task. And a graphical 
(drawing) representation of the situation described therein can be a great help. Is reduc-
tive reasoning within the students’ grasp? And will a drawn representation make it easier 
for them to solve it?
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4. Examples of Correct Solutions to the Pearl Task (Qualitative Analysis)

Examples of work using apt illustrations are shown in Figures 1, 2, and 3. 

Figure 1. Correct solution supported by drawing – work by Anna Z.
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Text translation

Contents of the entire casket (above the top bracket)

3rd daughter 2 ∙ 3 = 6 this is how much 3rd daughter got

2nd daughter 6 + 1 = 7 half of what 2nd daughter found
 7 + 1 = 8 – that’s how much the 2nd daughter got

3rd daughter 2 ∙ 7 = 14
 14 + 1 = 15 half of all pearls
 2 ∙ 15 = 30 that is how many pearls there were
 15 + 1 = 16 that’s how many pearls I daughter got
 Spr. 16 + 8 + 6 = 30
 Answer:  There were 30 pearls in the casket. 
   And the daughters received 16, 8, and 6 pearls, respectively.

Anna Z. (Fig. 1.) presented the pool of pearls by means of a segment, which she divid-
ed into 2 equal parts and assigned one of these parts (left part) together with an additional 
pearl drawn with a circle in the second (right) part to the 1st daughter (this is how much the 
eldest daughter received).  She redrew the rest of the pearls by means of a segment and pro-
ceeded in the same way as for the first division, assigning half of the new segment and 1 more 
pearl to the 2nd daughter (this is how much the 2nd daughter got).  She redrew the remain-
ing pool again using another section, which she divided into 2 equal parts. In the last (sec-
ond) part of this new division she drew 3 pearls. She assigned this entire pool (section) to 
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the 3rd daughter. Using the drawing from bottom to top, she saw that the 3rd daughter got 
2 ∙ 3, i.e., 6 pearls. She also saw in the drawing that the half of the pearls found by the 2nd 
daughter was 6 + 1, i.e., 7, and calculated that, therefore, the 2nd daughter got 7 + 1, i.e., 
8 pearls, while she found 14 (because 2 ∙ 7 = 14). When she added 1 to 14, she found that 
half of all the pearls were 15, so there must have been 2 ∙ 15, i.e., 30 pearls. Calculating how 
many pearls the eldest daughter got was very easy: 15 + 1 = 16. She then checked that the 
sum of the pearls distributed was 30 (16 + 8 + 6) and answered all the questions in the task.   

A similar drawing and the reasoning beneath it can be seen in the work of Barbara K. (Fig. 2.).

Figure 2. Correct solution supported by drawing – work by Barbara K.
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It can be seen that if the youngest daughter was given half of what was in the casket 
and 3 more pearls and then the casket was left empty, then these 3 pearls constituted 
the other half of the contents of the casket at the time the Maharaja wanted to bestow 
the youngest daughter.

On the back of the sheet of paper Barbara K. wrote down the following further reasoning:

2 ∙ 3 = 6 this is how much the youngest daughter got
6 + 1 = 7 is half of the contents of the casket when the Maharaja was to bestow the mid-
dle daughter,
2 ∙ 7 = 14, 14 + 1 = 15 is half of the initial contents of the casket,
2 ∙ 15 = 30 that is how many pearls there were at the beginning.
15 + 1 = 16, 7 + 1 = 8.
Ans. The Maharaja had 30 pearls. The eldest daughter got 16 pearls, the younger daugh-
ter got 8 and the youngest daughter got 6.

Neither Anna Z. nor Barbara K. wrote any numbers on the drawing. They made 
calculations based on the illustrations and wrote them under the illustrations. Fur-
thermore, they depicted each state of the pearls before the next distribution in a sep-
arate drawing. 

In contrast, Kinga G. (Fig. 3.) illustrated all the stages of pearl distribution in a single 
drawing and immediately used this drawing for her calculations by writing the numbers of 
pearls found in the “from the end” calculations onto it. 
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Figure 3. Correct solution supported by drawing – work by Kinga G.

3 + 3 = 6 youngest daughter
...
15 + 1 = 16 eldest daughter
...
7 + 1 = 8 middle daughter
15 + 15 = 30. Verification: 16 + 8 + 6 = 30
Ans. The Maharaja had 30 pearls in his casket. The eldest daughter got 16 pearls, the 
middle daughter got 8 and the youngest daughter got 6.

In all the works presented in Figures 1, 2, and 3. the illustrations were created from the 
beginning, i.e. from the first hand of pearls, while the calculations were created from the 
end, i.e. from the last hand of pearls. 

It is different in the work presented in Figure 4. The author starts both the calculations 
and the illustration with the presentation of the final situation. She carries out the calcula-
tions in the same way as in the works in Figure 1 and Figure 2. Only at the end, although 
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she has already calculated at the very beginning how many pearls the youngest daughter 
got, she again, but in a different way, determines the same number. First, using addition 
16 + 8, she determines that the two older daughters received 24 pearls. Then, using sub-
traction 30 – 24, she calculates how many the youngest daughter got.

Figure 4. Correct solution supported by drawing – work by Iryna S. 

3 + 3 = 6 – got the youngest daughter
6 + 1 = 7
7 + 7 = 14
14 + 1 = 15 – half of the contents of the casket
15 + 15 = 30 – is the content of the entire casket
15 + 1 = 16 – the pearls were given to the eldest daughter
7 + 1 = 8 – the pearls were given to the younger daughter
16 + 8 = 24 – pearls were given to the eldest and younger daughter
30 – 24 = 6 – got the youngest daughter
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Another tool used in solving the task was the arrow graph. The way in which the graph 
was used in the solution is presented in Figures 5, 6, and 7. In the work in Figures 5 and 6, 
the graph was drawn starting from the left, indicating the final state, and successive arrows 
from left to right marked the operations opposite to those performed in the description of 
the task, while the results of the calculations were entered in the boxes of the graph, which 
led to the initial number of pearls. This was enough to later (under the graph) calculate how 
many pearls each daughter received.  Furthermore, in the graph in Fig. 5, the arrows in the 
right-to-left direction were also completed, whereas in the work in Fig. 6, this was no longer 
done. Apparently, the author of this work did not feel the need to do so.

Figure 5. Correct solution supported by a full graph – work by Iwona M. 

Eldest 15 + 1 = 16
Average 30 – 16 = 14 
14 : 2 = 7
7 + 1 = 8
Youngest 16 + 8 = 24 
30 – 24 = 6
Ans. The Maharaja had 30 pearls. The eldest daughter got 16, the middle daughter got 
8 and the youngest daughter got 6.
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Figure 6. Correct solution supported by an incomplete graph – work by Klaudia O.  

Eldest daughter 30 : 2 = 15 15 + 1 = 16
Average 30 – 16 = 14 14 : 2 = 7 7 + 1 = 8
Youngest 16 + 8 = 24 30 – 24 = 6
Ans. The Maharaja had 30 pearls, the eldest 16, the middle 8 and the youngest 6 pearls.

The graph shown in the work in Figure 7 is like a shortened version of the full graph (one 
arrow represents two actions: catching and subtracting). Moreover, in this graph, the first 
box from the left presents the initial state and, when the graph was drawn, this box and the 
subsequent boxes were empty. It was only in the calculations carried out from right to left 
and presented by the arrows leading down, that the numbers that were written into these, 
initially empty, boxes were determined.
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Figure 7. Correct solution supported by a reduced graph – work by Catherine J. 

half and 1     half and 1     half and 3
1 and double     1 and double     3 and double

3 ∙ 2 = 6 -> That’s how much he gave to his third daughter
14 – 6 = 8 -> That’s how much he gave to his second daughter

In 14 papers, the correct solution was only obtained by reductive reasoning without 
drawing or graphing. In all these works, the reasoning was as follows: 

To the youngest he gave half and another 3, so the half he gave to his daughter was 3, and 
before he gave her there were 6 pearls (3 + 3 = 6).
After giving the middle daughter half of the pearls and one, there were 6 left. If he hadn’t 
given the one, there would have been 7 left in the casket and that was half of all, so by the 
time he gifted the middle daughter, there were 2 ∙ 7 = 14 pearls. 
When he gave the eldest half and one, there were 14 left. If he had not given the one, there 
would have been 15 (14 + 1 = 15), half of all. 
Therefore, at the beginning there were 2 ∙ 15 = 30. 
The eldest got 30 : 2 + 1 = 16, there were 30 – 16 = 14 left.
The average got 14 : 2 + 1 = 8, left 14 – 8 = 6,
The youngest got 6 : 2 + 3 = 6 was 6 – 6 = 0.
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Students in the discussed group demonstrated the ability to plan concrete, imagi-
nary and abstract operations in accordance with Z. Krygowska’s theory of active-based 
teaching of mathematics (1977, pp. 81–128). Numerous examples of such operations 
from different areas of mathematics and for different levels of education are presented 
by H. Siwek (1998). In some of the cited student solutions there is clearly a combination 
of two operations, namely – imaginary and abstract. Students represent the pearl num-
bers in the task by drawing beads (individually or in a casket) or draw a segment (strip) 
of length according to the data in the task (measurement aspect) – which can be inter-
preted as a reference to concrete operations, to then move on to operations on numbers, 
sometimes using an arrow graph. Such solutions using imaginary and abstract opera-
tions are more numerous than those containing only abstract operations – i.e., based on 
the verbal description of the activity, the notation and the execution of actions on num-
bers. This indicates that in the adult group studied, there are few people who used only 
abstract operations in solving the task – the highest from the point of view of the action 
method (14 out of 142). It can be hypothesised that the availability of formal mathemat-
ical thinking, in students of the humanities, is at a very low level. There are very serious 
tasks ahead of college classes, in the basics of mathematics education and the method-
ology of mathematics education in grades I-III, to prepare good teachers for pre-school 
children and students in grades I-III. Many valuable tips on how to do this can be found 
in the book by M. Cackowska (1993), in which the author provides detailed scenarios 
for solving tasks taking into account the principles of the activity method and the prin-
ciple of graded difficulty. The use of the methodical solutions proposed by the author in 
mathematics lessons can significantly contribute to the development of students’ ability 
to solve text tasks, so important in the process of learning mathematics. 

Interesting research on the application of the activity method in the process of 
solving mathematical tasks was presented by Z. Zamorska. In order to find out how 
different types of tasks are solved in lessons within a specific curriculum slogan and 
how they are implemented, the author observed lessons conducted by qualified early 
childhood education teachers (cf. Zamorska, 1996, p. 109). In her conclusions, the au-
thor found that in the process of solving tasks “Concrete activities predominated, es-
pecially when the instructor was informed about the purpose of the observation [...] 
the studied teachers implement activity-based teaching only to the extent limited to 
the etymological sense of the name. Often the schematisation and pre-mathematisa-
tion did not proceed correctly, leading to erroneous intuitions of the concepts consid-
ered” (Zamorska, 1996, p. 116).
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5. Examples of Incorrect Solutions to the Pearl Task
     (Qualitative Analysis)

Unfortunately, not all students solved the task correctly. The prerequisite for solving the task 
correctly, as already mentioned, is understanding the content and being able to mathema-
tise it. Not all students understood the content or understood it but were unable to math-
ematise it. They also did not know how to verify whether their ideas were good or wheth-
er the numbers they obtained met the conditions of the task. Below I present 10 examples 
with their analysis.

Figure 8. Incorrect solution, answer 40 – Work by Malwina D. 
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eldest [right half of the circle] / middle [bottom-left] / youngest / 5 pearls [other parts]

1/8 circle = 5 pearls
8/8 circle = 40 pearls

40 : 2 = 20 + 1 = 21 I daughter
20 : 2 = 10 + 1 = 11 II daughter
10 : 2 = 5 + 3 = 8 III daughter

Verification: 5 + 5 + 10 + 20 = 40  
Ans. The Maharaja had 40 pearls in his casket. The eldest got 21, the middle got 11 and 
the youngest got 8 pearls.

In the illustration in Fig. 8, the author presents the entire pearl pool by means of a circle and in 
it she distinguishes half, then half of half and half of what remains. She does not take into account 
at all the fact that the half remaining from the first division was reduced by 1 pearl and, similar-
ly, the half of what remains was also reduced by 1 pearl. On the basis of this erroneous drawing, 
the author considers that the smallest parts in the drawing are the eighth parts and additionally, 
completely unexpectedly and without any justification, considers that there are 5 pearls in such 
an eighth part. One can only guess that she arrived at this number by counting the pearls added 
to the daughters: 1 and 1 and 3, i.e., 5. With such an assumption, there are 40 pearls in all. But 
then there are already completely incomprehensible and incorrectly presented conclusions, that the 
1st daughter got 21 pearls, because “40 : 2 = 20 + 1 = 21”. This incorrect notation shows that the 
student clearly does not understand what the equals sign means. Moreover, since the 1st daugh-
ter got 21 pearls and there were 40 pearls in all, there are 19 pearls left to be further divided and 
it is impossible to divide them into 2 equal parts. However, this does not bother the author at all 
and she further divides not 19 but 20 pearls, only that she cannot have so many, which she does 
not see at all. In her opinion the 2nd daughter got: “20 : 2 = 10 + 1 = 11” (again, incorrect nota-
tion). Similarly, the 3rd daughter got: “10 : 2 = 5 + 3 = 8” (also incorrect notation). If we want-
ed to check how many pearls the Maharaja distributed to his daughters in such a case, the total: 
21 + 11 + 8 is different from the sum of: 5 + 5 + 10 + 20, by which the Author makes the check. 
This check by the author has nothing to do with actually checking whether the resulting num-
bers 21, 11, and 8 meet the conditions of the task, i.e. she fails to verify her ideas.

A solution with a similar error to that in Malwina’s work is also found in the work in Fig-
ure 9. It is evident from both the images and the calculations that the added pearls 3 and 1 and 1 
are not initially treated as part of the divisible whole (they are as if from a different pool / are not 
pearls from the casket). In contrast, the pearls from the casket are presented using squares: the 
pearls for the youngest daughter are presented as one square, the middle daughter as 2 squares 
and the eldest daughter as 4 squares. Thus, starting with the youngest daughter, each successive 
daughter has (in squares) 2 times as many pearls as the previous one. Hence, all the pearls from 
the casket form 7 equal portions (squares).
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Figure 9. Incorrect solution, answer 40 – work of Patricia O.

             5
Youngest daughter ....  + 3 → 8
                                  5 + 5 
Younger daughter .... ....  + 1 → 11
                            5 + 5 + 5 + 5
Eldest daughter .... .... .... ....  + 1 → 21

    |   5   |       |       |       |       |       |       |       |       
       youngest | younger | eldest

 
Ans. The Maharaja had 40 pearls in his cascet. The eldest daughter received 21 pearls, 
the younger one 11, and the youngest 8 pearls.

In the next figure, a further eighth portion of pearls is added to these 7 portions shown 
on one line, presumably formed from these originally separately treated five pearls. The solv-
er then recognises (it is not clear why) that there are as many pearls in each portion as in this 
added portion. This is evidenced by the product of 5 ∙ 8 = 40 (although 8 ∙ 5 = 40 would be 
more accurate). The result of this multiplication, i.e. 40 is considered to be the number of all 
pearls, and the daughters got 8 (because 5 + 3 = 8), 11 (because 2 ∙ 5 +1 = 11) and 21 (be-
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cause 4 ∙ 5 + 1 = 21) respectively. In calculating how many pearls the daughters got, again 
the exact pearls are as if from a different pool and are not part of the divisible total. When 
determining the total number of pearls received by the daughters, again the “added pearls” 
are included in the pearls in the casket and thus the author of the work has a concordance 
of the sum of the distributed pearls: 8 + 11 + 21 = 40 with the number of total pearls she 
calculated. Although the presentation of the pearls in Figures 8 and 9 is different, the rea-
soning in both papers apparently follows a similar pattern and thus the results obtained are 
identical. And what is more interesting is that as many as 39 people reasoned analogously.

Another error in reasoning – for as many as 13 people – led to the result: there are 
26 pearls in all, with the daughters receiving 13, seven and six respectively.

Figure 10. Incorrect solution, answer 26 – work by Carol A.

Ans. The eldest daughter received 13 pearls, the younger daughter 7 pearls and the young-
est daughter 6 pearls. The Maharaja had 26 of them.
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From Figure 10 it is easy to read how the author reasoned. First she represented the whole 
pool of pearls with a rectangle and then divided it into 2 equal parts. Then she redrew one 
part and also divided it into 2 equal parts, only to redraw one part again and again divide 
it into 2 equal parts. She correctly concluded that the latter part (received by the youngest 
daughter) contained 6 pearls. She then performed the calculations according to the direc-
tion of the arrow pointing upwards. She carried out two types of calculations in parallel. 
In the drawing, she calculated how many pearls she thought were in the casket at succes-
sive stages of their distribution starting with the last distribution, while next to the draw-
ing she calculated how many pearls each daughter received, starting with the youngest. 
Since the drawing was not a model of the situation described in the task, such a procedure 
could in no way be successful. The author formulated the answer and did not notice at all 
that, since there would be 26 pearls in all, the eldest daughter would have to get half of the 
26, i.e., 13 and one more pearl, so ultimately 14 pearls, so the numbers given do not meet 
the conditions of the task.

Another erroneous result appearing in as many as 7 papers is 27. I show an exam-
ple of such a paper in Figure 11. Here the reasoning for determining the number of 
pearls of the youngest and middle daughter of the maharaja is analogous to the rea-
soning in Figure 10.

Figure 11. Incorrect solution, answer 27 – work by Alexandra M.
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I: o o o o o o – that’s how much the youngest daughter received
II: The second daughter received half the change, i.e. left the other half in the casket 
      for the youngest (6). In addition, she received another pearl.

 |o o o o o o| |o o o o o o| o|
was left for the youngest || so much the second daughter received

III: The 3rd daughter, the eldest, again received half of the entire contents of the cas-
        ket and another
                             so many were all the pearls

 |o o o o o o o o o o o o o| |o o o o o o o o o o o o o| |o|
    was left for two daughters || as much as the eldest daughter received        

Ans. The Maharaja had 27 pearls.
The eldest daughter received 14 pearls, the younger daughter seven pearls and the young-
est daughter six pearls.

The difference is in how to calculate how many pearls the eldest daughter got. The au-
thor first illustrated the pearls of the youngest (6) and middle (7) by drawing 13 circles. To 
the eldest, she allocated 13 and one more, i.e., 14. The total number of pearls was, in her 
opinion, 27, and it did not bother her at all that the number was not divisible by 2. 

An identical solution, further supported by a graphical diagram in the form of a split 
square, is at work in Figure 12.
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Figure 12. Incorrect solution, answer 27 – work by Hanna K.

Total 6 + 7 + 14 = 27
Ans. The Maharaja had 27 pearls in his casket.
The eldest daughter received six pearls,
the younger one got 7 pearls and the youngest one got 14 pearls.3

 
A score of 44 is repeated in 4 papers and is obtained in a manner analogous to that in 

the paper in Figure 13, which includes an illustration and commentary.

3 She got the order of the daughters wrong in her answer
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Figure 13. Incorrect solution, answer 44 – work by Alexandra K.

I daughter     II daughter     III daughter

3 pearls are half of the third daughter’s pearls
2 ∙ 3 = 6 number of pearls of the third daughter
2 ∙ 6 + 1 = 13 number of pearls of the second daughter
2 ∙ 12 + 1 = 25 number of pearls of the first daughter4

25 + 13 + 6 = 44 number of pearls in the casket.

In the solution method of Figure 13, the pearls received by the daughters are presented 
as rectangles in such a way that the width of the next one is 2 times smaller than the pre-
vious one (the younger daughter has 2 times less than the older one). The additional sin-
gle pearls of the eldest and middle daughter are drawn in the first and second rectangle. 
In the last, fourth rectangle, 3 pearls are drawn and the number of pearls of the youngest 
is correctly determined (2 ∙ 3 = 6). Unfortunately, further reasoning contains similar er-
rors to the reasoning already presented and in this case leads to the conclusion that there 
were 44 pearls in all.

A similar understanding of catching (doubling) pearls, albeit with a different calcula-
tion, is found in the work of Alexandra J. shown in Figure 14. The author correctly deter-
mined the number of pearls of the youngest daughter (3 + 3 = 6) and, using this, doubled 6, 
obtaining 12, and doubled 12, obtaining 24.

4 According to the reasoning presented, the fourth line of the notation should be: 25 number 
of pearls of the third first daughter



Trends in Mathematics Education Research308

Figure 14. Incorrect solution, answer 29 – work by Alexandra J.
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Since he gave the youngest half of half and 3, and then the casket became empty, this 
means that half of half is 6.

The Maharaja had 24 + 5 = 29 pearls.
1 daughter  12 + 1 = 13 pearls
2 daughter  6 + 1 = 7 pearls
3 daughter  3 + 3 = 6 pearls
   5 – 2 = 3 → that’s how many pearls are left for the 3rd daughter. 

She then added 5 to 24, this number 5 probably being the total number of pearls add-
ed (1 + 1 + 3 = 5), and considered the number of 29 thus obtained to be the number of all 
pearls. She determined the numbers of pearls received by her daughters as follows: the eld-
est 12 + 1 = 13, the middle 6 + 1 = 7 and the youngest 3 + 3 = 6, which she had already 
determined. It did not bother her at all that 29 is not divisible by 2, nor that the total num-
ber of pearls her daughters received was 26 (13 + 7 + 6 = 26), which is 3 less than the num-
ber 29 of all pearls.

The author of the next paper (Figure 15.), like her predecessors, incorrectly understands 
the situation described in the task. She also assumes that each younger sister gets 2 times 
less than the older sister, which she indicates in the figure: she catches three times, each 
time she catches the part that is still to be distributed, without taking into account that 
each new pot should be 1 less than what is shown in the figure.
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Figure 15. Incorrect solution, answer 35 – work by Magdalena B.

5 + 3 = 8 number of pearls 3rd daughter
8 + 1 = 9 number of pearls 2nd daughter
8 + 9 + 1 = 18 number of pearls 1st daughter
8 + 9 + 18 = 35 that’s how many pearls were in the casket.

Thus, in the drawing of the rectangle, he distinguishes successively ½, ¼ and 1/8 of it as 
portions of pearls for the 1st, 2nd, and 3rd daughters respectively. He identifies the remain-
ing 1/8 of the undivided part of the rectangle (1/8 of the whole pool) with the individual 
pearls added to the portions presented earlier and recognises that there are 5 pearls in this 
part (because 1 + 1 + 3 = 5). He then determines the number of pearls of each daughter 
starting with the youngest. He recognises that the youngest has 5 + 3, i.e., 8 pearls. He does 
not see any contradiction in the fact that the parts presented in the drawing are equal, so 
there cannot be 5 pearls in one of them and 3 in the other. He then recognises that since 
there are a total of 8 pearls in the lower right quadrant, there are also 8 in the upper right 
quadrant, and since the second daughter got one additional pearl, he calculates that she got 
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8 + 1, i.e., 9 pearls. She then determines that there are a total of 8 + 9 pearls in the “right 
half”, so presumably there must be the same number in the left half. Since the eldest daugh-
ter received an additional pearl, she must have received 8 + 9 + 1, i.e., 18 pearls. She deter-
mines the total number of pearls by adding the pearls distributed to the individual daughters 
8 + 9 + 18, so she concludes that there were 35 pearls, and is not surprised by this odd number. 

In the work of Fig. 16, the calculations are carried out in two ways. In the vertical ar-
rangement, numbers are written on the graph such that each successive number is 2 times 
larger than the previous one: 6, 12, 24.

Figure 16. Incorrect solution, answer 47 – work by Kamila G.

The eldest 6 + 3 pearls = 9 got
                      ↓+6
Average 12 + 1 pearl = 13 got
                    ↓+12
The youngest 24 + 1 pearl = 25 got
Altogether there were 47 pearls
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The numbers so written on the graph are part of the horizontal calculation used to determine 
how many pearls each daughter got. Starting from the top, the author recognises that the young-
est daughter got 6 (a good number) only unfortunately she increases it by 3 more (6 + 3 = 9). 
She then assigns the middle one 2 times 6 and 1 more (12 + 1 = 13) and the eldest 2 times 12 
and 1 more (24 + 1 = 25). Thus the total number of pearls is 47 (because 9 + 13 + 25 = 47). 
The pearls 3 and 1 and 1 added by her are apparently not included in the total pearl pool dur-
ing the calculation. Only when determining the total number of pearls received by the daugh-
ters are they included in this pool. Clearly, no good solution can be found in this way.

There are some very twisted calculations at work in Figure 17. They are downright baf-
fling. It is even difficult to see any idea in it.

Figure 17. Incorrect solution, answer 42 – work by Beata Ż.
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[The left branch of the graph]: + 1 pearl, the eldest daughter

[The middle branch of the graph]: + 1 pearl, the younger daughter

[The right branch of the graph]: + 3 pearls, the youngest daughter

(1 + 1+ 3) → 5 pearls ∙ 3 = 15
15 – 1 = 14 eldest
14 – 1 = 13 younger
13 – 3 = 10 youngest

There were 42 pearls in the casket (15 + 14 + 13)
42 – 37 = 5 (1 pearl + 1 pearl + 3 pearls)

The author first determines the number of pearls added to her daughters: 1 + 1 + 3 and 
then triples this number. The number 15 obtained in this way is presumably taken as half 
of all the pearls (only then there would have to be 30 pearls) and it is not clear why she re-
duces it by 1 (15 – 1 = 14) and concludes that the eldest has received 14 pearls. The young-
er one 13 (14 – 1 = 13) and the youngest 10 (13 – 3 = 10). The total number of pearls, ac-
cording to the author, is 42, because as she records: 15 + 14 + 13 = 42. The fact that the 
daughters received a total of 37 pearls (after all, 14 + 13 + 10 = 37) is not in doubt, be-
cause, as the author writes, 42 – 37 = 5, which is the total (1 + 1 + 3) additionally received 
by all the daughters.

This is an example of ‘number juggling’ (counting for the sake of counting, without re-
flecting on whether it makes any sense).

The second group – much more numerous than the previously discussed group with cor-
rect solutions – includes incorrect solutions (93 – excluding 14 partially correct solutions). 
Among the 10 examples of incorrect solutions, there are different types of errors and each 
has been analysed in detail, together with a description of the possible consequences of the 
chosen reasoning and calculation. The analysis of these examples leads to the conclusion 
that the students (after 15 years of schooling) do not apply the well-established methodol-
ogy of solving text tasks in the didactics of mathematics of Polya (1993). The four stages of 
solving text tasks, the author presents and extensively analyses in his book “How to solve it”. 
In a shorter version, these stages are discussed in an academic textbook for students, future 
teachers of mathematics, by Siwek (2005, pp. 116–131). The next stages are: 1. understand-
ing the content (concepts and situation), 2. planning the solution (operations to be carried 
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out sequentially), 3. writing down the solution (calculations, constructions), 4. “hindsight” 
(checking whether the results meet the conditions of the task).

As can be seen from the attached examples of incorrect solutions, in almost all of the 
female students’ work, an error was made at the outset related to step 1 of Understanding 
the task. The students mostly only saw the “dividing in half ” of the set of pearls; then they 
attempted to do something about the “addition of individual pearls”. They did not know 
how to analyse the data and the conditions of the task and determine the subsequent oper-
ations: I divide the set of pearls in half and add 1; I divide the remaining remainder in half 
and add 1; I divide the remaining remainder in half again and add... now 3. And the diffi-
cult for many was to analyse the given information and conclude that the youngest daughter 
has 3 + 3 = 6 pearls and that the casket is empty – there are 0 pearls in it. This deciphering 
of the ‘hidden’ data gave a chance to solve the task correctly. The analysis of incorrect solu-
tions shows how important it is in practice to know the methodology of solving text tasks 
and to be able to apply the activity method in solving mathematical problems. 

5. Conclusions

The task was solved by 142 female students. The data presented in Table 1 shows that only 
33 people solved the task correctly by reasoning. Of these, 16 were supported by an apt 
drawing and 3 of them used an arrow graph. In 14 cases, the solution contains pure reduc-
tive reasoning without any additional support. Unfortunately, as many as 107 (14 and 93) 
people failed to solve it. Two people found the answer to the task, but unfortunately ob-
tained it using an inefficient trial-and-error method.

It is very encouraging that almost all students (except one) attempted to solve the task. 
Furthermore, almost all of them (except three who used fractions or equations) used a meth-
od available to early childhood education students in their solution. It is also important to 
note that only two used the trial and error method, which, although it may lead to a good 
result, is not a method that can be generalised and used in solving an analogous task. It is 
encouraging that the majority of respondents attempted to illustrate the relationships in 
the task, as the drawing is perceived globally (not sequentially like a written text), which 
makes it much easier to find a solution and sometimes the answer can be read directly from 
the drawing. Unfortunately, not all drawings were accurate and therefore could not sup-
port the solution.

The fact that only 33 students correctly solved the task by performing reductive rea-
soning shows that reduction is not an easy way of reasoning and, as can be seen, not every-
one can apply it.
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Table 1. Summary results of solving the pearl task

Method of solution / answers Number 
of works together total percentage

Correct solution

Correct drawing 16

33
35 25%

Reasoning without drawing 14

Sagittal graph 3

Trial and error method 2 2

Partially correct Correct reasoning but wrong results 
due to calculation errors 14 14 14 10%

Wrong solutions

Answer: 40 (21, 11, 8) 39

63

93 65%

Answer: 26 (13, 7, 6) 13

Answer: 27 (14. 7, 6) 7

Answer 44 (25, 13, 6) 4

Other answers e.g. 8, 12, 24, 25, 28, 
29, 32, 34, 35, 38, 42, 47, 50 24

29
Equation written down but without 

solution 1

Incorrect fractions attempt 2

Strange calculations (other than 
above) 2

No solution No answer 1 1

Total 142 142 142 100%

Unfortunately, as many as 109 people failed to solve the task correctly. They either 
could not read the task with comprehension or could not mathematise the situation de-
scribed in the task. They were unable to go beyond the learned patterns. They forcefully 
tried to apply any of the calculation schemes they were familiar with, hence the high num-
ber of “mindless calculations”, which were not accompanied by any reflection. They also 
lacked the ability to check whether the numbers they obtained met the conditions of the 
task. Had they carried out such a check, they would probably have noticed that something 
was wrong and perhaps they would have spotted their mistakes and corrected them. Un-
fortunately, they did not do so.

The result: as many as 77% of female students failed the task, prompts reflection on both 
the effectiveness of mathematics education and the way in which candidates for the teach-
ing profession are recruited. After all, the aim is for current students and future teachers to 
be able to develop logical, reflective and critical thinking in their students. That they teach 
them to take a variety of steps to make a sound assessment of the factual and objective state 
of affairs, that they teach them to take a variety of steps to exclude the over-hasty and hasty 
acceptance of unproven information or the results of uncertain solutions. After all, the key 
to success in education is the formation of skills of correct reasoning/inference, i.e., the for-
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mulation of accurate judgements on the basis of known premises5. After all, what we want 
is for schools to be filled with mature, thinking people, because only such people are able to 
meet all the challenges posed by the modern world and the future world, which we do not 
yet know, but in which the present students will live and work. Is it possible to achieve such 
a goal? Probably yes, provided the teacher is himself a logical and critical thinker. Rather, 
it is not possible to teach others what one does not know oneself. 

5 This involves both deductive and reductive reasoning.
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DIAGNOSIS OF SCHOOL MATHEMATICS KNOWLEDGE AND SKILLS 
OF STUDENTS ENTERING UNIVERSITY TO BECOME MATHEMATICS 
TEACHERS

Summary: This work presents the results of a competency test administered to students beginning 
their studies in mathematics education. This test was held on the first day of the academic year for 
all first-year students starting their studies in mathematics at the undergraduate level. The inten-
tion was to diagnose their mathematics learning needs at the level between secondary school and 
university studies. The results raised concerns, as they are surprisingly low, but they also show the 
mathematical content that needs to be addressed in further mathematical university education of 
the research participants. They also present the difficulties the respondents encountered when solv-
ing tasks. The tasks of the test were prepared in a way as to test the same skills that are assessed in the 
secondary school state exam, called the matura, at the basic level of mathematics, which is compul-
sory for all students in Poland. The solution to each task was not numerically complex – the tasks 
tested the understanding of concepts rather than mastery of procedures. The results of the study 
showed a significant correlation with the results of the mathematics matura exam. Moreover, the 
results make it possible to diagnose gaps in the mathematical knowledge and skills of those enter-
ing mathematics studies and make lecturers and students aware of the reasons behind some of the 
misconceptions and reasoning. In the longer term, they will provide a basis for formulating reme-
dial measures – the effective design of a course to fill these gaps, aimed at reducing the revealed is-
sues. In the chapter, we present the general results of research on a sample of 78 people and make 
a brief quantitative summary and qualitative analysis of the answers to four tasks – with the best 
and the weakest results. The research reveals that at this level of mathematical education, it is nec-
essary to emphasise careful reading of mathematical texts, to be aware of the existence and the op-
eration of Systems 1 and 2 of fast and slow thinking, as well as to implement self-control, develop 
the habit of checking answers, implement the use of reductive reasoning in solving tasks, imple-
ment the methodology of justification and refutation of statements, and overcome psychological 
barriers associated with tasks that “seem” difficult. Furthermore, numerous misconceptions have 
been highlighted, for example those related to the properties of functions, and care should there-
fore be taken to correctly shape “concept images” in students.
Keywords: mathematics knowledge and skills, competency test, first-year mathematics education stu-
dents, Dual-Process Theory, reductive reasoning, misconceptions, concept image, functions, equation.
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1. Introduction

The motivation for undertaking the research described in this chapter is the need to effec-
tively educate future mathematics teachers. In this context, we attempted an additional 
diagnosis of the knowledge of students at the beginning of their mathematics education, 
aiming to become teachers, in order to further address their educational needs in terms of 
mathematical knowledge and skills and adapt the university education process to them.

Undertaking this study also indirectly intended to update lecturers on the level of knowl-
edge of secondary school students entering mathematics courses. There is a certain rigidity 
in university education, in that some lecturers expect the level of knowledge of students to 
be at the same level as it was a few or even a dozen years ago. In the meantime, many factors 
make the profile of the first-year student change dynamically. In this paper, we do not anal-
yse these factors, but provide a selection of them in the summary of the discussion section. 

2. Theoretical Background

The theoretical framework relates to the analysis of the results of the individual tasks pre-
sented in this chapter. 

2.1. Dual-Process Theory

In our analysis, we draw attention to the fact that rapid, intuitive thinking is a hindrance 
when solving the tasks we discuss, which is why the Dual-Process Theory is being consid-
ered part of the theoretical background. However, the “Dual-Process Theory in cognitive 
psychology and mathematics education” is presented in Chapter 2 of this book (Sajka & 
Rosiek, 2025), so here we focus on the ability to think reductively (abductively, “from the 
end”). This type of reasoning is required to solve the discussed tasks. Moreover, in subsec-
tion 3, we present the theoretical foundations and principles of the construction of the sec-
ondary school exit exam (matura) in Poland, to which the design of our research tool refers.

2.2. Reductive Reasoning

From the point of view of implementing mathematics, the main type of reasoning is deduc-
tion. However, it is often difficult to use pure deduction or even local deduction in the context 
of school mathematics (Konior, 1989). Even when proving theorems and solving tasks, we of-
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ten use reasoning that is in some sense inverse, starting to solve the task by analysing the theo-
rem’s thesis, or solving the task from the final state provided in the text. We then use reasoning 
that is referred to in the literature as: reductive, abductive, or “from the end to the beginning”.

We can understand reductive reasoning classically (Krygowska et al., 1957) in the con-
text of justifying the reasoning scheme : 

We look for such sentences T1, T2, T3, …, Tn, to show successive implications: T1   T (given 
the assumptions and previously proved theorems), T2   T1, T3   T2, etc. Tn   Tn–1, i.e.:

Tn  Tn–1  ...  T4  T3  T2  T1  T.

If Tn is a assumption or one of the theorems on which reasoning is already allowed, then 
obviously the given theorem  is true (Krygowska et al., 1957, p. 100).

Therefore, in reductive reasoning in the classical view, we are looking for sufficient con-
ditions for a claim T and we want to show that they consist of the assumptions of the the-
orem and the previously justified sentences. In this context, as part of teaching mathemat-
ics, it is a reliable method for proving theorems or solving tasks.

However, reduction can also be understood differently. For example, Bocheński (1992) 
describes reduction as reverse reasoning to deduction, of the type:  and T occurs, so 
Z occurs. In this view, reductive reasoning is unreliable and verification is necessary. Bocheńs-
ki adds that we can introduce types of reduction in two ways, for example: progressive and 
regressive reduction, and inductive and non-inductive reduction. When performing a pro-
gressive reduction, one starts from an as yet unknown predecessor and leads the reasoning 
to a known and ascertainable successor. The opposite is the case with regressive reduction, 
where one starts from a known successor and leads to an unknown predecessor. The dis-
tinction between inductive and non-inductive reduction is based on the type of predeces-
sor – if it is a generalisation of the successor, then this type of reduction is called inductive; 
if this is not the case, then we speak of non-inductive reduction (Bocheński, 1954; 1992).

Peirce (1932; 1935) introduced the term “abduction”, which is described as: to start with 
an observation B and then infer A from B and A  B (Peirce, 1932). Abduction was there-
fore defined analogously to regressive reduction according to Bocheński (1992), so in this 
view, it is fallacious reasoning.

However, The Stanford Encyclopedia of Philosophy points out that the term abduction 
exists in philosophical literature in two related, but different senses: 

In both senses, the term refers to some form of explanatory reasoning. However, in the historically 
first sense, it refers to the place of explanatory reasoning in generating hypotheses, while in the sense 
in which it is used most frequently in the modern literature it refers to the place of explanatory rea-
soning in justifying hypotheses. In the latter sense, abduction is also often called “Inference to the 
Best Explanation” (Douven, 2017, Abduction, Stanford Encyclopedia of Philosophy).
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In both approaches, abduction is a kind of reasoning that begins with an observation 
of a situation, followed by attempts to explain that observation.

Research in mathematics education has explored the role of abductive reasoning in the 
context of making assumptions and proving. A review of the literature on this topic was 
provided by Komatsu and Jones (2022), and their study contributed to the literature by us-
ing abduction to analyse the process of discovery and to deal with refutations of hypothe-
ses in the form of providing counter-examples.

Another terminology in the context of teaching mathematics is proposed by Pólya (1975), 
who refers to the deductive method that moves from beginning to end as the “direct meth-
od”, and the reductive method from end to beginning as “backward reasoning” or “back-
ward problem-solving”, or the analytical method. He emphasises that, in the direct method, 
we draw logical conclusions from assumptions and data, each step being necessary to reach 
a conclusion, while in the reductive method, we look for sufficient conditions to justify the 
conclusion. Pólya also stresses that in reasoning, we use the so-called “mixed method”, which 
combines elements of inductive and deductive reasoning. He describes this method as work-
ing alternately from the beginning and the end of a problem, a technique he calls the “meth-
od of alternate movement”. Pólya emphasises that this method allows for a more flexible ap-
proach to problem-solving by integrating different strategies and perspectives.

In this current discussion, we either use the term “reduction” in its classical sense (Kry-
gowska et al., 1957) or the term “backward reasoning” (Pólya, 1975) in situations where 
we start by observing a given situation (a thesis or end state in a task), then justify and ex-
plain it by presenting conditions sufficient for it to occur, which also corresponds to one of 
the descriptions of abduction.

Applying deductive and reductive reasoning to school practice, one can cite the exam-
ple of Treliński (1985, p. 27). In a task where one has to justify the formula for the area of 
a trapezoid (knowing the formula for the area of a triangle), one can proceed deductive-
ly by making a drawing, carrying out an auxiliary construction, justifying that the differ-
ent triangles are congruent and coming to a final conclusion. When reasoning reductive-
ly, we ask: What would this result from? What figure would you need to consider to have an 
area equal to ? It would be sufficient, for example, to have a triangle with the sides of 
the length and height . Therefore, we construct such a triangle using the given trapezoid and 
obtain the auxiliary construction. Starting “from the end” allows us to plan the next steps 
of reasoning and to understand their purposefulness.

Treliński provides examples of questions that guide the different methods of reasoning:

• Reasoning deductively, we ask: What is given? What do we know? How do we use this informa-
tion? What is its result? What can I get from it? How do we transform the given information? 
Which theorems to apply?
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• Using reductive reasoning, we ask: What are we looking for? What is the unknown? How do we 
find an unknown of this kind? What information is needed for this? What is enough to know? 
What does it come from? What should we know in order to obtain the unknown? (Treliński, 
1985, p. 27).

Reductive reasoning is often much more convenient, as proof by deduction is not as 
natural. Proofs of algebraic theorems that are most convenient to carry out through reduc-
tive reasoning appear regularly in the mathematics matura exam at elementary level, e.g.,

Prove that the geometric mean of two non-negative numbers is no greater than their arithmetic mean.

Deductive proof: 

Reductive proof:

Reductive reasoning is not only about proof, but can and should be used to solve vari-
ous tasks.

3. On the Core Curriculum and the State Matura Examination in Poland 

The matura exam in mathematics is a written state exam, taken at two levels: basic (elemen-
tary) and advanced (extended). In our publication, we will focus only on the basic level; 
moreover, the information provided below refers to the type of exam that was taken by the 
participants of the analysed competency test. Since 2010, this exam has been compulsory 
for all secondary and technical school graduates. The students who took part in the exam-
ination filled out a worksheet, with a time limit of 170 minutes (this has now been extend-
ed to three hours). A score of 30% was required to pass the examination. 

This exam tested knowledge in the areas described by the national education core cur-
riculum in mathematics for secondary schools at the basic level (MEiN, 2008), namely, the 
following topics were defined (applicable until 2021):
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a. Real numbers,
b. Algebraic expressions,
c. Equations and inequalities,
d. Functions,
e. Sequences,
f. Trigonometry,
g. Planimetry,
h. Geometry in the Cartesian plane,
i. Stereometry,
j. Elements of descriptive statistics. Probability theory and combinatorics.

The content that is included in these sections has been revised several times in the al-
most 20 years of the matura exam, but these have not been major changes.

In the 2010–2020 matura exams, the points were split approximately in half between 
closed and open-ended tasks. The only type of closed tasks were multiple choice tasks (A, B, 
C, D) with only one correct answer. Many of these tasks can be solved by methods other 
than the method used for solving open tasks – for example by elimination of incorrect an-
swers or performing substitution, which requires different skills than solving open-ended 
tasks. What is more, the open tasks often remain similar over the years, for example, the 
task of solving a quadratic inequality has been repeated at every exam for many years. The 
consequence of this is that even a student with only average proficiency in mathematics is 
able to achieve a result of more than 80 or even 90% in this exam. 

4. Methodology

4.1. Purpose of the Study

The aim of the study was to diagnose the learning needs in the context of mathematical 
content and the proficiency in school mathematics of students entering mathematics stud-
ies to become teachers. The following research questions were posed:

Q1. What is the knowledge and skills at the basic level of secondary school mathemat-
ics of first-year mathematics education students?

Q2. What misconceptions in the understanding of school mathematics can be distin-
guished among the first-year mathematics education students?
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4.2. Method and Research Tool

The research method was the students’ individual paper-and-pencil answers to a Research 
Worksheet, also called a competency test, constructed in order to answer the research ques-
tions. The level of mathematical content examined and the mathematical skills needed 
to solve the tasks did not exceed the content obligatory to the matura exam at the basic 
level, and the calculations required to solve these tasks were elementary. On the other 
hand, the tasks were not typical school tasks and they did not require solely a schemat-
ic solution nor algorithm, but necessitated critical thinking, often requiring a change in 
the imposed strategy. The examples of such tasks are described further, in the analysis of 
task descriptions. 

The Research Worksheet contains tasks that were previously used as research tools and 
proven in the role of diagnostic tools (Tasks: 1, 6, 10, 11, 16), while the rest are sourced 
from task collections at secondary school level or are the authors’ own modifications. The 
worksheet consists of 17 tasks.

Each task was designed to answer the research question Q1 in relation to specific con-
tent defined in accordance with the requirements for the basic level matura exam in the 
basic range of content defined for the national mathematics core curriculum. In addition, 
due to the timing of the pandemic and the reduction of the syllabus and content range for 
the matura exam, some content appearing in the core curriculum, but not applicable to the 
2021 matura, was also excluded from the study. These contents included, in particular, is-
sues related to the application of acquired skills in a practical context, sketching graphs of 
exponential functions and inverse proportionality, angles in a prism, cross-sections of sol-
ids, and descriptive statistics (MEiN, 2020). 

The research diagnosed the knowledge and skills related to the content assessed in the 
matura exam, as presented in subchapter 3. Table 1 presents the content labelled (a) to (j) 
tested in the individual, consecutive tasks of the Research Worksheet.

Table 1. Content of worksheet tasks
Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Content a j e b a a c c f d d g g h c d i

The written output of the students’ work was then analysed quantitatively and quali-
tatively.
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4.3. Participants and Research Procedure

The participants were students entering mathematics education studies at a university en-
gaged in training future mathematics teachers, most of whom had chosen the teaching spe-
cialisation.

A total of 78 people took part in the research. The study was announced several weeks 
in advance and took place at the inauguration meeting for the academic year, on the first 
day. The students wrote their answers to tasks printed on A4 sheets, in a large congress 
hall, at separate tables. One person was visually impaired and was given a sheet with adap-
tations to suit her needs. The duration of the study was limited to 75 minutes. Participants 
were informed prior to the research that the study was designed to diagnose their educa-
tional needs and that the results would be discussed and analysed at a course entitled “Fun-
damentals of Higher Mathematics”, created to repeat content that is considered the basis 
of higher mathematics and to compensate for the deficiencies in secondary school mathe-
matics. The participants were also informed that they would be graded for this study, but 
would be notified of their score (the number of points they obtained).

5. Results and Their Analysis

As the scope of the research is very broad, in this chapter we focus only on selected aspects 
of the analysis of the results.

5.1. Presentation and Analysis of General Results

5.1.1. General Results and Task Difficulty

The general results of the study are presented in Table 3, where for each task we present the 
number of points possible to obtain in a particular task (1 or 2) and its difficulty (relative 
percentage score), which is defined according to Niemierko (1999) as the quotient of the 
sum of points obtained for a task or set of tasks by the sum of points possible to obtain for 
this task or set of tasks (Table 2). We consider this indicator important, as it also allows to 
assess the degree of difficulty of both the mathematics matura exam in Poland as a whole 
as well as the examination sheets of particular editions of the examand its tasks. In the case 
of 1-point tasks, this indicator is the same as the so-called success rate.
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Table 2. Difficulty of task according to Niemierko (1999)
Difficulty 0,00 – 0,19 0,20 – 0,49 0,50 – 0,69 0,70 – 0,89 0,90 – 1,00

Worksheet/Task Very difficult Difficult Moderately difficult Easy Very easy

Table 3. Difficulty particular tasks of the test
Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 S

Points 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 2 26

Difficulty 0.36 0.26 0.26 0.10 0.08 0.29 0.28 0.28 0.24 0.05 0.08 0.19 0.14 0.24 0.04 0.38 0.17 -

The difficulty levels of the tasks are provided by rounding to two decimal places. Ac-
cording to the interpretation given in Table 2, the entire examination sheet ranked on the 
borderline between difficult and very difficult, as its difficulty level amounted to 0.20. 

The modal value of the results for the entire test was 4 points, and the average percent-
age score obtained was around 20%. 

According to the results, the Research Worksheet did not contain moderately difficult, 
easy, or very easy tasks at the level of the participants, and all some tasks were considered 
difficult or very difficult. 

Eight tasks were very difficult for the participants: 4, 5, 10, 11, 12, 13, 15, 17. The re-
maining tasks were ranked as difficult: 1, 2, 3, 6, 7, 8, 9, 14, 16. 

Tasks no. 15 and 10 were the most difficult, and tasks no. 1 and 16 were the easiest. The 
results for these four extreme tasks will be analysed in the following section.

In total, 26 points could be obtained by solving all the tasks correctly. The graph in Fig-
ure 1 shows how many people obtained a particular number of points (from 0 to 19, as the 
best score obtained was just 19 points).

Figure 1. Students who obtained the corresponding number of points (0-19)
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5.1.2. Correlation of Test Results with Mathematics Matura Results

The recruitment system for students entering mathematics education studies allowed us in-
sight into the results of the basic mathematics matura exam for all respondents. The con-
tent of our Research Worksheet and the basic level matura in mathematics was the same, 
therefore we investigated whether there was a correlation between these results. Despite 
the long summer break between the exam and the study (almost 5 months) as well as the 
short time spent working on the tasks from our Research Worksheet and the difference in 
the type of tasks, the Pearson correlation coefficient for this data set was 0.48, indicating 
a moderate correlation.

5.2. Qualitative Analysis of the Solutions to the Tasks Where
         Respondents Were Given the Correct Answer Most Often

In this category we consider two multiple-choice tasks with one correct answer. These were 
Task 16 (Stone Problem) with a success rate of 0.38 and Task 1 (Duckweed Problem) – suc-
cess rate 0.36, which are presented alongside the results below.

5.2.1. Duckweed Problem – Description, Results, Analysis, and Discussion

Duckweed Problem description

The content of the Duckweed Problem is as follows:
Task 1 (1 point). The pond is overgrowing with duckweed*. The area covered by duckweed 
doubles every two days. The whole pond became overgrown in 64 days. How many days did it 
take for  of the pond to become overgrown? Indicate the correct answer.

A. It cannot be solved
B. After 4 days
C. After 16 days
D. After 60 days
E. Another answer …

*) Duckweed – a kind of small aquatic plant
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From a mathematical skill point of view, the Duckweed Problem can be solved even by 
primary school pupils, as it requires elementary skills: dividing even natural numbers small-
er than 100 by 2, subtraction of 2, and an understanding of the fractions  and . Howev-
er, the task presents two major difficulties.

The prototype of the task is Kahneman’s lily task (Kahneman, 2011, p. 54), described 
as an example of activating the operation of System 1. In order to solve the task correctly, it 
is necessary to overcome the imposing operation of System 1, which prompts a simple, im-
mediate and, at the same time, erroneous association: since the whole pond was overgrown 
after 64 days,  will be overgrown after 16 days, since  (or ). In addition, 
the school experience of forming the concept of directly proportional quantities perpetu-
ates this intuitive approach and activates the wrong solution scheme. In order to break the 
activation of System 1, it is necessary to activate System 2.

The second major difficulty is methodological in nature. The task is non-standard in rela-
tion to the tasks solved at school, as it requires the activation of “backward reasoning” (Pólya, 
1975) or reductive reasoning in the sense of Krygowska, Kulczycki and Straszewicz (1957).

The Duckweed Problem has been used in other research – among middle school stu-
dents (e.g. Sajka & Rosiek, 2015a) and future teachers, and has thus been validated as a re-
search tool using eye tracking.

When solving the task, it is convenient to consider the end state as the starting point, 
i.e., to start the analysis of the task from the fact that the pond becomes completely over-
grown after 64 days, and to perform two steps of reasoning backwards in time using the 
data from the content of the task skilfully and reversing the operation. The duckweed dou-
bles every two days (there is twice as much of it), i.e., two days earlier there was half of it, 
i.e., on day 62 it occupied half the area of the pond and on day 60 it occupied  of the pond. 
This reasoning can be effectively supported by the figure.

It is worth noting that although in the proposed solution to the task we perform rea-
soning backwards in time and use reverse operations which can be interpreted as reduc-
tive reasoning or “backward reasoning”, from a logical point of view, we use the data in the 
task and arrive at the solution through deduction. Reverse reasoning, on the other hand, 
is of the opposite nature.

The task was closed, so the respondents were all the more able to approach its solution by 
choosing a hypothetical answer and verifying it. In this case, the refutation or confirmation 
of the hypothesis followed the direction of the passage of time of the situation described in 
the task and was consistent with the description of the operations taking place there, that 
is, in this sense, “from the beginning to the end”. On the other hand, from a logical point 
of view, this direction is reductive, because we start from the answer to the task, which we 
then verify, rather than starting from analysing the content of the task.
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However, the task can be solved both fully deductively through elementary means as 
well as “from beginning to end” – both logically as well as from the situation depicted in 
the task in the context of time. For example, an unknown can be introduced:

Therefore x + 4 = 64, hence the answer is 60. 
Although the resulting equation is very simple to solve, it seems secondary school stu-

dents rarely have the opportunity to solve this type of equation; they are more likely to do so 
at earlier stages of their education. In secondary school, on the other hand, students repeat-
edly solve tasks by composing equations based on their knowledge of arithmetic or geomet-
ric sequences. By realising that, due to the doubling of the overgrown area, we could model 
this situation using a geometric sequence – a solution could, e.g., be as follows:

Let  represent the area overgrown by the duckweed after n two-day periods. Since the whole 
pond was overgrown in 64 days, therefore from the general formula for the n-th expression of 
a geometric sequence we get . Hence, we calculate . Since we want to count 
how many two-day periods have elapsed until a quarter of the pond is overgrown (let’s denote 
this number by k), we get the equation: . From here we calculate k = 30, so 60 days 
are needed.

The solution presented here, although it appears to be a typical geometric sequence task, 
has several difficulties. Firstly, it operates on the notion of a two-day period. This is because 
the duckweed doubled its area not every day, but every two days. This interpretation of the 
task may be difficult for students to realise. Paradoxically, if the task had stated e.g. “every 
seven days” instead of “every two days”, it might have been easier for the students, because 
they could have considered the period of seven days as 1 week, which would have simpli-
fied the solution. Another difficulty is that it is not obvious what the values of the succes-
sive expressions of the sequence are, namely that the 32nd expression is the whole, i.e. 1, and 
the k-th expression is . In attempting to solve this task by means of an equation, therefore, 
the participants could encounter considerable difficulty.
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Duckweed Problem – analysis of results and discussion

In this task, the respondents achieved the second-best score compared to the other tasks of 
the test, but the task was nevertheless difficult for the participants.

It is a closed task in which only answer D was correct. The distribution of the respon-
dents’ answers is as follows:

Table 4. Answers to the Duckweed Problem
Answer A. B. C. D. E. No answer

Item 
formulation

It cannot 
be solved

After 4 
days

After 16 
days

After 60 
days

Another answer

62 5 8

Number of 
participants 4 9 30 28 4 1 1 1

Among the answers that appeared under “E. another”, four people answered 62, and 
answers 5 and 8 appeared once. 

Although this task caused the least difficulty for the participants in comparison to oth-
er tasks from the test, the fact that it is multiple-choice means that we do not know how 
many of the answers were random; the participants, not knowing the solution to the task, 
may have marked the correct answer by chance. Note that despite the fact that this task 
can be solved already by primary school students, the majority of the respondents did not 
give the correct answer.

It is particularly noteworthy that the answer most frequently selected by the subjects 
was “C. after 16 days”, rather than the correct answer. Although the respondents were not 
asked about the motivations behind their answers, hypothetical reasons can be assumed.

The most likely reason for this is that the writers considered, according to our descrip-
tion of the task, that the overgrowth of the pond occurs evenly, that is, exactly the same 
amount of the pond overgrows on each day. If this were the case, then, as stated earlier, it 
would be sufficient to divide 64 by 4 (i.e., multiply 64 by ), obtaining the result of 16. 
Such reasoning demonstrates the activation of System 1 – thinking quickly on the basis of 
intuition and ignoring the crucial second sentence of this task. It is important to note that 
while numbers and operations appear in this sentence, they are not denoted with numbers 
and operation signs, but with words (two, doubles). It is possible that, for some people, this 
was the reason for omitting these two pieces of relevant information.

In an earlier eyetracking study whose participants were middle school students (n = 52), 
visual attention when reading the content of the task was focused on numbers written as 
digits, as presented by the visual attention heat map:
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Figure 2. Visual attention of lower secondary school students solving Task 1 

in previous eye tracking study (Sajka & Rosiek, 2015a, p. 1755)

Another potential reason is similar – it is possible that the subjects concentrated only 
on the third sentence for the same reasons as before, but did not consider the rate of over-
growth of the pond at all, instead performing an operation that, in their education so far, 
they used most often when provided the numbers 64 and , or similar, in a task (that is, 
a natural number and a fraction whose denominator is a divisor of a natural number) – mul-
tiplication. Unfortunately, such an approach to text-based tasks is very often observed in 
pupils who do not think at all about the content of the task, but mechanically perform ac-
tions on the numbers appearing in the task. Often, these actions are arbitrarily chosen be-
cause the pupil remembers that, given similar numbers, he/she has most often performed 
such an action, or because this action seems to him/her the easiest to perform at that mo-
ment. This is also compounded by the fact that this is a task in which the student is pro-
vided potential answers, and would be therefore likely to reject operations such as 64 . 
In this context, the fact that one of the possible answers that the respondent had been giv-
en was the number 16 was a deliberate difficulty and not a facilitation, as is usually the case 
when one has to choose an answer from a list.

Although both reasons are mainly present at an early stage of mathematics learning, they 
are unfortunately also present in people who could have likely coped with the task without 
problems if only they had properly concentrated on its contents. This is related to the afore-
mentioned fast thinking (System 1) and its influence on the answer.

Other wrong answers are also worth noting. A relatively large number of people gave 
the answer “B. after 4 days” (12%). The reasons for this could be assumed by pointing out 
hypothetical student reasoning. It is possible that, as in the case of the reasoning leading to 
answer 16, the respondents took into account the second sentence again, but in such a way 
that, since there are two pieces of information related to the number 2 in it, the number 16 
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should be divided twice by 2, obtaining a result of 4. It may also have been the case that the 
subjects completely ignored the numbers 64 and , and, solely on the basis of the second 
sentence, by multiplying the 2 that appeared in the task, obtained the result of 4. 

Several participants also answered: “A. cannot be resolved”. The reason for this answer 
is most likely due to difficulties in activating reductive thinking or “backward reasoning” 
in the context of the task. The writers failed to recognise that the task should be analysed 
“from the end”, i.e., from the information that the whole pond became overgrown in 64 
days. By trying to start “from the beginning” they may have concluded that they do not 
know where to begin, in which case the task appears much more complicated than it actu-
ally is. Answer A was chosen by 4 people.

It is also worth considering the number that was most frequently provided as part of 
the answer “E. other:”, the number 62, which appeared in four works. Since this is the 
answer that was indicated by the respondents themselves, we can therefore assume that 
it was not random, but given as a result of some type of reasoning. It was probably the 
result of correct reasoning, in which the student omitted only one piece of information, 
namely “every two days”, implicitly assuming that the doubling of the overgrown area oc-
curred every day. This reasoning is also supported by a study that was conducted among 
prospective mathematics teachers (fourth-year students) who solved this task in the con-
text of eyetracking methodology and were subsequently interviewed. In that study, an-
swers consisting of the number 62 occurred due to omitting, when reading or process-
ing, the phrase “every two days”, and implicitly assuming that the overgrown area doubles 
in size every day, as documented, for example, by the measurement shown in Figure 4, 
where the top-left rectangle in turquoise (Area of Interest “two”) shows that the respon-
dent omitted the entire phrase of the words “every two days” from their visual analysis, 
which was also confirmed during the interview.

In summary, the students in our study performed comparably to lower secondary school 
students, whose success rate was 0.33 (Sajka & Rosiek, 2015a; 2015b), and made similar mis-
takes as future mathematics teachers (Sajka & Rosiek, 2016).
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Figure 3. Areas of Interest for the visual attention of a pre-service teacher. The phrase “every two days” 

was not perceived while reading Task 1 in a previous study (Sajka & Rosiek, 2016)

5.2.2. Stone Problem – Description, Results, Their Analysis, and Discussion

Stone Problem description

The content of the Stone Problem is as follows:
Task 16 (1 point). A stone was thrown vertically upwards. Show the motion graph which il-
lustrates its speed (v) versus time (t). (Omitting air resistance)

Figure 4

What doubts do you have about this task? What do you think about it?
………………………………………………………………………………………………......

The Stone Problem, from a mathematical skill point of view, can be solved even by pri-
mary school pupils, as it is closed-ended, with only four answers to choose from. A version 
of the graph in the shape of a parabola with the arms pointing upwards has deliberately not 
been added to the list of answers to avoid the necessity of using one’s knowledge of physics. 
In this version of the task, it is sufficient to note the biphasic nature of the stone’s move-
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ment (which eliminates answer C) and, when imagining the movement, that the speed of 
the stone’s movement first decreases to zero, and then increases. It is therefore sufficient to 
recognise the correct monotonicity of the function modelling this phenomenon.

However, the task contains fundamental difficulties, which we will refer to in the pre-
sentation and analysis of the results. The Stone Problem has been used by researchers many 
times, in different versions and methodologies. Different strategies for solving the task and 
the causes of errors in wrong strategies was investigated in the context of eyetracking meth-
odology in particular. A description of the distinguished strategies and reasons for wrong 
answers based on research with a diverse sample of 210 people and in different methodol-
ogies can be found in the paper by Rosiek and Sajka (2019).

Stone Problem – analysis of results and discussion

Table 5 shows the distribution of answers in this study. Thirty people out of 78 indicated the 
correct answer D. It is worth noting that the answer “other” was spontaneously provided by 
the participants in the space intended for them to share their doubts and was not among the 
proposed answers (in contrast to the Duckweed Problem). The vast majority of the respondents 
(n = 56) did not comment on the task – all 22 comments are quoted below. When quoting the 
participants’ statements, their data is coded as [Pxy], meaning Participant with the code “xy”.

Table 5. Answers to the Stone Problem
Answer A. B. C. D. Other No Answer

Number of 
participants 23 7 5 30 2 11

Two people decided not to pick any of the answers A-D and provided their own in the 
commentary field. The first self-proposed answer emphasises the monophasic nature of the 
movement and the strong association of the graph with the trajectory of the movement:

 ■ [P75]: “No graph fits. Over time the speed should increase”.

The second, most likely, proposes a vertical line as a graph, which also demonstrates 
a strong association with the stone’s movement trajectory:

 ■ [P14]: “The slope of the throw also seems important to me. But more reliably, when 
we throw something vertically, it usually falls in the same track – we get hit on the 
head with this stone”.
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Similarly, two others who chose answer A suggested that this was the closest to the cor-
rect answer and the graph should be vertical:

 ■ [P41]: “A stone thrown vertically upwards will fall vertically downwards (it is im-
possible to throw a stone in a perfectly straight, vertical line)”.

 ■ [P50]: “There is no vertical line among the drawings”.

One person answering A revealed his/her misunderstanding of the standard acceleration 
of gravity, thinking that it is not the same in both phases of motion (uniformly decelerated 
and then accelerated), and therefore expressed doubt about the pointed shape in the graph:

 ■ [P07]: “When a stone is thrown upwards, it seems to me that it is slower to rise than 
it is to fall, and when it reaches its highest point, it is not likely to fall abruptly as if 
it has bounced off something”.

Three students answering A or B specified other doubts:
 ■ [P08]: “I have doubts about the point at which the stone stops flying upwards and 

starts falling downwards, I am not sure about the relationship between speed and 
time”.

 ■ [P23]: “My doubt is what the mass of the stone is, because I think the bigger it is, 
the faster the stone will fall”.

 ■ [P21]: “It depends on the height and whether we are also observing it falling down”.

In contrast, one person who answered B only drew attention to the physical context of 
this task:

 ■ [P52]: “Isn’t this physics?”

Taking into account the two people who gave their own answer and those who chose 
graph A or B, we find that in their answers, 32 people out of 78 revealed the “picture” mis-
conception, well-known in didactic literature and related to the interpretation of graphs 
(Leinhardt et al., 1990). It involves the identification of a graph of motion with the trajec-
tory of the object’s movement. In our task, this is an “up and down” association. Again, as 
in the Duckweed Problem, this has to do with the activation of System 1 based on a fast, in-
tuitive response. Such a response is furthermore compounded by the common experience 
of the subjects’ everyday life, as everyone has had the experience of performing and observ-
ing an upward vertical throw. This experience reinforces the temptation to choose the “up-
down” shape of the graph. A second, hypothetical reason for indicating an A-B response 
could involve the implicit indication of a distance-time graph instead of a speed-time graph; 
such mistakes have also occurred in earlier eyetracking studies when a participant did not 
read or unconsciously assumed a different relationship to be presented. There may have been 



Chapter 13: Diagnosis of School Mathematics Knowledge and Skills of Students 337

other reasons, but since they appeared sporadically in other studies, we do not cite them in 
this work (Rosiek & Sajka, 2019).

Previous research indicates that as many as about half of the examined high school students, 
mathematics education students, and even general mathematics students choose up-down an-
swers on their first attempt at the Stone Problem (Rosiek & Sajka, 2019), therefore their amount 
being 41% in the current study is an improvement – it should, however, be noted that 11 peo-
ple did not provide any answer to this task and their answer is therefore considered unknown.

The C answers have a different basis for their choice. Only one person among those pro-
viding this answer wrote a comment. This was a question that accurately reflected their rea-
soning and was the most likely reason for those who chose this answer:

 ■ [P29]: “Did the stone fall?”

Through this question, his/her answer could be counted as correct, as he/she only an-
alysed the first phase of the stone’s movement. Only 5 students gave such an answer, but 
random answers cannot be ruled out due to it being a multiple-choice task with the only 
one correct answer. It can certainly be said that if the respondents consciously analysed one 
phase of the described movement, then they overcame the fundamental difficulty of the task 
and such an answer can therefore be considered a correct solution. In an earlier study (Ros-
iek & Sajka, 2019), this type of argumentation appeared only among mathematics students 
who gravitate towards abstract reasoning; students of other subjects, however, assumed us-
ing common sense that the stone must fall.

The correct answer D was accompanied by comments from 12 respondents. One cate-
gory of contributions consisted solely of comments, for example, that the task has a physi-
cal context, which was positively perceived (by 3 people), stated neutrally (1), or poorly per-
ceived (1). The comments also referred to the fact that the task is interesting and tricky and 
that the respondents have no doubts (3) or that they do because of the aforementioned rea-
sons (2). We quote these statements below:

 ■ [P54]: “This task is interesting, unusual for a mathematician – would suit a physicist”.
 ■ [P51]: “Very cool task, even a bit physics-based, and I really like physics and feel com-

fortable with it, so that’s great! [heart emoji]”.
 ■ [P77]: “Cool, physics-based, tricky”.
 ■ [P59] “A physics-related task”.
 ■ [P65]: “Physics is not something mathematicians like!”
 ■ [P12]: “It is puzzling and gives some food for thought, but at the same time it is in-

teresting”.
 ■ [P56]: “Interesting, tricky (I hope my answer is good)”.
 ■ [P16]: “I don’t seem to have [doubts], but that’s probably because I did something wrong”.
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One person indicated his/her time-related problem:
 ■ [P22]: “All in all, probably none, because I have 5 minutes left and I’m selecting the 

first thing that came to my mind”.

Only three people raised factual concerns. One of these concerns involved the initial 
speed, which according to the respondent should be 0:

 ■ [P28]: “Why do none of the answers start at zero speed when the stone is held right 
before being thrown at speed?”

The second concern involved, among other things, that the correct shape should be par-
abolic, i.e., resembling the letter U:

 ■ [P63]: “It is not known to what height it was thrown, so in a certain case its fall 
speed would have reached maximum at some point. Also, this graph should be 
more parabolic”.

One person wrote explicitly about their struggles with the movement path of the graph:
 ■ [P62]: “I’m not sure if this concerns the trajectory of the flight or the changes in 

speed in relation to time”.

5.3. Qualitative Analysis of the Solutions to the Two Most Difficult
        Tasks in the Test

Two tasks, both open-ended, ranked almost ex aequo in this category. These were Task 15 
– success rate 0.04, and Task 10 – success rate 0.05.

5.3.1. Equation with Absolute Values Task – Description, Results, Their Analysis
           and Discussion

Task 15 description

The content of Task 15 is as follows:
Task 15 (2 points). Solve the equation: 
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To solve this equation, it was necessary to take advantage of the fact that the sum of two 
non-negative expressions is equal to zero when both expressions are equal to zero. Conse-
quently, it was necessary to solve the two equations formed by equating the expressions un-
der absolute value to zero and selecting such solutions that satisfy both equations or solve 
one of them, and then check which of these solutions are also solutions of the other one.

An example of a correct solution is shown in the following scan of the work of one of 
the respondents:

Figure 5. Fully correct answer to Task 15 (2 points, [P60])

Correctly solving this task resulted in 2 points, while 1 point was awarded if the solu-
tion was not carried through to the end, but significant progress was made, as can be seen 
e.g. in the following work:

Figure 6. Partially correct answer to Task 15 (1 point, [P26])

This solution lacked the conclusion that only the number ½ can be the solution to the 
initial equation.

This task was solved fully by only 3 people, while 1 point was scored by only one per-
son, whose work is quoted above (Figure 6).

Text translation

Answer. The solution is the 
set { }
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The categorisation of 0-point solutions is shown in Table 6.

Table 6. Categories of responses to task 15 scored at 0 points

Response categories: Number of 
responses

A. No notes of any kind 46

B. Copied excerpt from task content 8

C. Performing minor transformation of expressions under absolute value 13

D. Equating expressions under absolute value to zero 2

E. Using wrong formula or relation 3

F. Other error 2

Category A and B. More than half of the respondents (46 out of 78) did not attempt 
to solve this task at all, likely not making a mental attempt to analyse it either, but it is not 
known whether they skipped it or not. Eight further respondents only rewrote part of the 
task and made hardly any attempt to solve it, although it is known that they did not skip it.

Category C. Among the thirteen solutions in which minor transformations appeared, 
the predominant entries were those in which the expression 16–1 was replaced by the ex-
pressions  or . In total, therefore, as many as 67 people did not attempt any solution 
to this task or made only a minor modification. 

Category D. Two respondents equated the expressions under the absolute values to zero 
(each of them separately), as in the correct method, but stopped there. It is also unclear 
whether their thinking was correct, as no logical conjunction was written between the two 
equations, as a scan of one of the solutions shows.

Figure 7. Example of a solution to Task 15 of category D [P35]

Most likely, both respondents correctly noted the need to switch to solving the two equa-
tions separately with the absolute value, but they did not know how to perform the expo-
nentiation with such a large power (17), or how to simplify the calculation or transforma-
tion of a logarithm with base π, in which the logarithmic expression is another logarithm.
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Category E. Incorrectly applied formulas related to multiplication and an incorrect un-
derstanding of absolute value also appeared among some works. Below (Figure 8) is an ex-
ample of such an occurrence, in which the student likely applied an algorithm familiar to 
him/her from solving equations with several absolute values, trying to consider the cases 
but not considering the assumptions.

Figure 8. Example of a solution to Task 15 of category E [P01]

The weak performance in regard to this task may have a number of reasons. 
Among the solutions to this task, it is worth noting the potential difficulties of the par-

ticipants in “backward reasoning” (Pólya, 1975). An effective approach to this task can be 
considered an aspect of reductive thinking, because the last operation to be performed, the 
addition of absolute values, should be analysed first. One has to pose the question “When can 
the sum of two absolute values give zero?”, i.e., to apply Treliński’s (1985) question “What 
would be enough to know in order to solve this equation?” If the solver does not look holis-
tically at the expression to the left of the equals sign, i.e. at the fact that it is a special equa-
tion of the form |a| + |b| = 0 and that 0 plays a decisive role here (if it were replaced by an-
other number, the way of solving would have to be completely different), his/her chances 
of solving correctly are very small.

Another important psychological reason may have been that the task seems to give the 
impression of being difficult. It contains a lot of mathematical symbols which students as-
sociate with causing difficulties. The absolute value in the equation alone tends to cause 
a lot of problems for students, which would be compounded by the presence of two abso-
lute values. The task also features logarithms, with the number π as the base of the loga-
rithm, as well as an exponentiation to the power of 17, which could lead the students to 
think that, for example, if they do not remember how to raise an expression to the 17th 
power or how to solve equations containing a logarithm with a base of π (as the majority 
of respondents most likely never had to solve such problems), they will not have a chance 
to solve this task. That is, without a qualitative approach to solving the equation – without 
noticing the method described above – the students would not really know how to start 
working on this task. The additional accumulation of symbols and their associations with 
hardship may have caused a kind of psychological block and a lack of attempts to solve the 
problem – such an effect is observed in almost 70% of respondents. 
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The technical aspect of the test may also have been an important factor – the task was one 
of the last in the whole test with limited time remaining, so some of the subjects might have 
lacked the time to tackle it, and those who took up the task experienced additional stress.

This task, incidentally, allowed us to discern 3 people who solved the task by demon-
strating a preliminary inclination for mathematics studies.

5.3.2. Task on Injective Function – Description, Results, Their Analysis, and Discussion

Task 10 was the second-most difficult task of the entire test, therefore we will present its 
analysis. 

Task 10 (1 point)
Judge whether this statement is true: 

A numerical function is a one-to-one (injective) function if and only if it is only an increasing 
function or only a decreasing function in its entire domain.

Justify your answer.

The types of student responses given and their amount are shown in Table 7.

Table 7. Answers to the task on injective function

Description Number of 
responses

Answer NO & proper justification 4

Answer NO & attempting justification 20

Answer YES & attempting justification 30

Only answer NO 7

Only answer YES 0

No answer 17

“NO” answers with an incomplete justification were not evaluated positively – 1 point 
could only be obtained if the answer was supported by correct justification. Only four peo-
ple answered correctly in full. Three of them provided a counter-example in the form of 
a graph as justification, which are shown in Figure 9. In the third answer, we note the in-
consistency between the graph and the description of the set of values of the function giv-
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en next to the graph, however, determining the set of values of the function provided as 
a counter-example was not the focus of the task.

Figure 9. Three answers to Task 10 justified by a counter-example in the form of a graph 

([P22], [P48], [P60])

Text translation

The provided function is 
a variable function. We can 
determine both the inter-
vals in which it is increas-
ing and those in which it is 
decreasing

Text translation

Counter-example:
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In contrast, the fourth student gave a descriptive answer highlighting another property, 
namely emphasising that the function does not need to be continuous. Although this an-
swer lacked a counter-example, we considered this solution to be correct, in favour of the 
student, due to the fact that the provided description captured the essential features of the 
counter-example. The respondent wrote:

 ■ [P36]: “A numerical function can decrease in some interval of its domain, or in-
crease in some interval of its domain. The numerical function whose statement we 
have to evaluate is not necessarily continuous, so it can decrease and increase in cer-
tain intervals of the function and still be an injective function”.

The response score alone does not say much about the mathematical knowledge of the 
participants of the study due to the high difficulty level of the task. The task indeed proved 
to be very difficult for the study participants, and not by chance. It was previously used as 
part of an exam in the course “Didactics of Mathematics” for future teachers (4th year of 
mathematics studies), where its solvability was below 20%. Moreover, even a textbook ap-
proved for school use for the first year of secondary school and technical school contained 
an incorrect statement (Kalina et al., 2000, p. 99). 

The task is objectively very difficult, requiring well-formed concepts such as function 
and its representations and a correctly formed concept image of function (according to Vin-
ner, 1983) among the respondents. Furthermore, it requires knowledge of concepts such 
as the injective function, the monotonic function, and the relationship between them. It 
also requires linking the different elements of knowledge together and overcoming the im-
posing image of a continuous function on the real domain. In a certain sense, this is also 
where System 1 interferes, suggesting examples from a typical school experience, as the Pol-
ish curriculum provides successive classes of continuous elementary functions: linear, qua-
dratic, polynomial, rational (including homographic), trigonometric, power, exponential, 
and logarithmic functions.

An additional difficulty is the methodological nature of how to justify correct/incor-
rect statements. The respondent in this task has to demonstrate the ability to refute a false 
statement, which is made even more difficult because it is in the form of an equivalence 
in which one implication is true. This true implication catches the participants’ attention. 
A counter-example must be constructed, which requires some creativity and the choice of a 
suitable and convenient function representation. If, in the concept image (according to Vin-
ner, 1983) of the respondent, there is a common belief that functions “should” be provided 
as formulas – then the difficulty level of the task increases even further.

With these difficulties in mind, we further categorised the respondents’ answers accord-
ing to two additional criteria: methodological, concerning the quality of the justification 
attempts, and in terms of the revealed misconceptions.
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Attempts at justification

In the context of the type of attempted justification, we distinguished 11 categories, which 
are presented in Table 8. However, it should be noted that 24 people did not provide any 
justification, and the intention could not always be read in the remaining entries. Table 8 
additionally provides information on the context, whether the answers justified “YES” or 
“NO”, and their frequency of occurrence.

Table 8. Categories of attempts at justification for injective function task
Type of justification attempted for each answer No Yes n

1. Counter-example or its description 5 5

1.1. Proper justification: counter-example given as graph 3 3

1.2. Proper justification: description without graph 1 1

1.3. Attempt at providing a counter-example in the form of a graph (detaching from the 
continuous functions given on the set of real numbers) 1 1

2. Negation of monotonicity and conclusion 1 11 12

2.1. Negation of monotonicity and “YES” answer based on tacit assumption of continuity 7 7

2.2. Negation of monotonicity and “YES” answer due to contradiction: constant function 
cannot be injective 4 4

2.3. Negation of monotonicity and answer “NO” 1 1

3. Provide statement intended to refute sentence 11 11

3.1. False claim of relationship between injection function and monotonicity 2 2

3.2. Formulation of other false statement 9 9

4. Only reference property of injective function 2 5 7

5. Justification by explaining only one true implication 12 12

6. Pseudo-justification 3 2 5

6.1. Pseudo-justification: repetition of statement 2 2

6.2. Pseudo-justification: formulation of true (non-relevant) statement 3 3

Re 1. Counter-example or its description (n = 5)

The first two categories consist of the responses of those who solved the task correctly 
(Figure 9), i.e., those who demonstrated their ability to refute false statements by provid-
ing a counter-example.

A total of 5 people gave or described counter-examples, but one of them [P77] made 
a different error in its construction (Figure 10, see also misconception E, Table 9) related 
to a lack of correct understanding of the monotonic function.
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Person [P77] (Figure 10) chose the correct method to refute the statement and at the 
same time overcame one of the fundamental difficulties in the task, which is to detach from 
the imposing examples of continuous functions given on the set of real numbers.

Figure 10. Example of the use of a counter-example revealing an incorrect 

understanding of the monotonic function in person [P77]

Re 2. Negation of monotonicity and conclusion (n = 12)

Another method of justification was to make an attempt to negate monotonicity. The 
respondents made an assumption: suppose a function is neither increasing nor decreasing.

By negating monotonicity, the seven respondents made a contradiction based on the 
implicit assumption that the function is always continuous, which in their view confirmed 
the truth of the statement:

 ■ [P17]: “Yes, because if it were not just decreasing or increasing it would take the 
same values for the two arguments”.

 ■ [P68]: “Yes. If a function is not either increasing or decreasing in its entire domain, 
only constant or of various monotonicity, then some of the arguments have the 
same value”.

Four people inferred that the function must be constant and that the constant is not 
injective, which also ended contradiction-based reasoning and, in the respondents’ opin-
ion, justified the truth of the sentence. For example:

 ■ [P10]: “Yes. Because the constant function takes the same values regardless of x”.
 ■ [P34]: “Yes. Because the constant is not injective”.

Methodologically, this is the correct way of searching for a counter-example or contra-
diction, however, gaps in knowledge prevented correct conclusions. This revealed a mis-
conception (see J, Table 9) in which the participants of the study are convinced that all 
functions are given on the whole set of real numbers and continuous, or one in which they 
are convinced that all functions are either increasing or decreasing or constant (see I, Ta-

Text translation

ß the function is con-
stantly decreasing, but it 
is not injective.
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ble 9). The second misconception may also have been rooted in the triggering of System 1, 
as the respondents – being used to the fact that in the context of monotonicity of contin-
uous functions given on the whole set of real numbers, apart from increasing functions, 
only decreasing functions are injective – mechanically repeated the third type of monoto-
nicity (constant functions), which was reinforced by the linear function being their first 
known family of functions.

An attempt to negate monotonicity with a similar misconception also played a role in 
justifying the negative answer:

 ■ [P06]: “No, because when a function takes the same values, i.e., it is a constant func-
tion, it cannot be labelled an injective function”.

In this case, the reasoning is not methodologically correct.

Re 3. Provide a statement intended to refute the sentence (n = 11)

Two people tried to justify their negative answers with (false) statements about the re-
lationship between monotonic and injective functions:

 ■ [P33]: “No. The statement is not correct because the injectivity of a function does 
not depend on whether it is increasing or decreasing”.

 ■ [P46]: “No. Not every increasing (or decreasing) function is injective”.

A further nine respondents attempted to justify their negative answers by providing oth-
er misconceptions, examples of which are given in Table 9. It is worth noting that method-
ologically, this is the correct approach, but the misconceptions made it ineffective.

Re 4. Only reference the property of the injective function (n = 7)

Further attempts at argumentation are difficult to interpret in the context of the meth-
odology, as they consisted only of referring to the differentiability of the function. Among 
the 7 who gave such answers, 5 referred to the justification of a positive answer, for example:

 ■ [P24]: “Yes, because every y is assigned one x”.
 ■ [P39]: “Yes, because no value can be repeated”.
 ■ [P40]: “Yes. This function is injective because it takes on different values for differ-

ent arguments”.
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In contrast, 2 people tried to justify their negative answer in the same way:
 ■ [P35]: “No. Because aninjective function takes different values throughout its domain 

for all arguments”. [The person has included the following graphs in their answer:]

Figure 11

 ■ [P42]: “No, because an injective function is only possible if the values do not repeat”.

Re 5. Justification by explaining the only one true implication (n = 12)

Twelve students responded “YES”, justifying it with one implication – if a function is 
increasing or decreasing, it is injective. Some examples of this justification are given below:

 ■ [P59]: “Yes. When a function is either only increasing or only decreasing in its en-
tire domain, no two function values are the same for different arguments”.

 ■ [P47]: “Yes. For f. increasing and f. decreasing it takes on different values, so it is an 
injective f ”.

 ■ [P64]: “Yes. In an increasing function, the values of the respective independents 
will keep increasing, so there will never be the same value across the domain. The 
same goes for decreasing”.

 ■ [P63]: “Yes”.
Figure 12

Text translation

Both cases exclude the existence of 
 for which 
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The respondents correctly diagnosed the truth of one implication occurring in the pro-
vided sentence and focused all their attention on it.

Re 6. Pseudo-justification (n = 5)

Two people provided a pseudo-justification by repeating, almost verbatim, the evaluat-
ed sentence. In contrast, four people provided statements that express their belief but do 
not provide justification, for example: 

 ■ [P30]: “No. Other functions can also be injective functions”.
 ■ [P38]: “No. It depends what the function is”.

One person misread the instruction (having all values equal1) and answered “NO” (i.e. 
correctly), writing down the following reasoning, which is correct in this context:

 ■ [P01]: “No. A numerical function is an equal-valued function if and only if, over its 
entire domain, it is a constant function”.

In conclusion, it should be noted that 17 people out of 78 did not provide any answer 
to the task, and 7 people did not justify their answer “NO”. The majority of respondents 
who attempted to justify the correctness of the statement chose the correct methods to 
do so, which were: searching for a counter-example and attempting to refute – check-
ing the correctness of the statement (Categories 1-3), which according to Komatsu and 
Jones (2022) is a manifestation of abductive thinking. A total of 28 out of 54 revealed 
such a skill, which was, however, not always realised correctly due to numerous revealed 
misconceptions. 

It is certain that the error of providing a positive answer and justifying it with a single 
implication (Category 5) is methodological in nature and related to a lack of skill in prov-
ing statements or refuting hypotheses – but such an error does not show suggest profound 
difficulties in understanding concepts. To excuse these participants, it should be noted that 
in school learning, proving statements formulated in the form of an equivalence is rare-
ly undertaken, even more so the ability to refute statements in general, especially equiva-
lence statements.

Methodologically concerning are the missed attempts at justification (n = 7) and pseu-
do-justification (n = 5), as well as justifications from Category 4 (n = 4) that do not reveal 
the reasoning.

1 In Polish these two words differ by only one letter: injection (różnowartościowa) and function “hav-
ing all values equal, equal-valued”(równowartościowa), although a different word is used in mathe-
matics in this context: constant (stała), as written by the participant.
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Disclosed misconceptions

Qualitative analysis of the responses revealed a variety of misconceptions among the stu-
dents, the categories of which, together with the number of students in whom they were 
revealed, are presented in Table 9. 

Note that several misconceptions could sometimes be found in a single statement, as 
in the case of the statement of subject [P62], who tried to justify his/her answer “NO” by 
stating “Every function is injective” and presenting the following graph:

Figure 13

This justification both reveals a belief that aninjective function has variable values and 
changeable monotonicity, which the respondent presents on the graph (category C). Fur-
thermore, the respondent stated that every function is injective, which in turn either shows 
a lack of consideration of the constant function or a recognition of the constant function 
as injective (category E).

Table 9. Disclosed misconceptions and their examples

Misconception Example(s)
No. of 

ans. 
Yes/No

Total 
n

A

Misunderstanding of injective 
function:

confusing injective condition 
with definition of function

[P21]: “Yes. Because only one y is assigned to each x. This is 
the basic condition of an injective function”. Y-2 2

B
Misunderstanding of injective 

function:
“Non-constant”

[P31]: “Yes”.

Figure 14

“A numerical function will not be an injective function 
when it is constant, although it will be in other cases”.

Y-1 1
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C
Misunderstanding of injective 
function: “Has variable values 

or variable monotonicity”

[P15]: “No. Functions taking different values can be decreasing 
or increasing in given intervals, e.g. the quadratic function”.
[P74]: “No. A numerical function is an injective function when 
its values are different, i.e. when it is increasing and decreasing”.
[P23]: “Yes. Since the injective function is defined by the 
formula”:

Figure 15

“Therefore it either has to increase or decrease”.
[P62]: “No. Every function is an injective function:” 

Figure 16

N-7
Y-2 9

D
Misunderstanding of injective 
function: “Must have positive 

and negative values”

[P76]: “No. Injective functions take positive and negative 
values in their domain”.

N-2
Y-1 3

E
Other difficulties in 

understanding of injective 
function

[P62]: “No. Every function is an injective function”. 

[P54]: “No. Because a function can be a constant and can 
have different values”.

N-5
Y-1 6

F

Confusing non-monotonic 
function (monotonic on 

intervals) with monotonic 
function

[P77]: “No. The function is continuously decreasing but 
not injective”.

Figure 17

[P03]: “No. When there is an increasing function and 
a decreasing function in a numerical function, such 
a function is also an injective function”.
[P67]: “Yes. The statement is correct because if the function 
were increasing and decreasing within the domain, it would 
not be an injective function”.

N-3
Y-2 5

G

Belief that there is no or 
incorrect relationship between 
monotonicity and injection of 

functions

[P33]: “No. The statement is incorrect because the injection 
of a function does not depend on whether the function is 
increasing or decreasing”.
[P46]: “No. Not every increasing (or decreasing) function is 
an injective function”.

N-2 2

H

There are only 3 types of 
functions: All functions are 

either increasing, decreasing, or 
constant

[P09]: “Yes. If it were not increasing or decreasing, it would 
have to be constant, in which case it would not be injective”.
[P34]: “Yes: Since the constant function is not injective”.
[P06]: “No, because when a function receives the same 
values, i.e. it is a constant function, it cannot be labelled an 
injective function”.

N-1
Y-10 11
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I
Implicit assumption that 

function is continuous on real 
number set

[P68]: “Yes. If a function is not either increasing or 
decreasing in its entire domain, but constant or variable, 
then some arguments have the same value”. 
[P17]: “Yes. Because if it were not just decreasing or 
increasing, it would take the same values for 2 arguments”.

Y-6 6

J The function includes several 
functions

[P08]: “No. It is an injective function when it contains both 
functions in its entire domain”. N-2 2

K Other [P73]: “No. The function is differentiable     ó For every 
argument in the domain, its opposite element can be found”. N-1 1

The task – despite the fact that it caused the most difficulties for the research partici-
pants – turned out to be a good diagnostic task, revealing as many as 11 misconceptions in 
the respondents, as well as various types of methodological and conceptual difficulties with 
a great deal of variation. At the same time, however, it made it possible to identify 4 partic-
ipants who have good methodological knowledge and skills alongside a substantive basis 
in the scope of the concept of function.

6. Discussion and Conclusions

6.1. Conclusions Concerning Solutions to the Easiest Tasks

The tasks concerning the duckweed and the stone were the easiest in the whole set. We note 
several reasons for this.

1. Their solution did not require sophisticated or advanced knowledge of mathemat-
ics. Basic school level mathematics were sufficient to solve them,

2. A qualitative analysis of the situation and the use of common sense were sufficient 
to solve them,

3. Both tasks had a non-mathematical context which referred to familiar situations 
from everyday life,

4. The fact that both tasks were closed-ended certainly increased the score, as we can-
not exclude the possibility of correct answers being provided at random,

5. Due to the design of the task, it was possible to activate reductive reasoning in the 
logical sense, i.e. to take the given answers as a hypothesis and test them. In this 
way, it was possible to avoid the trap of giving a quick, intuitively wrong answer im-
posed by System 1,

6. Several methods can be used to approach these tasks. 
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At the same time, both tasks contained significant difficulties that needed to be over-
come, therefore, their success rate is not satisfactory. 

The majority of respondents succumbed to System 1-based quick thinking, intuition, 
and initial associations when solving both tasks. In the Duckweed Problem, this involved 
the use of proportionality, which was not relevant to the task, or operations on numbers 
involving the numbers 64, , 16. The task with the stone involved two main reasons. The 
first was the imposition of a very common misconception related to the identification of 
the speed-time graph with the trajectory of motion, an obstacle that is natural and present 
at all levels of mathematical education and is also related to the operation of System 1. The 
second reason behind the wrong answers was the possible confusion between the types of 
graphs – the analysis of “distance-time” instead of “speed-time”. 

In the Duckweed Problem, it was easy to check whether the answer given (e.g., 16) was 
correct. If the respondents had performed a simple check after giving the wrong answer, 
they would most likely have discovered their error. It is therefore plausible to hypothesise 
that, having given the wrong answer, they were confident in their choice, which is charac-
teristic of the operation of System 1. The habit of verifying answers was therefore lacking, 
which is an area for further work.

With both tasks, another reason for failure may have been the omission of important 
parts of the content of the task, as observed in the results of previous eye-tracking studies, 
where, in the Duckweed Problem, the numbers given verbally were omitted when reading 
the task content, and in the Stone Problem, the analysis of the type of relationship and the 
axis description analysis was omitted.

The analysis of the results of the investigation based on these tasks indicates that, in fur-
ther work with these students, attention should be paid to three main elements: 

1. Accuracy in reading a mathematical text, 
2. Awareness of the existence and operation of Systems 1 and 2 and the need to im-

plement self-monitoring, checking System 1 by consciously activating System 2, in-
cluding developing the habit of checking answers,

3. Devoting attention to practising the use of reductive reasoning (abductive or “back-
ward reasoning”) when solving tasks.

6.2. Conclusions Concerning Solutions to the Most Difficult Tasks

Tasks 15 and 10 were the most difficult tasks in the entire set. A number of reasons for this 
can be identified, as discussed when analysing the solutions to these tasks. The most im-
portant of these, in our opinion, are presented below.
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1. Both tasks were open-ended, so it was not possible to indicate the answer at ran-
dom or to apply the method of verifying the provided options.

2. In the solutions to both tasks, mathematics knowledge at secondary school level had 
to be demonstrated and, in contrast to the easiest tasks, common sense and knowl-
edge at primary school level was not sufficient to solve them – the context of the 
task was purely mathematical:
a. Task 10 required referencing a discontinuous function or a function given on 

a domain other than the set of all real numbers, as well as knowledge and under-
standing of the general properties of functions. It also required an understanding 
of sentence equivalence and proving. It therefore required not only factual knowl-
edge, but also a more sophisticated, methodological knowledge of mathematics – 
the understanding of an equivalence-type statement and the ability to refute it.

b. Task 15 required knowledge of concepts and symbols such as absolute value, 
logarithm, irrational numbers, power of 17, and the ability to solve a non-trivi-
al equation.

3. Both tasks were non-standard in relation to tasks solved at school:
a. In Task 10, the correctness of the given sentence had to be assessed. Students in 

Polish schools are rarely put in situations involving evaluating sentences, even 
more so in such a general context, which is additionally complicated logically. At 
the basic level of secondary school mathematics teaching, little time is generally 
spent analysing the general properties of functions, especially those that are not 
given on the set of real numbers or are discontinuous, although students do en-
counter such examples, e.g., in the context of transforming graphs of functions.

b. In Task 15, an equation with absolute value, not typical of those encountered at 
school, had to be solved.

4. Both tasks activated the operation of System 1 and required overcoming it. 
a. The first approach to solving Task 10 activates the designators of continuous func-

tions in the real domain and a quick, intuitive affirmative answer. Students at basic 
secondary school level learn the properties of specific classes of continuous func-
tions, given mainly on the real numbers set (e.g., polynomial – with particular 
emphasis on linear and quadratic; exponential), which all the more reinforces the 
idea that functions are usually continuous and given on the set of real numbers. 
The discontinuity of functions is considered in more detail at the advanced level.

b. Task 15 activated the method, familiar to the students, of solving linear equations 
with two absolute values from the definition of the absolute value by considering 
cases at intervals, which was not an effective strategy in this task.

5. Both tasks required, in some sense, the activation of “backward reasoning” (Pólya, 
1975), abductive thinking (Komatsu & Jones, 2022).
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a. As written in the summary of the results of Task 15, this required a holistic as-
sessment of the expression to the left of the equals sign, i.e. the realisation that it 
is a special equation in the form of, and asking a reduction-type question: “What 
would be enough to know to solve this equation?” (Treliński, 1985).

b. Constructing a counter-example and attempting to refute – checking the cor-
rectness of the statement according to Komatsu and Jones (2022) is a manifes-
tation of abductive thinking.

6. Another important psychological reason may have been that both tasks gave the im-
pression of being difficult and may have caused a kind of psychological block, which 
was not the case with the easiest tasks.
a. Task 10 is a proof task, which usually causes difficulties for students. 
b. Task 15 contains a lot of mathematical symbols and concepts learnt in second-

ary school (highlighted in section 1), all of which cause difficulties for students 
and are considered by students to be problematic. 

7. The technical side of the test may also have been an important factor – tasks 10 and 
15 were placed towards the end of the entire time-limited worksheet, so some of the 
respondents ran out of time to tackle them, and those who took up the task were 
accompanied by additional stress.

6.3. Answers to the Research Questions

In this section of the chapter, we will attempt to answer the subsequent research questions.

RQ1. What is the knowledge and skills at the basic level of secondary school math-
ematics of first-year mathematics education students?

All tasks from the worksheet proved to be difficult or very difficult for the research par-
ticipants. However, significant correlation with the results of the matura exam shows that 
the knowledge of the examined students is quite stable, despite the unfavourable timing of 
the test (see section 6.5. for the reasons behind the weak results).

Task 10 revealed a number of methodologically correct attempts to verify and refute the 
given statement. However, this task was too difficult for many of the participants to suc-
ceed in verifying the given sentence correctly.

Unfortunately, there are many weaknesses in the knowledge of the respondents. 
Four students achieved an extremely negative score of 0 points. A lack of knowledge or 

understanding of basic mathematical concepts and poor calculation skills were revealed in 
many works. 
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There was an alarming number of papers where no attempt was made to provide an an-
swer, which happened in the case of all of the tasks, even the easiest ones, i.e. choosing one 
of the provided answers. One of the lowest response rates was in Task 15, where 54 of the 
respondents either failed to provide any response or merely rewrote the content of the task 
(Categories A and B).

Multiple misconceptions were revealed. Using Task 10 alone as an example, 11 miscon-
ceptions related to monotonicity, injective function, and continuity of functions were high-
lighted, which were revealed as many as 47 times in a sample of 78 respondents; unfortu-
nately, they were revealed in the majority of respondents, with an additional 17 respondents 
giving no answer and a further 7 responding “YES” without any attempt at justification. 

Methodological difficulties were also revealed. Using Task 10 as an example, the main 
categories of justification given in Table 8 were distinguished, of which 5 were incorrect. 
Twenty-eight subjects attempted to contradict the given statement by looking for a count-
er-example, or attempted to give a statement refuting the one in the task, but only 4 did so 
correctly; 24 did so methodologically incorrectly (gave a statement or pseudo-substantia-
tion, or positively verified only one of the two implications) and a further 24 did not pro-
vide any justification at all.

The tasks that had the highest success rate also provided further information on the 
deficiencies of the subjects. These are listed in section 6.1. “Conclusions concerning solu-
tions to the easiest tasks”. 

The fact that, throughout this text, most of the content is devoted to analysing the stu-
dents’ difficulties and gaps in their knowledge may give the impression that the test went 
poorly for all participants. However, this is not the case – several examined participants 
achieved a score in the test that can be considered very good. Therefore, the test also high-
lighted those individuals who could potentially become very good at mathematics.

The best score on the entire worksheet of the research was 19 points, and it is the only 
such score (person number P63) that significantly deviates from the mean (5.18) and mod-
al (3 and 4) values. It is also worth noting that this student achieved a score of 100% in the 
basic level mathematics matura exam. Participant P63 is also among the outstanding stu-
dents in this group. The next highest scores were 16 (achieved by two people) and 15 (one 
person), and all three achieved the same very high score in the basic mathematics matura 
exam, at 98%. Therefore, the research identified four students who performed significant-
ly better than their peers.

Among the students who participated in the research, in addition to the four men-
tioned above, there were 18 who obtained a score of 100% or 98% in the basic mathemat-
ics matura exam, while in our research, the average score in this group was only 32%, and 
the modal values were 4 and 5.
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Based on the results of the research, it can be concluded that the matura exam in math-
ematics puts an emphasis on standard, algorithmic reasoning, which is understandable, as 
it is a compulsory exam for all high school graduates.

RQ2. What misconceptions in the understanding of school mathematics can be 
distinguished among the first-year mathematics education students? 

The analysis of Task 10 alone presented 11 misconceptions, shown in Table 9, which oc-
curred 47 times in total, and consisted of:

Misunderstanding of injective function:

a. Confusing injective condition with definition of function,
b. Misunderstanding of injective function: “Non-constant”,
c. Misunderstanding of injective function: “Has variable values or variable mono-

tonicity”,
d. Misunderstanding of injective function: “Must have positive and negative values”,
e. Other difficulties in understanding injective function,
f. Confusing non-monotonic function (monotonic on intervals) with monotonic 

function,
g. Belief that there is no or incorrect relationship between monotonicity and injec-

tion of functions,
h. There are only 3 types of functions: All functions are either increasing, decreas-

ing, or constant,
i. Implicit assumption that function is continuous on real number set,
j. Function includes several functions.

There was also an off-topic statement which was entirely nonsensical (K).
Most of these misconceptions have an indirect origin in fast, System 1-aligned thinking, 

as these kinds of beliefs have formed spontaneously based on school experience, from exam-
ples most commonly present in school practice, and have influenced intuition and formed 
the wrong ideas regarding these concepts. It is highly probable that the respondents, when 
solving tasks involving a certain mathematical concept, such as function, did not consider 
the definition and the conditions declared therein (which they may not have even remem-
bered), but about the examples most frequently used during lessons. Their reasoning was 
therefore based on a wrong idea of the concept, rather than the analytical reasoning char-
acteristic of System 2 activity. The respondents did not perform analyses based on the defi-
nition of monotonic and injective functions as well as analyses of the statement in terms of 
logic (as a sentence in equivalence form). In this context, it would be interesting to check 
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how the same students would have solved Task 10 if they had been provided the definitions 
of the concepts used in the task. Some, e.g., [P01] (see Re 6. Pseudo-justification) gave their 
answers as a result of anentirely literal, quick, and inattentive reading. Many of the given 
misconceptions resulted from ignoring or omitting task-relevant data, which is a charac-
teristic of System 1 (for example, omitting equivalence and unconsciously considering only 
one implication – see Re 5. Justification by explaining the only true implication, (n = 12)).

6.4. Conclusions – Areas for Further Study

The analysis of the respondents’ answers to the four selected tasks made it possible to dis-
tinguish areas for further study involving students:

1. Noting the care put into reading mathematical texts, 
2. Awareness of the existence and operation of Systems 1 and 2 and the need to im-

plement self-monitoring, checking System 1 by consciously activating System 2, in-
cluding developing the habit of checking answers,

3. Implementing the use of reductive reasoning (abductive or “backward reasoning”) 
when solving tasks,

4. Overcoming psychological barriers associated with tasks that seem difficult,
5. Implementation of a methodology of justification and refutation of statements, mas-

tering mathematical proving skills,
6. Revising selected mathematical content from secondary school, working on the 

correct formation of particular concept images in students, such as the concept of 
a function, by analysing different designations of concepts with different proper-
ties in order to eliminate misconceptions that have arisen as a result of limited ex-
amples analysed in secondary school.

6.5. Conclusion – Reasons for Poor Performance

It is worth considering the reasons why the respondents scored so low in the study. Cer-
tainly, one can distinguish between factors related to the worksheet itself and the way of 
conducting the research:

1. The timing of the study was very unfavourable for the respondents. The students 
took the questionnaire after their longest summer holidays – a 5-month break from 
studying (early May to October 1).
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2. The duration of the test was relatively short (75 minutes).
3. The tasks were non-standard in comparison to school and exam tasks and did not test 

the ability to perform typical procedures – they contained traps designed to activate 
System 1 and sometimes required the use of very well formed concepts (as in Task 10).

4. The tasks were significantly more difficult than those in the matura exam.
5. The respondents were stressed by having to fill this worksheet on the first day of 

their academic year.
Further factors include the evident mismanagement of time by the participants of the 

study – many did not provide correct answers despite spending a long time on selected tasks, 
which was evident through the amount of notes. 

On the other hand, global factors are also important. Generational changes are evident 
at this stage of education, which are affecting the way young people learn. In a world that 
seems to be accelerating, this often involves very fast learning. Students increasingly do not 
pay attention to learning the definitions and properties of mathematical concepts, and limit 
themselves only to learning basic algorithms. Any non-standard situation, other than a re-
peatedly reproduced procedure or algorithm, may cause difficulties and attempts to refer 
to things that are better known. Another reason may also be the concentration problems 
that have been increasingly noticed in young people. Furthermore, in times when we are 
constantly bombarded with information (e.g., advertising or news), the way to cope is often 
to perform a rapid selection of the provided content. Such selection in the case of a math-
ematical text, in which every word and symbol has meaning, usually leads to the misinter-
pretation of tasks.

In addition, an important factor related to the respondents’ education was the COVID-19 
pandemic and its associated remote learning affecting the last period of schooling, where 
the scope of learning content was reduced. In addition, a general decline in mathematical 
skills has been observed in the years preceding the study. 

It is possible that one of the factors behind the fact that mathematics studies are some-
times chosen by students who are severely mathematically deficient is the fact that they 
achieve high results in the basic level of the matura exam in mathematics.

One of the aims of our work was also to draw attention to the problem occurring at 
schools of the students not being able to form basic intuition regarding concepts and the 
relationships between them, as, according to many teachers, “there is no time for that, be-
cause lots of calculation problems, often very algorithmic, have to be solved instead”.

The research has made it possible to distinguish the difficulties that prospective stu-
dents have and to provide a basis for the implementation of a course for mathematics edu-
cation freshmen. The current course is designed to repeat the teaching content at the ad-
vanced level of the matura exam. Our research shows that there is a need of implementing 
a new type of course for new students – a course where, for example, various relationships 
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between concepts and dependencies, and interesting (e.g., borderline) cases would be ana-
lysed, but in which there would be (almost) no calculations whatsoever. 

Advancing one’s level of education is always the cause of various difficulties – this applies 
even more so to moving from secondary school to university level. At this stage, students, 
who have become adults, learn to take complete responsibility for the results of their learning 
and they learn to organise their way of learning. This is something they need support with.

7. Limitations of the Study

The undertaken research has numerous limitations. A selection of these, related to time, the 
flow of the research, and the design of the worksheet, are mentioned in section 6, in which, 
among other notions, we analysed the reasons for poor responses.

Another main limitation of the research is that it was only carried out in one of the uni-
versities engaged in training prospective mathematics teachers, which makes it impossible 
to generalise the results. Future research would need to be implemented among various uni-
versities to observe possible global trends. 

The research methodology in the form of analysing the students’ written output on the 
Research Worksheet also limited the amount of possible conclusions. In future research, the 
methodology would need to be extended to include, for example, interviews related to se-
lected work.

These and other limitations would need to be considered in future studies.

8. Follow-up

Immediately after the research was carried out, the results were partly used in the implemen-
tation of the “Foundations of Higher Mathematics” course in mathematics studies, dedi-
cated to filling in gaps and repeating secondary school content. This course was followed 
by a “post-test”, an analogue of which may be the subject of further studies.

As mentioned, there is a need to implement yet another strand to the course for new stu-
dents, a course in which, for example, various relationships between concepts and dependen-
cies, and interesting (e.g., extreme) cases would be analysed, but it would involve (almost) 
no calculus. After such a course, its effectiveness would have to be tested with a similar tool.

It would also be worthwhile to carry out an analogous Research Worksheet in subsequent 
year groups as well as longitudinal and comparative studies.

It would also be very interesting to conduct such a study in other universities in order 
to be able to draw more generalised conclusions.
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COLLEGES OF EDUCATION EARLY GRADE MATHEMATICS CURRICULUM 
AND NATIONAL KINDERGARTEN MATHEMATICS CURRICULUM IN 
GHANA: A COMPARATIVE ANALYSIS

Summary: Mathematics as a subject is taught in all basic schools and all the forty-six Colleges of 
Education (CoEs) in Ghana. This research provides a comparative analysis of the mathematics cur-
riculum of the CoEs early grade program and the national kindergarten mathematics curriculum in 
Ghana as very little is known when it comes to such comparative analysis. The content of the CoEs 
mathematics curriculum is not integrated, while that of the kindergarten curriculum is an integrat-
ed curriculum for all subject disciplines taught in kindergarten and not specifically mathematics. 
The national kindergarten (KG) curriculum, however, contained no description of topics relating to 
mathematics. It only indicates the aspect to be taught.  For example, in the KG curriculum, the topic 
for sub-strand 2 for KG I, Term 1, is ‘The Parts of the Human Body and their Functions’. Under this 
sub-strand, teachers are expected to teach the four subjects in the curriculum (Language and Liter-
acy; Numeracy; Creative Arts, and Our World and our People) using the human parts as exemplars, 
which is not situated in the CoE curriculum. This could be challenging for newly qualified teachers 
who are used to the kind of structure of curriculum used at their CoEs.
Keywords: Mathematics, curriculum, teacher education, kindergarten, early grade.

1. Introduction

Achieving Sustainable Development Goals 4 (SDG) and the other 16 SDGs has become the 
hallmark of most educational systems, and there has been a continuous discussion about how 
to achieve these SDGs (UNESCO, 2021). In the process of working towards the achieve-
ment of SGD 4, many changes have been made in most school curricula. In Ghana, the 
basic school curriculum – basic school, also referred to as elementary school, constitutes 
the initial stage of formal education for children before progressing to secondary school 
(MoE 2019) – has been going through a number of refinements. The vision of the pre-ter-
tiary teacher education program is to:
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Prepare teachers to teach in basic and second-cycle schools and develop and nurture these pre-service 
teachers to become reflective and proficient practitioners capable of providing quality education for 
Ghanaian children (Ministry of Education [MoE], 2012, p. 8). 

Similarly, the provision of accessible and quality education for all to meet the country’s 
needs is the core of the basic school curriculum; it is based on this that the new curricu-
lum sets out the learning areas that need to be taught and how they should be taught and 
assessed. It provides a set of core competencies and standards that learners have to know, 
understand and demonstrate as they progress through the curriculum (MoE, 2019). The 
concept of early grade has been defined differently from different perspectives. The United 
States National Association for the Education of Young Children (NAEYC) defines early 
grade as the age before the age of eight. It is the period from birth to 8 years (UNESCO, 
2000). Early grade education plays a key role in the formative years for children when they 
start developing their cognitive and non-cognitive skills (Rao et al., 2019). Early grade ed-
ucation is important in several domains of development, including learning skills (Conger 
et al., 2019), educational achievement (Cortázar, 2015) and employment performance (Wil-
son, 1995). Coury et al. (2014) assert that early-grade education is an influential factor in 
improving the child’s development. It is, therefore, important to pay attention to how teach-
ing and learning are done at the early grade stage. Curriculum implementation requires the 
teacher to build a relationship with the students and promote individual learning. This rela-
tionship should inspire students to innovate and help them confidently take risks in learn-
ing (Young, 2011). Similarly, Begg (2005) asserts that the curriculum is “all planning for 
the classroom”. This implies that the curriculum provides a design that enables learning to 
take place. It defines the learning that is expected to take place during a course or program 
of study in terms of knowledge, skills and attitudes. It specifies the main teaching, learn-
ing and assessment methods and indicates the learning resources required to support the 
effective delivery of the course (MoE, 2019). The focus of this work will be comparing the 
Colleges of Education (CoE) early grade bachelor of education (B.Ed) mathematics curric-
ulum and the National Kindergarten (KG) mathematics curriculum in Ghana.

2. System of Basic Education in Ghana

With the recent education reforms, formal Basic Education for all Ghanaian learners is from 
KG 1 to SHS 3 (Grade 12), and it is put into five phases: Phase 1: Foundation level com-
prising Kindergarten 1 and 2, Phase 2: Lower primary level made up of B1 to B3, Phase 3: 
Upper primary level of B4 to B6, Phase 4: Junior High School (JHS) level of B7 to B9, and 
Phase 5: Senior High School (SHS) level comprising SHS1–SHS3 (MoE, 2018). Education 
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at Phase 1 starts at age 4 with Kindergarten (KG) education and links with Lower Primary 
education up to age 8. KG education predisposes children to conditions of formal school-
ing, giving them the mental attitude for learning during future years. The Upper Prima-
ry phase (age 9-11 years) attempts to lay a strong foundation for inquiry, creativity and in-
novation, and lifelong learning in general, and to provide building blocks for higher levels 
of education (Anamuah-Mensah, 2002). The third phase of basic education is the three-
year Junior High School or JHS (age 12-15 years), which is lower secondary education and 
provides the opportunity for pupils to discover their interests, abilities, aptitudes and oth-
er potentials. The final phase of basic education is the three-year SHS (age 15-18 years), 
which is upper Secondary education and allows learners to specialise in any one of the fol-
lowing programs: Science, General Arts, Technical and Vocational, Business. SHS educa-
tion is the platform that delivers the extensive scope of academic knowledge and skills re-
quired for entry into further education and training in the tertiary institutions of Ghana 
and elsewhere. In this context, after sitting and passing the West Africa Secondary School 
Certificate Examination (WASSCE) conducted by the West African Examination Coun-
cil (WAEC), SHS graduates may gain direct employment or admission into tertiary insti-
tutions like universities, polytechnics, colleges of education, nursing training, or undertak-
ing a specialised program such as Ghana Police Command, Ghana Institute of Journalism, 
and others (MoE, 2019).

2.1. Basic Education in Ghana, including Curriculum Matters

There have been several curriculum reforms in Ghana. For example, in 2017, the Govern-
ment of Ghana tasked the National Council for Curriculum and Assessment (NaCCA) 
to review the pre-tertiary curriculum in Ghana to respond to international best practices 
(Stephen, 2021). In September 2019, the government of Ghana implemented the new cur-
riculum in basic schools. The new curriculum is aimed at addressing the loopholes in the 
old curriculum, which included content overload, limitations of the objective-based cur-
riculum, and the failure of the assessment system to provide enough data on which teach-
ing and learning could be styled (Aboagye & Yawson, 2020). The new curriculum is pur-
posely designed to improve the acquisition of reading, writing, arithmetic and creativity 
skills across the entire primary curriculum while strengthening the teaching of mathe-
matics (Aboagye & Yawson, 2020). Addai-Mununkum (2020) added that this new cur-
riculum is also intended to promote the acquisition of 21st Century skills such as critical 
thinking and problem-solving, creativity and innovation, communication and collabora-
tion, cultural identity and global citizenship, personal development and leadership, as well 
as digital literacy.
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2.2. Teacher Education in Ghana with Emphasis 
        on Preschool and Elementary Level

Ghana has been working on teacher education before independence (Antwi, 1992). In the 
Gold Coast era (Antwi, 1992; McWilliam & Kwamena-Poh, 1975), European merchants 
assisted in the training of individuals to become teachers so that they could assist with in-
terpretation to aid their companies (Antwi, 1992; McWilliam & Kwamena-Poh, 1975). 
The objective of Ghanaian teacher education, according to Adegoke (2003) and Benneh 
(2006), is to provide a comprehensive teacher education program through pre-and in-ser-
vice training that will develop competent, committed, and dedicated teachers who will im-
prove the quality of teaching and learning. Teacher Training Colleges (TTC), now known 
as Colleges of Education (CoE), initially offered 2-year Post-Middle Certificate “B” pro-
grammes, followed by 4-year Post-Middle Certificate “A” and 2-year Post-secondary Cer-
tificate “A” programmes. In the 1980s, the 2-year post-secondary programme was extended 
to a 3-year programme but ran alongside the 4-year certificate “A”. The first legislation is the 
passing of the 2008 Education Act (Act 778). Under the Act, Section 9 called for the crea-
tion of a National Teacher Council (NTC), which has since been established. The NTC is 
mandated to establish professional practices and ethical standards for teachers and teach-
ing, and registration and licensing of individuals seeking to enter the teaching profession 
(Buabeng et al., 2020). The second legislation is the Colleges of Education Act 847 to up-
grade CoE into a tertiary institute. 

Following this legislation and with effect from October 2018, the CoE was upgraded 
to four-year degree awarding institutions and no longer three-year diploma awarding Col-
leges. The introduction of the degree program is to enable prospective teachers to specialise 
in the programs pursued in the CoE, namely the Early grade program, the Primary Educa-
tion program and the Junior High School program. This means that prospective teachers, 
ultimately, will be licensed to teach at very specific grade bands within the basic school lev-
els. Some of the anticipated benefits from such a move are to enable 1) prospective teachers 
to acquire deep knowledge within a specified grade band and 2) extensive knowledge and 
experiences within the chosen grade band or specialisation (MoE, 2017). The CoE train 
teachers to teach from KG 1 to JHS 3 in Ghana. With the upgrade, all the CoE in Ghana 
has been affiliated with the five (5) public Universities in Ghana, namely, the University of 
Cape Coast, the University of Ghana, the University of Education, the University for De-
velopment Studies and Kwame Nkrumah University of Science and Technology. The pas-
sage of the Colleges of Education Act 2012, Act 847, has provided legal backing to their 
new elevated status. The CoE are now under the Ghana Tertiary Education Commission 
(GTEC), which is a government body responsible for the regulation of tertiary education 
institutions in Ghana by Act 1023.
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3. Problem Statement

Mathematics continues to be regarded as the most challenging subject in the curriculum 
in Ghana, according to research by Eshun (2004) and Eshun-Famiyeh (2005); this general 
perception is reflected in students’ performance. Recent studies say students perform poor-
ly in Mathematics in Ghanaian schools (Fletcher, 2018; Hagan et al., 2020). It has been re-
ported that only 6% of primary school learners attained the desired standard for numeracy 
in the results of the Early Grade Literacy and Mathematics Assessment (EGLMA) (MoE, 
2019). The results from the Criterion Reference Tests (CRT) conducted by the Primary 
Education Programme (PREP) of the Ministry of Education with the support of the Unit-
ed States Agency for International Development (USAID) for primary six learners from 
1992 to 1996 showed that fewer than 10% of the pupils had the standard score in mathe-
matics and that scores rose steadily beginning from the base year of 1992 by 0.8% with the 
intervention from USAID (CRDD, 2001). However, not much has been done in research 
to explore how mathematics is taught at the early grade stage in Ghana. Specifically, there 
appears to be an apparent lack of literature comparing the national kindergarten mathe-
matics curriculum and the curriculum used for training pre-service teachers pursuing ear-
ly-grade programmes in Ghana who will eventually be posted to teach in these kindergar-
ten schools. This research provides a comparative analysis of the two curricula. 

4. Methodology

A qualitative content analysis was used to compare the mathematics curriculum of the Col-
leges of Education (B.Ed. Early Grade) mathematics curriculum and the national KG cur-
riculum. According to Wallen and Fraenkel (2001), content analysis examines document 
contents, whether textual or visual. In addition, Graneheim et al. (2017) argued that con-
tent analysis should serve a meaningful function in research, contributing vital knowledge 
to the subject of study or generating information beneficial in assessing and improving so-
cial or educational activities. It is a technique for objectively extracting the characteristics 
of the information from a document’s content. The analysis was done with cognizance of 
the following research questions: Is there any difference between the objectives and course 
description of the Colleges of Education (B.Ed. Early Grade) mathematics curriculum and 
the national KG mathematics curriculum? In what ways do the contents and pedagogical 
approaches of the curricula for both CoE and national KG curricula differ? The content 
analysis was done using the Kindergarten Curriculum for preschools developed by the Na-
tional Council for Curriculum and Assessment (NaCCA) under the Ministry of Educa-
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tion and the four-year Bachelor of Education Degree Eight Semester Initial Teacher Edu-
cation Curriculum (B.Ed. Early Grade program) developed by four universities in Ghana 
– namely, University of Ghana, University of Education, University for Development Stud-
ies and Kwame Nkrumah University of Science and Technology – with their affiliated Col-
leges of Education in Ghana. The objectives, course description, contents and pedagogical 
approaches of both curricula were examined and analysed qualitatively.

5. Results 

5.1 Objectives of the CoE Early Grade Curriculum 
       and the national KG curriculum

In relation to the objectives, the CoE B.Ed. Early Grade Curriculum had no specific objectives 
for mathematics; the objective was general for all subjects. The National KG curriculum had 
a specific objective for mathematics. In common for both curricula is the emphasis on the use 
of ICT, creativity and critical thinking skills. Table 1 shows the objectives of both curricula.

Table 1. Objectives of the CoE and the National KG curricula
The objectives of the CoE B.Ed. Early Grade Curriculum The objectives of the national KG Curriculum

The curriculum is designed to prepare teachers who: 

The overriding aim for the KG integrated thematic curricu-
lum is to promote early literacy and numeracy as well as the 
requisite social skills that equip young learners with effec-
tive foundational language, literacy and numeracy to enable 
them to do the following: 

Are equipped with professional skills, attitudes and values, 
secure content knowledge as well as the spirit of enquiry, 
innovation and creativity that will enable them to adapt to 
changing conditions, use inclusive teaching strategies, en-
gage in life-long learning and demonstrate honesty, integri-
ty and good citizenship in all they do.

to acquire the six essential skills in language and literacy 
(phonemic awareness, concept of print, alphabetic knowl-
edge and phonics, vocabulary, comprehension, fluency) 
and use them effectively in their everyday reading and writ-
ing activities, i.e. to communicate orally and read fluently 
with understanding in both the Ghanaian languages and 
English and also be able to write.

Understand the subject, pedagogy and progress in learn-
ing across specialism areas, and promote critical thinking, 
problem-solving, and communication through the learning 
environment they create.

to develop essential numeracy (counting, basic number op-
erations, shapes, data collection) and generic and analytical 
skills that would enable them to solve their everyday math-
ematical problems.

Know how to use ICT; have technology and information 
literacy and are able to integrate technology into teaching, 

to develop the spirit of curiosity, creativity, innovation and 
critical thinking for understanding and developing them-
selves and their local and global environment.

Source: University of Ghana 2018 B.Ed. Early Grade 
Curriculum

Source: Republic of Ghana 2019 KG Curriculum
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5.2. Course Description and Learning Outcomes of the Two Curricula

Another area of comparison is subjects/course description and learning outcomes. Here, 
a comparison was done to find out whether detailed descriptions were given to the cours-
es/subjects to be studied.  Regarding course description, the national KG curriculum con-
tained no description of topics relating to mathematics. This makes it difficult to ascertain 
the specific content of mathematics that is required to be taught. For example, in the nation-
al KG curriculum, the topic for sub-strand 2 for KG I, Term 1, where mathematics is first 
introduced, is ‘The Parts of the Human Body and their Functions’. Under this sub-strand, 
teachers are expected to teach the four subjects in the curriculum (Language and Litera-
cy; Numeracy [mathematics]; Creative Arts; and Our World and our People) using the hu-
man parts as exemplar. A description was not provided about the topics or areas of the sub-
jects that are to be taught. Instructions were only given about the pedagogy approach. In 
the case of mathematics, the following instruction was stated; 

Count the number of the names of the body parts in songs through clapping on the rhythm. Learners 
sing three different songs, clap to the rhythm and count the number of parts they hear in the songs. 
E.g., My head, my shoulder, my knee (3 names). Help them understand that the last number names 
are the number of objects or items counted (MoE, 2019, p. 4).

Although this suggests that teachers are to teach counting numbers using the part of 
the body as an exemplar, the topic (Numbers) is also not stated explicitly in the curriculum.  
The CoEs B.Ed. Early Grade Curriculum is different as it includes descriptions for all the 
courses in mathematics content. Numbers and Algebra, for instance, have the following as 
course descriptions and learning outcomes clearly stated in the curriculum; specifically, for 
numeracy (Mathematics), there is the need to do auditing of subject knowledge to establish 
and address student teachers’ learning needs, perceptions and misconceptions in Numbers 
and Algebra.  Knowledge, skills and understanding of the fundamental concepts of Num-
bers and Algebra, as well as the ability to identify one’s characteristics (culture, ethnicity, 
religion, family constellation, socio-economic background, disability), can lead to a student 
teacher’s ability to apply these two areas of mathematics in patterning, generalisation and 
algebraic reasoning in reminding the student teachers of the role of deductive reasoning in 
developing mathematical ideas. Topics in Number and Algebra include

recognising and developing patterns, using numbers and number operations, properties of numbers, 
the concept of sets, number bases and modulo arithmetic, and algebraic expressions. In addition, stu-
dent teachers will explore operations on algebraic expressions and apply mathematical properties to 
algebraic equations and functions. Using many examples of different local and global contexts, stu-
dent teachers will solve mathematical problems using equations, graphs and tables to investigate lin-
ear and quadratic relationships (MoE, 2019, p. 17).
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From the above, a description is given of the course and the various topics with-
in numbers and algebra that need to be taught in the CoEs (B.Ed. Early Grade) cur-
riculum. However, this is not explicit in the national KG curriculum, which makes it 
difficult to understand the mathematics content that the teacher is required to teach 
the KG learners.

5.3. Comparison of the Content of the CoE and the National KG 
        Curricula

The study also ascertained whether the nature and contents of the national KG curricu-
lum are in line with or differ from the CoE (B.Ed. Early Grade Curriculum). The peda-
gogical approaches of the two curricula were also examined. Table 2 shows the content of 
both curricula.

Table 2. Content of the CoE and the national KG curricula 
Content of the B.Ed. Early Grade Curriculum Content of the KG Curriculum

Year 1 has the following courses:
 ■ Introduction to learning and applying numbers and 

algebra
 ■ Learning, teaching and applying geometry and han-

dling data

Year 2:
 ■ Theories in the learning of numeracy in early grade
 ■ Teaching and assessing numeracy for early grade
 ■ Year 3:
 ■ Teaching and assessing numeracy ii for early grade

KG 1 and KG2 have the following scope of content.

 ■ Number
 ■ Algebra
 ■ Geometry and Measurement 
 ■ Handling data

Source: University of Ghana 2018 B.Ed. Early Grade 
Curriculum

Source: Republic of Ghana 2019 KG Curriculum

From the analysis of the two curricula, the contents have the same scope, that is num-
bers, algebra, geometry, measurement and handling data. This provides consistency in the 
content of the two curricula, making the B.Ed. Early Grade Curriculum a reflection of the 
national KG curriculum. It can be deduced that the B.Ed. Early Grade Curriculum is meant 
to produce teachers who will be well-trained to master the subject matter knowledge in ar-
eas such as numbers, algebra, geometry and handling data. 
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Table 3. Comparison of the pedagogical approaches of the CoE and the National KG curricula
The pedagogical approaches for the CoE B.Ed early 

grade curriculum
The pedagogical approaches for the national 

KG Curriculum

Interactive pedagogy:
Student teachers will be prepared to base the pedagogy 
they use on the social constructivist view, which sees te-
acher education as the co-construction of knowledge. They 
will be able to use differentiated instruction and assessment 
strategies.

The curriculum emphasises:
that the use of relevant active play-based methods in the 
curriculum delivery will be paramount as research has esta-
blished that learners learn better through play.

Pedagogical Knowledge, including general pedagogical 
knowledge, assessment strategies, introduction to and de-
velopment of cross-cutting issues, education studies, prepa-
ration for supported teaching in school, classroom enquiry 
and research, Inclusion and equity, SEN and ICT. 

A thematic integrated method will be used to integrate 
experiences from the various learning areas, as research 
indicates a child’s brain is not compartmentalised. Subject 
teaching should, therefore, not be used at the kindergarten 
level.

 ■ the positioning of inclusion and equity at the centre of 
quality teaching and learning.

 ■ the use of differentiation and scaffolding as teaching 
and learning strategies ensures that no learner is left 
behind.

 ■ the use of Information Communications Technology 
(ICT) as a pedagogical tool

 ■ the integration of assessment into the teaching and lear-
ning processes as an accountability strategy

Source: University of Ghana 2018 B.Ed. Early Grade 
Curriculum

Source: Republic of Ghana 2019 KG Curriculum

Table 3 shows some similarities in the stated pedagogical approaches for both curricula. 
The use of ICT as a pedagogical tool, differentiated instruction, inclusion of learners with 
special educational needs (SEN), equity and creation of learner-centred classroom learn-
ing are areas where there appears to be agreement in the pedagogical approaches of the two 
curricula. Although the curricula appear to be in sync with each other, there are variations 
in some aspects of their pedagogical approaches. Generally, the KG national curriculum is 
play and activity-based, which is clearly seen in how the mathematical play activity should 
be conducted in the classroom, spelling out the role of the teacher and the learners. For ex-
ample, in teaching the concept of addition and subtraction (algebra) to KG 2 learners, the 
pedagogical approach stated in the curriculum was entirely play and activity-based. The 
teaching approach was stated in the KG curriculum as follows:

Prepare a shopping list, and use the money to shop for ingredients for the festival’s special meal. Ex-
emplar: Learners apply the concept of addition and subtraction as they use real money to go shop-
ping for some essential ingredients in the classroom store. Count the number of people in the fam-
ily and buy enough food for them. Solve addition and subtraction word problems during the week 
(MoE, 2019, p. 12).

This gives room for the learners to come out with creative and innovative thinking while 
the teacher guides them through scaffolding. Although play as a teaching approach is brief-



Trends in Mathematics Education Research374

ly mentioned in the content of the B.Ed. Early Grade Curriculum. For example, under the 
Numbers and Numeration in the B.Ed, the pedagogical approach is to be play-based. How-
ever, it is stated very briefly without detailing how the play should be initiated. The learn-
ing activity for the topic is stated 

as using various collaborative activities, including think pair, share, group work and role play, that 
will lead to the development of the numeration system (MoE, 2019, p. 3).

6. Discussion and Conclusion

The content of both curricula is related. Both curricula had a similar scope of content, in-
cluding numbers, algebra, geometry, measurement, and handling data. The pedagogical 
approaches such as problem-solving approaches, scaffolding, creativity, and play-based ac-
tivities were inculcated into teaching mathematics. The problem-solving approach gives 
students numerous opportunities to connect mathematical ideas and develop conceptual 
understanding, according to Suurtamm, Quigley, and Lazarus (2015). Sinay and Nahor-
nick (2016), who examined ways to make space for students to think mathematically, rec-
ommended that it is important to present problems in the mathematics classroom that are 
complex and rich, allowing for multiple entry points, different approaches, scaffolding, and 
engagement without imposed procedural steps. This problem-solving approach is well in-
tegrated into the KG and B.E.d curricula, which will help learners use mathematical con-
cepts to solve real-world problems.

Scaffolding was also another pedagogical approach that was found in both curricula. 
Researchers have described instructional scaffolding as the cornerstone to assisting strug-
gling learners in accessing the core curriculum (Coyne, Kame’enui, & Carnine, 2011). To 
determine the amount of instructional scaffolding to provide during an instructional task, 
Clarke et al. (2015) recommended that teachers consider whether learners have the back-
ground knowledge required to accomplish the task. They further stated that in situations 
where learners are less prepared or the task is complex or novel, teachers would have to pro-
vide greater support to engage learners in key mathematics content deeply (Clarke et al., 
2015). This is important because both the KG and B.E.d curricula emphasise the inclusion 
of learners with mathematics learning disabilities. The inclusion of a scaffolding approach 
to instructional delivery will enable teachers to meet the learning needs of all learners. The 
play-based instructional approach took the centre of the two curricula. Although the CoE 
B.E.d early grade curriculum did not give a detailed description of how play-based instruc-
tion should be delivered, it did state it as part of the teaching approach for all mathematics 
to be studied by initial teacher education students. The KG curricula, on the other hand, 
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provided many details of how the play activities should be done. Play can be defined as ac-
tivities that ‘are fun, voluntary, flexible, involve active engagement, have no extrinsic goals, 
involve active engagement of the child, and often have an element of make-believe’ (Weis-
berg et al., 2013). Gasteiger (2015) recounts that early learning needs should be based on 
play. He added that innovative approaches to early mathematics should not only be devel-
opmentally adequate and effective but also compatible with kindergarten pedagogy, which 
is play-based (Gasteiger, 2015). As kindergarten learners are highly motivated to learn, but 
not in a formal, instructional way, play can be regarded as a powerful vehicle for learn-
ing (Hauser, 2005). Since both curricula are restructured, it is recommended that the KG 
mathematics curriculum be integrated into the CoE early-grade mathematics curriculum 
so that pre-service teachers will have an idea of exactly what they will experience in practice.
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Ch a pter 16

THE USE OF AN INTERACTIVE FORM OF CLASSES TO MOTIVATE PRE-
SERVICE TEACHERS OF EARLY CHILDHOOD EDUCATION TO SOLVE 
MATHEMATICAL PROBLEMS 

Summary: The study presents a way of motivating students majoring in early childhood education 
to discover and solve mathematical problems on their own. It was carried out in the form of interac-
tive activities, during which the learners solved mathematical problems on individual thematic “sta-
tions”. While learning, they could be helped through object manipulation. This article presents se-
lected problems and aspects from the conducted research. The study was carried out in the form of 
an action research procedure. The research results were described in four scopes of the researcher’s ac-
tivities: preparation of the learning environment (research organisation), observation of the respond-
ents, communication with the students (interviews with the students), and application of the results. 
Keywords: mathematical education, prospective early childhood teachers, interactive learning, mo-
tivating pre-service teachers.

1. Introduction

To carry out this research, I was prompted by the attitudes of early childhood education 
students (i.e., students majoring in early childhood education) towards mathematics ed-
ucation activities. From the statements of most of the students, it would seem that they 
do not like mathematics and undervalue their own ‘strengths’ and abilities when solving 
mathematical problems. This is likely related to the difficulties they had in mathematics 
at school and the bad memories of learning the subject. These fears and attitudes towards 
school mathematics are also confirmed by research conducted on middle school students 
by researchers Oszwa and Szablowska: “Many students believe that they will never man-
age to understand mathematics, at most they are able to learn it in such a way as to give 
the illusion that they understand it” (Oszwa & Szablowska, 2018, p. 70). The authors also 
point out that maths anxiety lowers students’ self-esteem (after Oszwa, 2018, p. 76). Two 
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types of maths anxiety have been identified in the literature. The first is “caused by a men-
tal block in the process of learning mathematics: it refers to various triggers, such as sym-
bols or concepts occurring during mathematics learning” (after Oszwa, 2018, p. 75). This 
is because the “process of learning mathematics has its own specificity – learning mathe-
matics requires systematicity and patience, and mathematical knowledge is cumulative” 
(Baczko-Dombi, 2017, p. 39). The second type of anxiety is the result of sociocultural in-
fluence: “It appears as a consequence of prevailing cultural beliefs about mathematics. 
Some parents even make excuses for their children, saying ‘I couldn’t do maths either and 
I always had problems with it’”. Similarly, W. Sawyer believed, writing: “The fear of math-
ematics is a tradition handed down from generation to generation from the times when 
most teachers knew little about human nature and nothing about the nature of mathe-
matics itself ” (Sawyer 1988, p. 8). 

One may ask whether university students can be motivated to solve mathematical tasks, 
and if so, how this can be achieved. 

The terms “motivation” and “motivating” come from the Latin word movere and means 
to move, to set in motion, to encourage someone to do something, to stimulate (Gasiul, 
2007, p. 222). According to Brophy, motivating pupils means finding ways with which the 
teacher can encourage them to accept the goals of their work and learn knowledge and 
skills, regardless of whether this activity gives them pleasure and whether they would un-
dertake it if they did not have to (Brophy 2007, p. 14). Okoń distinguished between two 
types of motivation: intrinsic and extrinsic. Intrinsic motivation stimulates action by hav-
ing intrinsic value; an example of this is an interest or love for something. Extrinsic moti-
vation, on the other hand, creates an incentive to act that is rewarded in some way or that 
avoids punishment (Okoń, 2005, p. 178)”. G. Pettie distinguished between long-term and 
short-term motivating factors. Among the former, the author included: “What I am learn-
ing is useful and the qualifications I gain from learning are needed”. Among the short-term 
ones, on the other hand: “I am usually successful at school and it improves my self-esteem”; 
“I will gain acceptance from teachers and peers if I learn well”; “I expect the consequences 
of neglecting learning to be unpleasant (and I will experience them very quickly)”; “What 
I am learning is interesting and arouses my curiosity”; and “Learning activities are enjoy-
able” (Petty, 2015, pp. 50–52).

Ideally, a person should be intrinsically motivated to learn a subject and thus satisfy 
their natural curiosity and delight in the world. However, it is not always possible to get 
a student to be interested in a subject, in which case it would be good if at least the teach-
er’s activities were interesting, i.e., innovative, fun, light-hearted, encouraging self-expres-
sion, or creative thinking.

Researchers Getzels and Thelen, who looked at classroom life as a social system, also saw 
the communicative aspect of personal learning: “The main determinants of students’ be-
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haviour are their personal needs and individual interests brought into the school and into 
the social group that develops as the interactions between students and with the teacher 
increase” (Arends 1998, p. 135).

Morańska draws attention to the fact that “one of the most important factors determin-
ing the educational results achieved is stimulating the motivation to learn”. The researcher 
also adds that “nowadays in academic didactics not only ‘What?’, i.e., the content of edu-
cation, but also ‘How?’, i.e., the way it is presented, determines the effectiveness of the ed-
ucational process. On the other hand, the most common questions posed by the students 
are ‘Why am I learning this?’, ‘What is the point?’. Considering the answers to the men-
tioned questions is a key prerequisite for planning learning and the lecturer’s arrangement 
of learning situations” (Moranska, 2019, p. 62).

2. Interactive Form of Activities to Support Pupil / Student Motivation

Nowadays, various forms and methods are being sought to motivate and enhance the effec-
tiveness of pupils’/students’ learning. One of these may be the form of interactive learning 
presented below. Its origins can be traced back to 19th-century museums with displays, pri-
vate collections and offices opened to the public for the purpose of introducing them to the 
achievements of science (Kruk, 2005, p. 195). The concept of an interactive way of learn-
ing was born in museums, science centres, which, adapting to the modern audience, trans-
formed themselves from purely collectors’ establishments into institutions for education 
and experimentation – “Don’t watch, interfere!” in the words of Hacking (after Karwasz 
& Kruk, 2012, p. 19). Interactive museums/exhibitions attract visitors through innovative 
ways of creating exhibitions, which can include six elements: viewer-centredness, narrative, 
emphasis on education, interactivity, freedom of interpretation and multi-perspective, va-
riety of media. The central place in the exhibition is occupied by the object, through which 
teaching-learning takes place. The exhibits provide the viewer with diverse access to the 
topic, the issue, while influencing the visitor’s interests in accordance to his or her knowl-
edge. The content of the exhibits can be discovered by the visitor according to his or her 
own predisposition and ability. 

“Interactivity” (from the Latin “interactus” – mutual act) is the “ability of commu-
nicating parties to interact with each other”1. This word consists of two elements: activi-
ty and cooperation/communication. It involves two aspects. The first relates to the active 
conception of learning (Aeblie), i.e., the research activity of a learner who learns and con-
structs knowledge (Karwasz & Kruk, 2012, p. 16). The second aspect relates to communi-

1 https://pl.glosbe.com/pl/pl/interaktywno%C5%9B%C4%87, accessed 13.06.2018.
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cation: “learners intensify cognitive processes by interacting with each other, age does not 
play a role in this case” (Karwasz & Kruk, 2012, p. 17). Kruk, the creator of interactive di-
dactics, points out that interactivity should not be limited only to relationships with oth-
er people, but also with objects. The researcher defines interactivity in education as a “re-
lationship with one’s object of attention during which the object is shaped as an object of 
perception with an extended meaning, as the process of interaction proceeds” (Karwasz 
& Kruk, 2012, p. 17). The visitor’s perception, knowledge and experience are the result of 
a number of factors that determine the final interpretation and the way the interaction car-
ries out during the exhibition. This process is outlined by J. Kruk in four steps: “The view-
er’s experience – What am I dealing with? What do I want to understand? The exhibit 
– What is the object? What message does it contain? Perception (interaction) with the ex-
hibit – Reconstruction of meaning. Knowledge construction – Interpretation of the mes-
sage” (Karwasz et al., 2011). 

The form of classes described above was used to create such conditions for students while 
learning mathematics so that they could discover and get to know mathematics from a slight-
ly different perspective, i.e., as a field of knowledge useful in life, and at the same time quite 
interesting and, above all, with enough effort, possible to understand and providing the sat-
isfaction of solving it on one’s own. When constructing the research tool, i.e., the topic sta-
tions, care was taken to ensure that the mathematical skills to be applied were not difficult 
and the mathematical problems presented were not “boring school knowledge”; moreover, 
the topics of the problems were selected in such a way that they could be used by the stu-
dents in further studies or future work.

3. Methodological Basis of the Research

Action research can be used to improve the quality of education. It aims to change the prac-
tice by combining learning with the changing of educational practice. Situational context 
is important in this research, as the solution to the problem relates to this context. Knowl-
edge gained from research is meant to allow for a change in practice (Czerepaniak-Walczak, 
2010, p. 325). In my study, I focused on preparing the implementation of classes on mathe-
matics education, communicating, and making use of the results to introduce changes into 
educational practice. Organising the described forms of conducting mathematics educa-
tion classes allowed to develop and conduct classes for early childhood pupils in mathemat-
ics education, in an interactive form, by the students participating in the research. Howev-
er, after supplementing them with additional issues, they will be used to write and publish 
a script with lectures and exercises in the subject of Didactics of Mathematics for students 
of early childhood education. I consult my observations and comments on an ongoing ba-
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sis with professional early childhood education teachers and researchers conducting their 
research in mathematics education. 

As part of the undertaken research, I formulated the research question: Does the inter-
active form of classes motivate early childhood education students to solve mathematical 
problems independently? The subject of the research involved task solving and the opinions 
of the surveyed students. The determinants of the motivation were the number of students 
who attempted to solve the given problems, the correctness of the solutions, as well as the 
opinion of the students about what they learned, what they managed to do, what interest-
ed them, what more they would like to know about a particular topic and what they paid 
attention to while dealing with a particular issue. In the study, I used the free observation 
method, school achievement tests (tool – worksheets, at particular workstations) and the 
diagnostic survey method (technique used – categorised interview). 

The research was conducted in three series of topics, and a selection of examples from 
fifteen conducted in three series is presented below. The research was conducted on 92 ear-
ly childhood education students (53 part-time students, 29 full-time students). Each was 
divided into smaller groups so that everyone could move freely through the prepared sta-
tions. Each session for all groups lasted 100 minutes. At each stand (a given thematic issue), 
in addition to the objects to be manipulated, a real-life application of the issue was present-
ed. This was intended to make the students more curious about the particular issue. In addi-
tion, each proposed topic could, if presented and described appropriately, be used to guide 
mathematics activities for children in grades 1-3.

The table shows the problem topics in each of the three study series.

Table 1. Problem topics in the three study series
First study series Second study series Third study series

Station 1:
Tying a tie

Station 1:
Taxi metrics

Station 1:
Sudoku

Station 2:
Laying parquet

Station 2:
Fibonacci sequence

Station 2:
Mobius strip

Station 3: 
Decoding a suitcase

Station 3:
Credit cards, bar strips

Station 3:
Cube grid

Station 4:
The shortest route

Station 4:
Logic puzzles

Station 4:
Fractals

Station 5:
A game of roulette

Station 5:
Mathematics in art

Station 5:
Squares

Tables 2 and 3 present the students’ skills in particular stations as shown in already pub-
lished research (Bojarska-Sokołowska, 2019; 2022a; 2022b).
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Table 2. Description of the mathematical skills of the students during their work on problems from
                  a particular workstation, from the first series of the study

Station 1: Tying a tie

The student is able to read the symbolic notation of the successive actions to be performed and to 
write down symbolically the algorithm of the observed tie being tied. He/she is able to create his/
her own algorithm, taking into account the conditions that allow for correct execution. Can arrive 
at the discovery of the rules for tying a tie correctly.

Station 2: Laying 
parquet

Student knows how to fill out a rectangle, with different types of shapes, predicts filling, uses 
symmetry, translation, rotation. Developing flat geometric imagination.

Station 3: Decoding 
the suitcase

The student can read numbers written in binary and ternary into decimal and vice versa. In addi-
tion, he or she can solve a logic puzzle involving manipulating the jockeys in such a way as to place 
them on horses without cutting or bending them.

Station 4: The 
shortest route

The student knows how to draw a broken line, measure and estimate length results, calculate route 
lengths.

Station 5: Roulette 
game

The student performs monetary calculations, learns to manage his/her funds. Anticipates and 
chooses the likeliest hands, analyses and interprets random situations on an ongoing basis. In ad-
dition, he/she realises that “good fortune” does not last long – the law of large numbers.

Source: own study.

Table 3. Description of the mathematical skills of the students during their work on problems from
                  a particular workstation, from the second series of the study

Station 1: 
taxi metrics

The student knows how to determine different broken lines with given properties and lengths. 
The student finds all possibilities that satisfy the conditions of the task.

Station 2:
Fibonacci sequence

The student knows how to fill out a rectangle, with squares of different sizes, and to calculate its 
area in two ways. The student finds the rule for finding consecutive numbers in a sequence.

Station 3: 
credit cards, barcodes 

The student knows how to apply the given algorithm to calculations. The student knows the 
terms: even number, odd number, remainder from dividing by 10. The student knows how to 
solve an equation.

Station 4: 
logic puzzles The student is able to diagrammatically record the steps of individual boat crossings. 

Station 5:
mathematics in art The student knows how to encode and decode images. 

Source: own study.

In the remainder, I describe the research results for four out of the 15 problems found 
in three series of surveys, presenting the research tool and briefly describing the results 
from the surveys.

In the first series of the study, in Station 1, the students tied a tie. At the beginning, an 
explanation was provided on how to symbolically write down the example steps of tying a tie. 
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Tying the tie can be done according to the algorithm presented in the table, the moves are made 
according to the grey part of the tie.

Step 1. Left front-L(F) Step 2. Right from behind-R(B) Step 3. Left front-L(F)

                                   
                                      Step 4. Centre below neck-C(N)                                                             Step 5. Centre-C

L(F)  R(B)  C(N), C-step designations
The algorithm for tying a tie in this way can be written in short as: L(F)  R(B)  L(F)  C(N)  C

Below are the three problems the pre-service teachers of early childhood education were 
asked to tackle.

Problem I.1.1. Tie a tie using the algorithm given above. Show the instructor.

Problem I.1.2. Create an algorithm to tie a Kelvin knot
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Problem I.1.3. Create your own algorithm for tying a tie. Write an arrangement of six steps/a se-
quence of letters. Following the rules, there must not be two of the same letter in a row in the tie 
knot sequence, e.g. L(R) L(R). The tie knot sequence must start with the letter L with a F-front or 
B-back/behind in parentheses. The tie node string must end with the sequence of letters RLC or 
LRC with letters in parentheses.

Alongside this exposition, in addition to the information concerning the scientific de-
scription of the process of tying a tie by two mathematicians, Thomas Fink and Young Mao, 
the rules the algorithm must fulfil for one to be able to tie a tie are also given. In addition, 
several algorithms (out of 85 possible) for other methods of tying ties are shown. 

In Station 2, students laid out and drew parquet floors. They had the following three 
problems to solve: 

Problem I.2.1. Draw a parquet floor made up of type blocks only.

Remark. You can help yourself by manipulating the 
blocks in this shape.

Problem I.2.2. Draw a parquet floor made up of only blocks of the following type:

Remark. You can help yourself by manipulating the 
blocks in this shape.
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Problem I.2.3. Draw a parquet floor made up of only blocks of the following type:

Remark. You can help yourself by manipulating the 
blocks in this shape.

In the theoretical part, parquetry was referenced. The principles for the construction of 
parquets and their types, e.g., Platonic parquets, Archimedean parquets, etc. are presented, 
also describing the principles for their creation. 

In Station 1 of the second series of the study, students explored the properties of the 
“taxi metric”2. Prior to the introduction of the tasks, a necessary explanation of the com-
parison between Euclidean and taxi metrics was provided.

Look at the drawings.

Figure I Figure II

Finding the shortest path from point A to point B is very simple (Figure I), it involves 
connecting these points with a straight line. However, we cannot do this in an urban real-

2 Compiled from the books: Gómez (2012, pp. 11–24); Moscovich (2009, p. 35); Alsina (2012).
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ity, because this would mean that we are moving through buildings, bushes, etc., not pave-
ments or streets. Therefore, the shortest route from A to B is 8 units (small grids)-Figure II. 
In this task we use the urban (taxi) metric.

Station 1 contained geoplans with points A and B, D and S marked on them (content 
of task 1-picture 1,2) and rubber bands. The students could use these objects while figur-
ing out the solution of the two tasks.

Figure 1. Explanation on how the taxi 
metric differs from the Euclidean metric

Figure 2. Geoplan to be manipulated while 
solving Problem 1

Problem II.1.1. Draw some of the shortest routes leading from point D to point S, in urban metric

Problem 2.

Imagine that you have to build a highway in a city 
to connect two neighbourhoods. The most im-
portant places for the residents are points A and 
B. Your highway must also meet two conditions:

1. Any vehicle travelling on the highway should 
have the same distance to A and to B.

2. As few buildings as possible must be de-
molished (the buildings are inside the grid 
squares). 

Draw the solution to the problem in the diagram.
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With this display, in addition to information on the properties of the taxi metric, a for-
mula is also included for calculating the amount of the shortest paths consisting of n steps 
upwards and m steps in one direction.

In Station 2 of the second series of the study, the students were asked to tackle the Fibo-
nacci mystery of rabbit reproduction. The station provided a calendar with twelve months 
and rabbits for the students to use when solving Problem 1.

Problem II.2.1. 

Face the Fibonacci 
mystery3:

Calculate how many pairs 
of rabbits you will have 
after one year if:

- each couple becomes 
fertile after 2 months, 

- each couple gives birth 
to one new pair every 
month,

- the rabbits never die.

Month number Number of pairs Sum of pairs of 
rabbits

1

2

3

4

5

6

7

8

9

10

11

12

Problem II.2.2. had to do with Fibonacci numbers and concerned the golden rectangle:

Problem II.2.3.
We have a rectangle sized 13 cm by 8 cm. Draw squares with the largest possible area, then calcu-
late the sum of the areas of these squares and them compare with the area of the starting rectangle 
(use centimetres as the unit). 

3 Compiled from the book by (Moscovich, 2009, pp. 43–45).
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In addition to information on the Fibonacci sequence and the golden number, the the-
oretical section also includes their omnipresent occurrences in nature, architecture, etc.

4. Analysis of the Research Results

4.1. The First Series of the Study

In Station 1 of series one, the first task was solved by 53% of all students. All succeeded in 
tying the tie correctly. 85% managed to symbolically write down the algorithm shown in 
the drawings for tying a tie. 65% provided the correct sequence for tying the tie. No one 
managed to provide all of the rules of the algorithm for correctly tying a tie during the class. 
Some took the topic home with curiosity. From the students’ statements, it was evident that 
they had learnt “to tie a tie according to my idea (S2)”4, “to teach how to tie a friend’s tie 
(N23)” at this station. The problem generated a lot of curiosity among the students: “that 
there are many ways to tie a tie and that an algorithm can be created from each of them 
(N45)”, “that I was able to present my suggestions for tying a tie (S29)”. 

The second station in series one (photo 4) had 63% of all students working. 62% drew 
the floor correctly (without holes) for all four types of blocks. From the students’ statements, 
it was clear that while working at this station they learned to “assemble geometric figures” 
(N21). Some people also mentioned what interested them while solving the problems at this 
station, the problem itself: ‘that there are different combinations and you can create differ-
ent parquet patterns (N36)’ as well as the idea behind the task: ‘the way the task is present-
ed (N45)’, ‘that simple blocks can be arranged in many patterns (N11)’.

Figure 3. The parquet floor stand Figure 4. Drawing parquet

Most of the students tried to assemble a parquet floor from the blocks that were available 
at the station and then draw on the card. However, there was no one (as among the middle 

4 Explanation of coding of responses: S-students of full-time studies, N-students of part-time studies.
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school students) who would, for example, assemble a smaller piece from two or three blocks 
and then, through translations or rotations, fill in the whole plane around it.

The future teachers, however, showed more surprise and curiosity in comparison to the 
surveyed middle school students, both regarding the problem posed as well as the blocks 
they thought helped them arrive at a solution.

4.2. The Second Series of the Study

In station one of series two, the first task was solved by 53% of all students. All 15 possibil-
ities in Problem 1 were drawn by 31%. The students either repeated roads already drawn or 
did not find all of them. Problem two was solved correctly by only 17%. Students found two 
different correct solutions to route this highway. From the respondents’ statements, it was 
clear what they had learnt while working at this station: “finding the shortest routes (S2)5”, 
“there are many ways to get to the destination (N23)”, “there exists a taxi metric (N25)”. 
Both full-time and part-time students noted what effort it takes to determine all the routes 
in the taxi metric, furthermore: “that you can always find the shortest route (N44)”, “that 
you can do a lot of tasks on the geoplan (S18)”, “you can adapt these tasks to the age of the 
children (N47)”, “these types of tasks are interesting (N51)”, “that it is great fun (S14)”. 

The teaching students’ strategies of drawing the shortest paths in problem one did not 
feature the strategy of ordering these possibilities by way of coding, as in the solutions con-
ducted on middle school students.

However, the surveyed female students showed, in relation to the pupils, more surprise 
and curiosity about both the problem posed and the blocks, which they thought helped 
them find all possible paths.

Station 2 in the second series of tests (photos 5 and 6) had 63% of students working. 
42% correctly calculated the number of all pairs of rabbits after one year; they also man-
aged to figure out how to find the consecutive numbers of the Fibonacci sequence. The most 
common errors were that the students did not include all pairs of fertile rabbits in a given 
month, taking only one, probably the one that was becoming fertile.

5 Explanation of response coding, S-students full-time, N-students part-time.
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Figure 5. Solving the task about 
rabbit reproduction

Figure 6. Solving the task about 
rabbit reproduction

56% of students solved task two correctly by calculating the area of the rectangle, by 
multiplying its dimensions and by adding the sums of the areas of the designated squares: 
8 by 8, 5 by 5, 3 by 3, 2 by 2, and two with dimensions of 1 by 1. Those who failed only di-
vided the rectangle into squares but did not calculate the areas. There was also a person who 
did not divide the rectangle into the largest possible squares, but into unit squares. Based 
on the students’ statements, while working on problem one at this station, they had learnt 
that: “there is a Fibonacci sequence (N27)”, “the rule of adding an increasing number to 
a previous number (S13)” and for problem two: “the area of a figure is equal to the sum of 
the areas of the other figures that fall within it (N21)”. 

In addition to motivating the students to try to solve mathematical problems, the form 
and topic of these activities were also intended to inspire the students to plan and carry 
out activities for children in Grades 1-3. And so it happened, two students used the inspi-
ration of the problem of tying a tie to prepare an activity for the children involving tying 
different coloured strings according to an applied algorithm. Seven of the university stu-
dents offered the children a station where they had to fill a piece of paper with different 
figures (different types of polygons), tracing a given type of block or checking to see if it 
could be done (circles, semicircles). The work also consisted of filling in in such a way that 
the symmetries of particular floors appeared. Two teaching students, inspired by the taxi 
metric problem, prepared an activity for children to determine the length of the perime-
ter of different rectangles without calculating them. Three, meanwhile, used rubber bands 
and a geoplan for the problem of finding different routes to get from one point to another. 
Two suggested a station where the children had to fill a given rectangle with different fig-
ures, i.e., different regular convex polygons, circles, and other shapes, e.g., star-shaped con-
cave polygons. During these activities, the children were provided with sheets of A4 paper 
and cut out figures which they could outline on the sheets.
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5. Conclusions of the Study

According to the research, the interactive form of learning evoked motivation to try to 
solve mathematical problems in the majority of the students. The students liked the fact 
that they could decide which problem, in which order, for how long, and with whom they 
could solve. In addition, they appreciated that they were praised even for small steps when 
solving, and for simply trying to solve the problems. After the class, they were still able to 
work on the solution e.g. at home, and to show off their results at the next class, when the 
individual tasks were discussed, without evaluating them (only the proposal and execu-
tion of the interactive activities for the students were evaluated). After the classes, the stu-
dents described them as enjoyable and referred to their childhood memories. They add-
ed that mathematics was not that difficult so far. Similar statements from the respondents 
(secondary school students) are described by Boczko-Dombi, “they described their first in-
teractions with mathematics as joyful, interesting, exciting” (Boczko-Dombi, 2017, p. 44). 
Moreover, it was evident from the students’ statements that the proposals for solving the 
geometric problem surprised the respondents – “mathematics is not just about counting 
(S17)”. The students also liked the form of the classes – “this form of exercise is interesting 
(N52)” and the fact that they use aids during the classes – “mathematical tasks are much 
simpler when we can assist ourselves with a model (N8)”. In their statements, the students 
emphasised the emotional colouring, which Santrock also pointed out in his research. Writ-
ing that “students put more or less effort into learning depending on whether the teaching 
environment and the specific teaching situation are pleasant or unpleasant” (after Arends, 
1998, p. 139). The students’ suggestions for children’s activities, following the interactive 
workshops, were mostly considered more inspiring than before in formulating interesting 
research problems for children. 

In conclusion, one can quote Krajewska’s words that skilful teaching today is active be-
cause it provides a conducive learning environment; opportunities; interactions; tasks that 
shape deep learning. (...) The concept of active learning often also refers to the use of group-
based, collaborative learning, which particularly exposes the contribution that social inter-
actions can make (Krajewska, 2021, p. 13). Shaping a social environment conducive to ef-
fective learning, an environment in which university students/pupils would manifest high 
motivation to solve mathematics tasks is a great challenge. Teachers’ motivational compe-
tences play an important role in motivation, covering a wide range of tasks in organising 
the didactic process, taking into account the contemporary generations of university stu-
dents/pupils being educated. As far as mathematics education is concerned, this requires 
further in-depth research.
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